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ABSTRACT With the evolution of 5G networks, mobile edge computing (MEC) is being considered as
a key enabler for realizing significant improvements in heterogeneous video streaming services. This is
because MEC provides storage and computation resources for adaptive bitrate (ABR)-video streaming
services to transcode the original video into lower bitrate variants at the edge caching server proactively,
thereby facilitating the heterogeneous demands of users. In this paper, we propose a caching and processing
framework that jointly considers the popularity and retention rate of video streams to maximize their video
bitrate. The problem is formulated as an integer linear program (ILP), which that is challenging because of
its NP-hardness. Our algorithm is called online iterative greedy-base adaptation (OIGA); it is built based on
the greedy approach with strict constraints for storage size and computing capacity of the cache server. The
simulation results show that our proposed solution adapts well to the change in video popularity and retention

rate for a maximal video bitrate.

INDEX TERMS Video streaming services, cache placement, bitrate adaptation, edge caching systems.

I. INTRODUCTION

Over the past few years, the proliferation of over-the-top
(OTT) video content providers (YouTube, Amazon Prime,
Netflix, etc), coupled with ever-increasing multimedia pro-
cessing capabilities and affordability of mobile devices
has become the main driving force behind the increase in
on-demand mobile video streaming services. The prevalence
of mobile devices causes mobile internet traffic to increase
considerably. Mobile video streaming is predicted to be
accountable for 82% of the total mobile data traffic by 2022
[1]; and Ericsson estimates that there will be 7.3 million sub-
scriptions connected to different networks [2]. While these
demands create a considerable pressure on mobile network
operators, edge caching has been regarded as a promising
solution to store popular video content in close proximity to
end users, which helps minimize data traffic through back-
haul links and the time required to deliver content, thereby
helping alleviate traffic during peak times. In wireless edge
caching, the cache server, which is either the cellular base sta-
tion or wireless access point, proactively cache trendy videos
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in expectation that requests for the same content from users
can be accommodated easily without the need to duplicate
transmission from the original video content sources.

In fact, streamers generate their video streaming content
via designated applications supported by popular live stream-
ing platforms. The live streaming platforms are solutions for
video hosting that allow streamers to upload and broadcast
video content to their audiences. Recently, several video shar-
ing platforms have emerged; for example Twitch, YouNow,
Facebook Live, and YouTube Live, which target different
classes of users [3]-[5]. Twitch is a streaming platform that
enables streamers to broadcast their screen while playing
games, thus sharing their gaming experience with their fol-
lowers and interacting with others in real time; this platform
has become the fourth largest source of peak internet traf-
fic in the US [6]. YouNow is primarily used by children
and teenagers to broadcast self-portrayal videos. In case of
Facebook Live, some streams reach tens or even hundreds of
thousands of visitors. Facebook updated its ranking algorithm
to show more live videos on people’s news feeds. YouTube
Live is a live streaming service, and offers an easy way to
reach audience in real time. Whether you’re streaming a video
game, hosting a live Q&A, or teaching a class, YouTube live
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FIGURE 1. Typical network model of video streaming services in edge
caching systems.

tools will help you manage your stream and interact with
viewers in real time.

Along with the heterogeneous computing capacities of
the streamers and the variations in the network condition,
the maximum video bitrate that streamers can provide may
oscillate over different times. The abnormal network con-
ditions translate into inappropriate frame freeze, or sudden
video quality changes, which can lead to deterioration in the
quality of experience for the viewers. To resolve these prob-
lems, adaptive bitrate (ABR) streaming techniques have been
widely used to assess the scenarios of network conditions and
then adapt the quality of the transmitted video accordingly.
The deterioration of quality may result from video compres-
sion or network conditions (e.g., loss of packets, insufficient
bandwidth, delay, and jitter) [7]. Figure 1 illustrates a typical
model of these video streaming services powered by edge
caching systems. Dynamic Adaptive Streaming over HTTP
(DASH), which is a recent development in HTTP streaming
promotes adaptive bitrate streaming (ABR) that enables a
video player to switch between available representations of
bitrate/quality during a video viewing session based on the
current network condition and their preferences. A common
implementation is to encode the entire video in chunks, where
each chunk comprises several seconds of the video using
different bitrates.

However, caching multiple video variants of a same video
incurs high overhead in terms of storage and, and thus, it is
generally not optimal. The redundancy on storage usage also
leads to an increase in monetary cost for purchasing addi-
tional hard disks. A preferable solution for this redundancy is
to use video transcoding techniques so that only a version of
the video is kept at the cache server. Among these techniques,
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the most favorable are compressed domain-based approaches
such as bitrate reduction and spatial resolution reduction [8].
Upon request, they compress a higher video bitrate to a lower
video bitrate variant [9]. Owing to its real-time computing
capability, a cache server can perform the transcode operation
for an original video to different variants to dynamically con-
trol the size of its video. The potential benefits of transcoding
the video at the cache server is three-fold: (i) multimedia
processing capabilities are more appropriately achieved at
the cache server than at the battery-limited user devices;
(i1) unique video variants free the space for other video
contents from other streamers, and therefore, the cache
hit ratio will hopefully increase; and (iii) more end users
may be reached because they have more video bitrate
options because of their preferences and network conditions.
However, transcoding a large number of videos simultane-
ously can rapdily exhaust the available computing resource
on cache servers [10]. Therefore, it is very essential to plan
a resource allocation scheme for caching that efficiently
utilizes both the given storage and processing resources.

Despite several studies on optimizing video streaming
services using transcoding techniques, there remain several
challenges in adopting the streaming services into video
caching systems. First, the problem of determining the set
of video bitrates for all streamers to be cached is nontrivial
because of the variations in the optimization values of the
variables, which are updated based on the time period. The
global optimization approaches may have to consider a large
number of variables, and it can lead to unreasonable run-
ning time to output global optimal solutions. Second, many
research works focus only on video popularity, which is
quantified by the fame of the content provider in the com-
munity instead of the attractiveness of the content. This bias
can lead to impractical optimization solutions because the
intention of users may unexpectedly change the subject to
the content they are currently watching. Therefore, even if
the streamer is popular, users will abandon the streaming
session if they find that the content is not enjoyable. After
the first 15 seconds of a video, most audiences are likely
to finish their video viewing session [11]. These behaviors
define the user retention rate. The retention rate of each video
reflects the attractiveness of the video content according to
video playback time, and the popularity of the streamers
implies the fame of streamers in the community. If the users
abandon the video session abruptly, video content that are
downloaded but are never watched will be considered wasted
resources in terms of energy, storage, and computing capabil-
ity. These challenges motivate us to adopt users retention rate
and develop a lightweight heuristic algorithm for determining
the set of optimal video bitrate for all streamers.

This paper propose an effective approach called online
iterative greedy-based adaptation (OIGA), which runs within
each time period to optimize the cached video bitrate at the
cache server. At each iteration, the OIGA algorithm jointly
considers current video popularity and retention rate to greed-
ily selects available streamers for video bitrate adjustment
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thus, the average video bitrate is maximally increased for the
entire system. To adapt to environment changes, the OIGA
algorithm considers dynamic transmission throughput, cache
storage, and computing capabilities. The main contributions
of this article are,

o Adapting the notions of popularity of streamers and
retention rate of users based on the video content of
streamers into the optimization problem to increase its
viability in practical scenarios.

o Dealing with the unexpected dynamicity of practical
transmission schemes by calculating the available video
bitrate at each time period because of the observed trans-
mission throughput between streamers and cache server
such that the smoothness in video streaming services is
reserved.

o Formulating the video caching optimization problem
under the constraints of computing and storage capacity
of the cache server. The target is to maximize the average
video bitrate for all streamers. To this end, we propose
the OIGA algorithm to solve the optimization problem;
the algorithm decides the optimal level of the video
bitrate for each streamer.

o Conducting performance analysis to prove that the
OIGA algorithm achieves an approximate optimality
compared to heavy global optimization approaches
(e.g., branch-and-bound approach). The results suggest
that our proposed algorithm can be applied to optimize
on-the-fly even for a high density of streamers.

The remainder of this paper is organized as follows. The
Section II surveys cutting-edge approaches proposed for
streaming services. Section III-A demonstrates the system
model. Section III-B formulates the optimization problem.
Section IV proposes the OIGA algorithm. Section V shows
the advantages of the OIGA algorithm by simulation results.
Finally, we conclude the paper in Section VI.

Il. RELATED WORK

Emerging ABR streaming techniques over heterogeneous
wireless networks are highly promising for the research com-
munity [12]-[22]. These techniques aim to improve the qual-
ity of experience for end users in terms of average video
bitrate, mean-opinion-score (MOS), etc.

Yang et al. [12] derives an online adaptive rate control
algorithm to adapt the bit stream to the variable bit rate
downlink channels to maximize attainable visual quality.
Zhang et al. [13] maximizes MOS by adapting cache
management for ABR streaming over HTTP. In [14],
Mehrabi et al. proposes a heuristic cache replacement strat-
egy with a self-tuned bitrate selection algorithm. They aim
to improve the cache hit ratio and average video bitrate by
considering statistical information about retention pattern of
clients. However, they use linear curves to represent client
retention toward different videos, which may be impracti-
cal because the attractiveness of the content could be dis-
regarded. Pedersen and Dey [15] improve video quality by
enabling transcoding ability at the network edge of the radio

135846

access network. A rate adaptation algorithm is proposed to
simultaneously and correspondingly change the transmission
throughput and video encoding because of the observed video
characteristics. Zahran et al. [16] design an ABR stream-
ing algorithm to maintain a high video bitrate level while
avoiding stalling events. They strike a balance between video
quality and the ratio of stalling events to deal with the vari-
ability in network conditions. Dong et al. [17] proposes an
ABR method with proxy caching for video streaming, target-
ted to improve the average quality level of users. However,
their studies partly rely on the accuracy of the prediction of
the channel conditions. This dependence could lead to the
unexpected behavior of video streaming networks in reality
under fluctuating network conditions.

Yin et al. [18] formulate ABR streaming as a stochastic
optimal control problem, predict environment variables,
and then solve the exact optimization problem accord-
ingly. The proposed approach follows a table enumeration
approach. Offline optimal solutions are stored for further use.
Unfortunately, the efficacy relies solely on the correctness
of the prediction step. Zhou et al. [19] proposes a Markov
decision-based rate adaptation scheme and a sub-optimal
greedy algorithm designed for ABR video streaming. The
perceived video quality at the clients’ side is better than
the default video streaming protocol of Netflix in many test
cases. The fundamental assumption that network bandwidth
is Markovian confines the state space to consider only one
past bandwidth measurement. However, it is not reliable to
predict the distribution of the future bandwidth. Mao et al.
[20] develop ABR algorithms using reinforcement learning.
The analyses of the resulting efficiency of past decisions
are embedded to train the neural network model. The aver-
age QoE is improved compared to conventional optimiza-
tion techniques; however the running time of reinforcement
learning is questionable in practice. In [21], Tran et al. pro-
pose an ABR streaming method to minimize the average
download time for users in which media content are divided
into equally sized chunks. In this paper, the cache server
determines the number of chunks that should be cached,
while the remaining video chunks are served from the remote
server upon requests. Spiteri ef al. [22] devise an online
control algorithm, named BOLA, that utilizes the Lyapunov
optimization framework to minimize the probability of video
freezes; further, it maximizes the video quality. The BOLA
algorithm sticks well to the abrupt bandwidth variations and
requires no prediction on network bandwidth.

Although these aforementioned articles make significant
contributions to improve the quality of experience for users
in streaming services, a thorough investigation of video reten-
tion rate for improving the average video bitrate has not been
considered.

IIl. PROBLEM STATEMENT

A. SYSTEM MODEL

In this paper, we consider the network model, as shown
in Fig.1 which comprises a cache server, some streaming
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TABLE 1. Key notation description.

[ Notation [ Description |
qij Video content of streamer 7 is cached at video bitrate
jth.
gi max Highest available video bitrate of video content of
streamer 7.
QJmax Highest video bitrate, defined by universal video
codec.

Number of cycles per seconds to transcode a one-
second video from bitrate g; max to g;;.

f(Qi max» Qij)

Cij Caching decision variable to ecide to cache the video
for streamer 7 at video bitrate j.
T Retention rate of users for video content from

streamer ¢ at current time period.

Observed transmission throughput between cache
server and streamer .

Playback length of cached video in the cache server.
Zipf parameter.

List of all available video bitrates for streamer <.
List of all streamers.

Total number of streamers.

Total size of cache storage of cache server.

Total computing capacity of the CPU of cache
server.

ke

NHE~RNO0o 4

platforms, and many streamers. Streamers use live streaming
platforms to deliver content to users via the cache server.
Based on the current retention rate and the popularity of
streamers, the cache server selects the optimal video bitrate
for each streamer for each time period. The optimization
problem is built for each time period. The list of all notations
used in this paper are summarized in Table.l. Let Z =
{1,2,...,1i,...,I}denote thelist of streamers, where I = |Z]|
is the total number of streamers in the network. Suppose
we have [ streamers online in a current time period. These
streamers transmit their video content to the cache server via
the streaming platform. At each time period, the maximum
video bitrate that the streamers can provide is denoted by
gimax and it is restricted by the current transmission through-
put R;. The unexpected changes in the network conditions
vary R;, and hence, gimax Over time period. At the cache
server’s side, the optimal set of video bitrate for streamers
is decided such that the average video bitrate for the entire
system is maximized. In Fig. 1, the video content of streamer
#1 is degraded to level 2 of the video bitrate, while that for
streamer #2 is cached as its maximum video bitrate o max. For
users who request video #1, they can only receive the video
stream service with video bitrate 2 in the current time period.
We denote the cached video bitrate j for streamer i as g;;.
In the scope of this paper, we do not discuss the transmission
conditions between the users and the cache server.

For simplicity, the index of each streamer in Z also
represents their popularity in the descending order. The pop-
ularity of the ith streamer is denoted by p; and it follows the
Zipf distribution

1

pi= . l<isl, (1)

Zu:l u
where o characterizes the distribution by controlling the
entire relative popularity of files. A higher o implies higher
content reuse, which means the first few popular streamers
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FIGURE 2. Examples of video retention rates. The retention rates of videos
vary solely on the attractiveness of the video content. Different categories
of videos may results in different patterns of retention rate graphs [23].

account for the majority of requests from users. Although
we use the Zipf-distribution to stimulate the popularity of
streamers, the efficiency of our algorithm is independent
of the statistical distributions because it uses the observed
values at the beginning of each time period as inputs. At each
time the users open the streaming threads of the stream-
ers, their retention may be different depending on the video
content the streamer is providing. We define the probability
if the new users continue watching the streaming service
of streamer i right after opening it as the video retention
rate and denote it by ;. We assume that viewers’ retention
only depends on the appeal of the current video content that
streamer is providing. Intuitively, p; reflects the popularity
of the streamer i, while r; implies the attractiveness of its
current video content. In this paper, we assume that p; and
r; are independent. It is reasonable because even if a streamer
is considerably famous, in time, their video content can be
less appealing and users may be less likely to continue. As
illustrated in Fig. 2, the retention rates of videos may change
because of their categories and the current watching time. For
video #1, the users start playing it with considerable interest.
The introduction of the video may be very attractive; however,
during playback, the retention rate decreases because the
users lose their focus as the content may be boring. Video
#3 represents the heterogeneity of users’ retention. For the
first quarter of the video length, the users increasingly enjoy
the content; however, in the next quarter, they become less
likely to continue watching.

Each streamer delivers their contents to the cache server
via the streaming platform with a transmission throughput of
R (kbps). To maintain a stable live-stream session, the video
bitrate going out of the computer of each streamer cannot
exceed its transmission throughput, i.e., gimax < Ri;. For
each streamer i, we define the set of available video bitrate
as Q; = {gijll < qij < QGimax}. We assume that video
contents from all streamers follow an universal video codec,
and the highest level of video bitrate in that video codec is
Gmax- Obviously, gimax < ¢max, Vi € Z.
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We assume that the cache server always caches videos
for the playback duration of T seconds. However, owing to
the limited capacity of cache storage, it may not be optimal
to store all live-streaming videos of all streamers with its
highest video bitrate g;max. Let g;j < gimax be the optimal
cached video bitrate for streamer i with a level of j and
q = {qyj, ..., qij, - .., qij} be the corresponding vector. The
size of each cached video is proportional to its video bitrate.
The total size for cached videos is restricted by the capacity

of the cache storage M
I

Y ai < M )
i=1 T

However, if we decide to cache the video bitrate g;; < g;max,
the cache server’s CPU has to transcode the video bitrate
from the original level (gjmax) to the desired one (g;;) for
each second of the video length. It costs f(¢;max, g;;) GHz to
do so; the total transcode cost is restricted by the computing
capacity of the cache server, F,

1

> fGimax. i) < F. 3)

i=1
where f(¢imax, ¢imax) = 0 and f(gimax. ¢ij) is an increasing
function with respect to g;. To avoid trivial optimization
solutions when the cache storage or computing capacity of
the cache server are either too low to cache, even the lowest
level of video bitrate or too high to store the highest level of
video bitrate for all streamers, we assume M and F must be
in the range

1 1

M
.EICII < T < EICIimaXv 4
= =

1 1
Zf(QimaXv q) < F < Zf(%’max, qimax—1)), ()

i=1 i=1

B. PROBLEM FORMULATION

We define the average video bitrate if the video content of
streamer i is cached at video bitrate j as p; = rpicigj.
Thus, the maximal average video bitrate of streamer i is
Pimax = FiPiCigimax- The objective of this paper is to select
the optimal set of the level of video bitrate for all streamers
with respect to the constraints of the cache storage size and
the computing capacity of cache server, such that the average
video bitrate is maximized.

1
Py :p = m{?XZ ripidij, (6)
i=1
s.t. (2), (3),

To prove the NP-hardness of (P;), we transform it into an
equivalent multidimensional multiple-choice knapsack prob-
lem (MMKP). We use a set of binary selection variables
¢ = (cj) [iez’je Qi]' The variable c;; is set to 1 if the cache
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server decides to cache the video for streamer i at the level of
video bitrate j, and 0 otherwise. The objective function and
the constraints of (P1) are equivalently converted as

(P2): max ) > ripicidi. ®)

i€l jeQ;
st.ci=1{0,1}, Vi j, 9)
Y oep=1, Vi (10)

je9;
M

DD ity = (1)

iEIjEQi
YN cif Gimagi) < F. - (12)

i€l jeQ;

Constraint (9) reflects the binary nature of ¢;;. Constraint (10)
requires that only 1 video bitrate be selected for each
streamer. Constraints (11) and (12) are the equivalent forms
of (2) and (3). The structure of (P,) strictly follows the typical
structure of MMKP [24] and hence, it is NP-hard.

We propose the OIGA algorithm to solve (P;) with a
minimal optimality gap compared to branch-and-bound (BB)
method. The details of this algorithm are explained in the next
section.

IV. ONLINE ITERATIVE GREEDY-BASED ADAPTATION
This section describes our proposed OIGA algorithm for the
bitrate adaptation of video streaming services in edge caching
systems.

A. PROPOSED OIGA ALGORITHM

Let g;; be the selected video bitrate for streamer i at the current
iteration. In each iteration, all streamers are divided into two
groups based on gjj,

e 11 = {ilgij < ¢gimax}. This group contains streamers
whose current selected video bitrate is not at the highest
level.

e I = {ilqij = qimax}- This group contains the streamers
who have the highest video bitrate. When the video
content is cached at this level, the cache server does not
need any additional computing cycle to transcode the
video.

e Obviously,Zy UZp =T and, 71 NI = (.

In the initial phase, we cache all videos with the lowest video
bitrate, g;; = q1, Vi € Z. For the streamers who can only sup-
port the lowest video bitrate, i.e., gimax = 1, we move them
to 7, and do not reconsider them in the next iterations. The
remaining streamers are sorted into Z;. Let M and F be the
remaining resource usage on the storage size and computing
capacity of the cache server, respectively. Without the loss of
generality, the streamers are considered upgradable if they
are in Z; and the increase in video bitrate do not run out of
the remaining storage size M, i.e., M + gig+1) — qij = 0.
At each iteration, we choose an upgradable streamer in 7,
denoted as B, to upgrade such that the increase in the term of

VOLUME 8, 2020



A.-T. Tran et al.: Bitrate Adaptation for Video Streaming Services in Edge Caching Systems

IEEE Access

Algorithm 1 Online Iterative Greedy-Based Adaptation

I: Setgj=qi,VieZTand M =24 — 1 4.

2: Pick streamers whose ¢imax = 1 and store in 7.
Compute F = F — Ziezlf(cﬁmam q1)-

3: while (M > 0) do

4 Obtain streamer S to upgrade based on (13).

s: Update p < p + ripi (qpg+1) — 4p5)-

6: Update M < M + gp(+1) — qp;)-

7

8

9

if gp(+1) = gp max then
Update /' <= F + f (g max, q8)-
Move B from Z; to 7.

10: else _ _

11: Update F < F — f(gmax>9pG+1) +
f(CI/S max C]ﬁ(j))~

12: end if

13: Update its video bitrate, gg; < gg(j+1)-

14: end while

15: while 7 < 0 do

16: Obtain streamer y to degrade based on (15).

17: Update p <= p + ripi (4yG-1) — 4y,)-

18: Update M < M + gy —1) — qy;-

19: Update ' < F—f(qy max> 9y (—-1))+f @y max> 4y (j))-
20: Update its video bitrate, gg; < gg(—1)-

21: end while

the average video bitrate is maximized,

B = argmax {ripi(qiG+1) — g} » (13)
ieIl
s.t. M+ gii+1) — gij = 0, (14)

until the cache storage is no longer available. Constraint (14)
ensures that the OIGA algorithm considers only upgrad-
able streamers. If the upgraded video bitrate of streamer S
matches its maximum video bitrate, i.e., gg(j+1) = ¢gmax»
we move B from Z; to Z,. Otherwise, we keep it in Z;
for further consideration in the next iterations. After the
storage size is utilized, if constraint (3) is also satisfied,
we terminate the algorithm. Otherwise, we move to the
next phase.

In this phase, we choose streamers from Z; to degrade.
The degradation operation reduces the cost on transcoding
tasks until 7 > 0. At each iteration, we choose streamer y
to degrade such that the decrease in terms of average video
bitrate is minimized,

y = argmin {"iPi (Qij - Cli(/'—l))} ’ (5)
i€l j>1

The algorithm terminates as soon as F > (. The details of
the OIGA algorithm are described in Algorithm.1.

B. COMPLEXITY ANALYSIS

Ateach iteration, the OIGA algorithm only upgrades/degrades
a streamer by one level of the video bitrate. Although there
are two while loops inside the OIGA algorithm, the second
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TABLE 2. Simulation Parameters.

Value |
[10, 500]
{3400, 2930, 1789, 1144, 374, 283} kbps
{0, 1.83,1.22,0.82, 0.42, 0.37} GHz
{32, 48, 64, 80,96} GHz

[ Parameter |

Number of streamers, I
Video bitrates, q;;
Transcode task, fq,
Computation capacity, F

Length of cached chunk, 7 6 seconds
Zipf parameter, o [0,1.2]
Transmission rate, R [1.5,5] Mbps

Cache storage size, M {50,75,100} MB

loop is optional because of the feasibility of the solution
from the first loop. Hence, the time complexity of the OIGA
algorithm is determined by the first while loop. The number
of iterations of the first while loop increases with an initial
value of M and number of available video bitrate candidates
from streamers. Intuitively, more video bitrate candidates
or higher cache storage size requires more iterations in the
first while loop. Therefore, the worst case occurs when all
streamers support the highest video bitrate in the video codec,
i.e., gimax = ¢max, Vi € Z, and the storage size is in the
range Zl{:_]l gmax t gmax—-1 = % < Zle Gmax- The
range of % implies that the storage size can support upto
I — 1 streamers with its highest available bitrate gmax and
video bitrate gmax —1 for the last streamer without violating
constraint (4). In this scenario, for each streamer except the
last streamer, it costs (gmax — 1) iterations to upgrade video
bitrate from level 1 to gmax. For the last streamer only, it costs
(gmax — 2) iterations. Therefore, the OIGA algorithm requires
(I(gmax — 1) — 1) iterations in total. This complexity reveals
that the OIGA algorithm is simple and easy to implement in
practice even with a large number of streamers.

V. PERFORMANCE EVALUATION

This section presents the simulation settings and results to
verify the performance of the OIGA algorithm compared to
the BB algorithm.

A. SIMULATION SETTINGS

We consider the network system illustrated in Fig. 1 and
assume that there is an arbitrary number of streamers in the
range of [10,500] associated with the cache server during
each time period. The transmission rates of the streamers
toward the streaming platforms vary in the range of [1.5,5]
Mbps. We use the same video bitrate levels and transcode
task specifications as in [25]. The capacity of the cache
server in terms of storage and computing are in the range
of {50, 75, 100} MB and {32, 48, 64, 80, 96} GHz, respec-
tively. The value of « is in range of [0,1.2]. The values of
the simulation parameters are provided as listed in Table. 2.
We define the maximum number of cached streamers as the
number of streamers that the cache server can cache with
the lowest video bitrate. If the number of streamer exceeds
this number, the cache server is unable to cache the lowest
video bitrate of video content for all streamers, which is
out of the scope of this paper. In the simulation, we use
MATLAB R2018a as the optimization tool. We stimulate the
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TABLE 3. Comparison of BB and OIGA.

Number of Average video bitrate (kbps) Running time
streamers BB OIGA Gap (%) | BB (s) | OIGA (ms) | Diff (s)
50 3008.15 2999.6 0.3 4913 1.979 4911
75 2394.5 2390.5 0.27 36.17 0.708 36.163
100 2027.9 2021.57 0.31 46.05 0.564 46.045
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BB method using the intlinprog(-) default function [26] to
solve MMKP (P,).

B. PERFORMANCE ANALYSIS

Table 3 indicates the superiority of our algorithm compared
to the BB method. The optimality gap is negligible in all
cases of the simulation process. The running time for the
OIGA algorithm is infinitesimal compared to that for the
BB method. For OIGA, we Fig. 3 represents the average
video bitrate of all streamers with respect to the number
of streamers with three levels of storage size. The average
video bitrate steadily decreases with the number of streamers.
A higher storage size supports streamers to be cached, and
it offers a higher chance to cache higher video bitrates for
each streamer, thereby improving the average video bitrate.
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In case we set M to 100 MB, the cache server can serve up
to 480 streamers concurrently at each time period. The lowest
average video bitrate is approximately 283 kbps, which is the
lowest level of the video bitrate.

Fig. 4 represents the behavior of the system toward levels
of CPU capacity while keeping the same storage size M
of 100 MB. A higher computing capacity helps the cache
server to increase the maximum number cached streamers.
At a computing capacity of 96 GHz, the cache server can
support up to 255 streamers simultaneously. However, if the
computing capacity is restricted to 32 GHz, only 85 streamers
can be cached.

Fig. 5 shows the effects of various values of the Zipf
parameter o on an average video bitrate under various number
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of streamers ranging from 0 to 255. From the figure, we can
see that the average video bitrate decreases with a number
of streamers for all o values. Moreover, we can see that the
average video bitrate is the lowest when the o parameter is
the smallest and vice versa.

Fig. 6 reflects the behavior of the OIGA algorithm towards
the change in the average retention rate of all streamers.
It proves that the OIGA algorithm sticks well to abrupt
changes on network conditions. The average video bitrate
follows the same trend with the average retention rate. For
instance, the average video bitrate decreases during the first
25 time periods and slightly increases in the next 5 time
periods and again starts to decrease for the next 40 time
periods, which is similar to the average retention rate. This
is caused by the OIGA algorithm, which prioritizes video
content interesting to a majority of users at each time period
and decreases video bitrate for the video content unlikely to
be continued by users, implying a low retention rate. This
indicates that the proposed algorithm adaptively adjusts the
video bitrate according to the retention rate.

VI. CONCLUSION

In this paper, we the adopted audience retention rate into the
cache-support streaming network model, whereby the cache
server determines the optimal bitrate for video contents for
each streamer. The optimization problem aimed to maximize
the average video bitrate with respect to the limit capacity
of the storage size and computing capacity. The problem
was formulated as an ILP. Because of the NP-hardness of
the problem, we design a low-complexity algorithm called
OIGA, which is easily implementable and provides solutions
with near-optimal performance. The running time of the
OIGA algorithm is negligible compared to that of the BB
method. Extensive simulation results depicted that the OIGA
algorithm achieves an infinitesimal optimality gap compared
to BB, and it adapts well to abrupt changes in the retention of
users towards streaming content over time periods.
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