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ABSTRACT With the characterizing benefits of ultra-low latency, contextual computing, and mobile
scalability, mobile edge computing (MEC) is considered as a key enabler for realizing a tremendous boom
in heterogeneously time-sensitive Internet-of-Things (IoT) services in the fifth-generation (5G) ecosystems.
However, achieving low-latency comes at a cost of energy-efficiency reduction. To address and balance this
tradeoff, this paper proposes a joint optimization of energy consumption and latency satisfaction in MEC
servers, called latency-aware green (LAG) computing algorithm. To fully consider the heterogeneity of IoT
services offloaded to the MEC servers, offloading traffic at the MEC servers is assumed to be unmodeled
and unpredictable. Using the proposed LAG algorithm, each MEC server autonomously and dynamically
calibrates its own computing frequency based on the current status of the workload buffer size and
computational workload arrival rate. This dynamic calibration provides minimum energy consumption for
the workload computation while maintaining the computational latency stabilized under a desired threshold.
Evaluation results show that the proposed algorithm maintains stable MEC servers in an energy-efficient
manner.

INDEX TERMS Edge computing, the Internet of Things, mobile offloading, unmodeled traffic.

I. INTRODUCTION
Softwarization has increasingly proven itself a foundational
approach for the design and operation of fifth generation
(5G) software-defined networks [1]. Features that help to
distinguish the 5G mobile system from its predecessors
are its ability to accommodate user services with vary-
ing degrees of requirements in terms of high data rates,
low latency, and contextual response, as well as its low
energy consumption [2]. In the context of 5G softwariza-
tion, software-defined networking (SDN) and network func-
tion virtualization (NFV) establish a programmable network-
ing framework and dynamically softwarized infrastructure.
In the same context, mobile edge computing (MEC) provides
ways of performing network and user services on the access
layer for user devices in close proximity. Standardized by
the European telecommunications standards institute (ETSI),
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MEC aims to reduce latency, ensures highly efficient network
operation and service delivery, and offers an improved user
experience by proposing virtualized computing platforms
(a.k.a.MEC servers) implemented at themobile access nodes,
which are well known to be within the fog radio access
network (F-RAN) [3].

In the 5G F-RANs, high power nodes (HPNs) are deployed
for their wide-area coverage and ability to perform control
operations. Enhanced remote radio heads (eRRHs), which
consist of multiple antennas, cache support, and possibly
fog-based computation (i.e., MEC server), extend the capa-
bility of the HPNs in serving Internet of things (IoT) devices
by being adaptively distributed according to the IoT data
traffic intensity and service requirements [4]. For the com-
munication between IoT devices and MEC servers, uplink
streams, which include raw data, are assumed to be much
larger than downlink streams which deliver the responses
and management information [5], [6]. Data processing and
storage are harmonized between the MEC servers and the
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cloud computing servers over the backhaul links [7]. In such
a scenario, the data regarding time-sensitive request-response
operations should be processed in MEC servers, and a part
or all of other data are possibly pre-processed if the MEC
servers are idle and data analysis is needed. Otherwise, the
data is directly delivered to the cloud computing servers. It is
worth noting that the MEC servers are installed on all of the
HPNs and they are possibly equipped in or shared among the
eRRHs.

A. MOTIVATION
It is seen that the 5G era is motivated by the rapid
emergence of the IoT paradigm, especially for heteroge-
neously time-sensitive IoT services such as precision agricul-
ture, smart manufactures, real-time applications, and video
surveillance [2]. Time-sensitive IoT services require rigor-
ous performance such as ultra-low latency, contextual com-
putation, and mobile scalability in various measurement
scales to realize real-time user experiences. For instance,
automated farm equipment in precision agriculture requires
real-time responses according to environment sensor infor-
mation, and fire alarm systems in smart manufactures need
to safely shutdownmanufacturing machines before activating
protection systems. Real-time context recognition enables
augmented reality-based multi-player games, and real-time
motion detection in video surveillance supports theft pre-
vention. In fact, the IoT offloading traffic is not easy to fit
into a theoretical model (e.g., Poisson distribution process) as
assumed in most of recent studies [8]–[10]. In other words,
the traffic must be considered as an unmodeled traffic, i.e.,
a stochastic process, to be without loss of generality. To effec-
tively handle an unmodeled traffic is a big challenge for any
proposed algorithm to be successfully deployed in a real
environment. With the recent advances, MEC technologies
should satisfy these requirements and are considered promis-
ing platforms that can continuously handle large amounts
of data streams generated by the IoT devices within a low
response delay [11]–[13].

B. A REVIEW OF CUTTING-EDGE APPROACHES
Among the several requirements and features that need to
be supported by MEC servers, latency-aware computation
should be prudently provided under the consideration of
energy efficiency since the trend of machine learning uti-
lization for big IoT data analysis introduces intensive use
of central processing unit (CPU)’s computational and time
resources [12], [13]. For instance, Zhou et al. [14] jointly con-
sider the energy consumption and latency in computing, data
transmission, workload execution and handover to achieve
energy-efficient edge computing service provisioning for
vehicular networks. To this end, a low-complexity distributed
solution was proposed based on consensus alternating direc-
tion method of multipliers. In [15], Zhang et al. address the
energy efficiency and offloading performance in the MEC
environment with a consideration of IoT device mobility.
A Stackelberg game-based approach was proposed to achieve

the system utility via collaboration among MEC servers in a
hierarchical model. However, this approach meets a critical
issue regarding latency for a convergence of Stackelberg
game model in a dynamic environment. In [16], Liao et al.
consider the multiple machine-type-device scenario under
information uncertainty where the global state information is
no longer a priori knowledge and only the local information
is available. The authors proposed a novel learning-based
context aware resource allocation algorithm named SEB-
MGSI. It can learn the long-term optimal strategy and achieve
guaranteed performance with a bounded deviation while the
long-term constraints of energy budget and service relia-
bility are satisfied in a best effort way under information
uncertainty based on only local and causal information.
In [17], a pattern-identified online task scheduling (PIOTS)
algorithm was proposed for task assignment in MEC server
in order to handle the offloaded IoT traffic by using the
self-organizing map (SOM) classification technique. The
drawback of the PIOTS algorithm is time and computing
resource consumption for SOM operation. To address the
real-time resource management in MEC, Mai et al. [18]
proposed a reinforcement learning (RL)-based approach to
distribute IoT tasks among edge servers to reduce task exe-
cution latency. Although the proposed algorithm can provide
online task decision, RL operation itself requires significant
computing resource.

It is seen that most of the exisiting optimization and
machine learning approaches are inappropriate to utilize in
low-power MEC servers to handle the unmodeled (heteroge-
neous) IoT traffic. In particular, optimization approaches typ-
ically come with an assumption of popular user traffic model
such as Poisson and Zipf distributions, which do not well
represent for unmodeled IoT traffic in real. On the other hand,
the machine learning approaches may be effective to process
the unmodeled traffic; however, this approaches significantly
consume computing resource. In this context, recent com-
prehensive surveys [9], [10], [19], [20] showed that another
emerging approach for the energy efficiency enhancement of
MEC servers is to control its CPU frequency [7]. For more
details, the computing latency will be reduced at the cost of
higher energy consumption when MEC servers utilize higher
CPU frequencies. On the contrary, a lower computational
power schedule is preferred in order to save energy, but
IoT services may suffer from higher latency. Nevertheless,
a latency threshold in service responses from theMEC servers
back to the IoT devices should be satisfied in all possible
strategies to respect the time-sensitive operations required by
the applications. To address the challenges, a latency-aware
green MEC platform is desired which takes into account the
computational operations using the concepts of joint energy
efficiency and latency satisfaction optimization.

C. OUR CONTRIBUTIONS AND PAPER ORGANIZATIONS
This paper thus proposes an effective approach, named
latency-aware green (LAG)mobile edge computing that func-
tions as such on MEC platform for heterogeneously unmod-

VOLUME 8, 2020 110317



N.-N. Dao et al.: Self-Calibrated Edge Computation for Unmodeled Time-Sensitive IoT Offloading Traffic

eled time-sensitive IoT services within 5G networks. Adopt-
ing the LAG operation, each MEC server calibrates its own
CPU frequency to consume the minimum energy for the
unmodeled IoT arrival workload while keeping the compu-
tation latency stabilized under the desired threshold. The
tradeoff formulation between energy efficiency and latency
satisfaction has been developed by using the Lyapunov opti-
mization technique [21]. The optimal CPU frequency has
been derived from the computational workload arrival rate
and the current status of the workload buffer in the memory
regarding the workload processing rate management.

Distinguished from the cutting-edge algorithms, the pro-
posed LAG reveals its advantages in terms of

• (i) unmodeled IoT offloading traffic handling,
• (ii) self-calibrated CPU frequency according to the cur-
rent traffic volume,

• and (iii) low algorithmic complexity in both time and
space domains.

The remainder of this paper is organized as follows.
First, the workload execution process in an MEC server
is modeled using queueing theory and the Lyapunov opti-
mization framework. Based on the developed model, a joint
energy-efficiency and latency-satisfaction optimization is
proposed to achieve the latency-aware green MEC plat-
form. Subsequently, simulations verify the performance of
the proposed approach relative to the energy-focused and
the latency-focused strategies. Finally, we conclude the paper
with discussions.

II. LATENCY-AWARE GREEN MOBILE EDGE COMPUTING
A. WORKLOAD PROCESSING MODEL ANALYSIS
Although time-sensitive IoT services commonly require
ultra-low latency, contextual computation, and mobile scal-
ability to attain real-time user experiences, the techni-
cal attributes of these envisioned applications are varied
on broad measurement scales in terms of data transfer
rate (e.g., high-speed video surveillance versus low-rate
sensor readings) and workload computation complexity
(e.g., signature-based decision services versus artificial
intelligence-based services) [5]. From the computation per-
spective, each service can be characterized by a tuple of two
parameters, 〈r, c〉, where r is the data transfer rate (unit:
bps) and c is the workload computation complexity (unit:
cycle/bit), which is defined as the average number of CPU
cycles used to compute a bit of the workload [22]. The data
transfer rate r depends on the bandwidth and quality of the
uplink channel between IoT devices and eRRH. (Hereafter,
the term eRRH is used instead to refer to both eRRHs and
HPNs from the workload computation perspective.) On the
other hand, the workload computation complexity c can be
obtained through intensive analysis and classification of the
workload execution [23].

In order to model the workload processing operation in
MEC server, we consider MEC server located at an eRRH to
be a queueing system. At timeslot t, uploading data streams

from IoT devices arrive at the MEC server (via the corre-
sponding eRRH) and can be represented in cycles/s by mul-
tiplying the data transfer rate and the workload computation
complexity; this is referred to be the virtual workload arrival
rate (denoted by λ[t]). Assume that there are N IoT devices
associated with the MEC server at timeslot t, then the virtual
workload arrival rate λ[t] is given by

λ[t] =
N∑
i=0

(ri × ci). (1)

Although the virtual workload arrival rate λ[t] is a stochas-
tic process, it is bounded by a value determined by the
maximum uplink bandwidth and channel quality (for the
maximum data transfer rate) along with the highest workload
computation complexity. Since the maximum value of λ[t] is
finite and deterministic, without loss of generality, we assume
that the MEC server is designed with sufficient resources
to maintain its computational stability, i.e., the buffer that
temporarily stores the arrival workload does not suffer from
overflowswith high probability. Otherwise, if theMEC server
overloads, definitely all resources have to be utilized and
any optimization algorithm is unnecessary. The stable net-
working design can be achieved by considering detailed user
services’ requirement surveys and planning [22]. Under this
circumstance, the CPU frequency f [t] of the MEC server
is considered as the processing rate. Hence, the amount of
virtual workload processed during timeslot t can be obtained
as a function of the CPU frequency as

µ[t] = min{Q[t]+ λ[t], f [t]}, (2)

where Q[t] is the current virtual workload buffer size in
computing cycles at timeslot t. Similar to the virtual workload
arrival rate calculation, the virtual workload buffer size is
obtained by multiplying the workload size and workload
computation complexity of all buffered workload. Accord-
ingly, the virtual workload buffer dynamics with respect to
time is as follows

Q[t + 1] = Q[t]+ λ[t]− µ[t], Q[0] = 0. (3)

Fig. 1 illustrates the queueing-theoretical workload process-
ing model of the MEC server.

B. LIGHTWEIGHT LAG OPTIMIZATION
In order to realize a latency-aware green MEC platform,
we propose the LAG algorithm, which jointly optimizes
the energy efficiency and latency satisfaction in each MEC
server. In LAG, the energy consumption (unit: J) per com-
puting cycle adopts the widely accepted model of αf 2[t]
[24]–[26], where α is the energy coefficient factor depending
on the reference CPU architecture. Accordingly, the com-
puting energy consumed during a unit time at timeslot t is
given by αf 2[t]µ[t]. Therefore, our objective function aims at
minimizing the time-averaged expected energy consumption
based on the associated CPU model.
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FIGURE 1. Latency-aware green mobile edge computing (MEC) platform.

The objective function of the time-averaged expected
energy consumption minimization must satisfy the com-
puting latency requirement ε, which defines the maximum
computing latency threshold accepted by the IoT services
within a stable workload buffer. The constraint of latency
satisfaction with respect to the workload buffer stability can
be formulated by using the concept of stochastic network
optimization, which is inspired by the Lyapunov control
theory [21]. Following the theory, latency satisfaction with
respect to the workload buffer stability is represented by
Lyapunov drifts, which measure the scalar change in queue
workload after a unit time from timeslot t. This leads our
optimization to consider the queue dynamics and stability by
minimizing the Lyapunov drifts, resulting in a minimization
of Q[t](λ[t]− µ[t]) [21].
Based on the theory of Lyapunov control and drifts, the

time-averaged expected energy consumption minimization
problem (P) can be transformed into the problem of mini-
mizing a bound on the drift-plus-penalty (DPP) expression,
which can be presented by

(P) min
f [t],µ[t]

Vαf 2[t]µ[t]+ Q[t](λ[t]− µ[t]), (4)

s.t. µ[t] = min{Q[t]+ λ[t], f [t]}, (5)

Q[t] = Q[t − 1]+ λ[t − 1]− µ[t + 1], (6)
Q[t]
f [t]
≤ ε, (7)

Q[0] = 0, (8)

f [t] ≥ µ[t], ∀t, (9)

0 ≤ µ[t], f [t] ≤ fmax, (10)

where fmax is the maximum CPU frequency. V is the
non-negative tradeoff coefficient factor between the penalty
function of computing energy consumption αf 2[t]µ[t] and
the drift function of virtual workload buffer Q[t](λ[t] −
µ[t]) [27]. Constraint (7) ensures that all the tasks buffered
in Q[t] are buffered and executed not later than the given
threshold ε. Constraint (9) is derived from the fact that µ[t]
is the output of the queuing system with computational per-
formance f [t].

Given an optimal value of µ[t], it is clear that P is a
quadratic function in standard form in terms of f [t], hence,
min{P} ≡ min{f [t]|µ[t]}. Derived from constraints (9)
and (10), min{f [t]|µ[t]} is obtained when f [t] = µ[t].
In other words, when f [t] can be adjusted to adapt to the vir-
tual workload arrival rate and virtual workload buffer size, the
minimization problem (P) can be considered as an adaptive
control algorithm, which selects optimal frequency value f [t]
in each unit timeslot t satisfying the following objective

(P) min
f [t]

Vαf 3[t]+ Q[t](λ[t]− f [t]), (11)

s.t. (5)–(10),

f [t] = µ[t], ∀t. (12)

It is seen that (P) is a cubic polynomial function in terms
of f [t]. Hence, the exact solution for an optimal frequency
f [t] is given by

f [t] =



√
Q[t]

3Vα[t]
, if

Q[t]
ε
≤

√
Q[t]

3Vα[t]
≤ fmax,

Q[t]
ε
, if

√
Q[t]

3Vα[t]
≤
Q[t]
ε
≤ fmax,

fmax, otherwise.

(13)

Accordingly, we obtain the following for the calculation of
(P) in next timeslot [t + 1],

µ[t] = f [t] that is found in (13), (14)

Q[t + 1] = Q[t]+ λ[t]− µ[t]. (15)

Meanwhile, the λ[t+1] is updated by observing the uploading
data stream from the IoT devices that have arrived at theMEC
server.
Remark 1: During a given time T , an MEC server con-

sumes minimum energy for workload computation if the MEC
server uses CPU frequency that approximates the average
virtual workload arrival rate, referred to as ARRIVAL_AVG
approach.

Proof: Let f̄ denotes the CPU frequency that approxi-
mates the average virtual workload arrival rate. f [t] = f̄ +
1[t] ≥ 0,∀t , where 1[t] is a differential between f̄ and the
selected f [t]. It is true that

∑T
t=11[t] = 0. As expressed

in (11), total energy consumption E during T is given by

E =
T∑
t=1

Vαf 3[t] =
T∑
t=1

Vα(f̄ +1[t])3 (16)

=

T∑
t=1

Vα(f̄ 3 + 3f̄ 21[t]+ 3f̄12[t]+13[t])

=

T∑
t=1

Vαf̄ 3+3Vαf̄ 2
T∑
t=1

1[t]+
T∑
t=1

12[t](3f̄ +1[t]). (17)

It is seen that 3Vαf̄ 2
∑T

t=11[t] = 0 because
∑T

t=11[t] =
0. In addition,

∑T
t=11

2[t](3f̄+1[t]) ≥ 0 because f̄+1[t] ≥
0. Therefore, E ≥

∑T
t=1 Vαf̄

3. Hence, E =
∑T

t=1 Vαf̄
3 if

1[t] = 0,∀t , i.e., the CPU frequency is equal to the average
virtual workload arrival rate at all unit timeslot t .

VOLUME 8, 2020 110319



N.-N. Dao et al.: Self-Calibrated Edge Computation for Unmodeled Time-Sensitive IoT Offloading Traffic

C. COMPUTATIONAL COMPLEXITY
Since the LAG optimization problem is transformed to be
a cubic polynomial function in terms of f [t] and the exact
solution is given by (13), the optimal CPU frequency is deter-
mined based on the given parameters (i.e., V , α, and fmax)
and the current virtual workload buffer size. Therefore, the
time complexity of the LAG algorithm is identified as O(1).
In addition, since the LAG algorithm is a memoryless process
that only considers the current state of the virtual workload
buffer size, and since all immediate variables are updated
for each iteration corresponding to each timeslot, the space
complexity of the LAG algorithm is also determined asO(1).
These complexities reveal that the LAG algorithm is simple
and easy to implement in most of MEC server dimensions
with a low latency of optimization calculation.

III. PERFORMANCE EVALUATION
This section presents the simulation settings and results to
verify the performance of the LAG algorithm compared to
the CPU configuration strategies of prioritizing either energy
consumption or computing latency.

A. SIMULATION SETTINGS
We consider the MEC platform illustrated in Fig. 1 for the
simulation model and suppose that there is an arbitrary num-
ber of IoT devices N in the range of [50, 100] associated
with an MEC server via the corresponding eRRH during
each unit timeslot t. The timeslot duration is set to 1 ms.
Uplink data rates of IoT devices ri vary in the range of [128,
1000] kbps, representing different services such as sensor
reading, motion detection, online games, augmented real-
ity, and video surveillance. For each uploading data stream
from the IoT device, we assume that a complexity set
of {10, 50, 100, 500, 1000} cycle/bit is given through inten-
sive analysis and classification of experimental executions,
as done in [25], [26], [28], and the workload computation
complexity ci is mapped to one in this set. Following these
parameters, 500 Monte Carlo experiments are performed for
various N, ri, and ci configurations to generate arbitrary
workload arrival patterns. The results are used to determine
the average workload arrival rate λ̄[t] at the MEC server, i.e.,
2.003 Megacycles/ms during an 1-ms timeslot. To follow the
assumption in Section II-A that the MEC server is designed
with sufficient resources to maintain its computational stabil-
ity and buffer stability, to account for the maximum arrival
rate with some redundancy, we selected the maximum CPU
frequency of MEC server fmax to be equal to (100 + 30)%
of the average workload arrival rate resulting in 2.6 GHz.
According to the research studies in [22], the energy coef-
ficient factor α is estimated as 5 × 10−24. Lastly, the maxi-
mum computing latency threshold ε is assigned as 1.5 ms to
satisfy the requirements of time-sensitive IoT services [29].
Table 1 summarizes the simulation parameters used for our
performance evaluation.

TABLE 1. Simulation parameters.

To evaluate the proposed LAG algorithms, we compare the
performancewith two other approaches: theARRIVAL_AVG
approach (which selects the CPU frequency to match the
average workload arrival rate – λ̄[t]), and the MAX_FREQ
strategy (i.e., highest CPU frequency configuration – fmax).
Note that, if the CPU frequency is below the average work-
load arrival rate, it is obvious (based on queueing theory)
that the buffer, and thus the latency, will overflow. For the
evaluation metric, we analyzed in terms of the workload
buffer size, the ratio of the workload buffer size and the CPU
frequency (revealing the latency perspective), and the cumu-
lative energy consumption (revealing the energy efficiency
perspective). Derived from the experimental results, it is rec-
ognized that the trend of all evaluation metrics do not change
since around timeslot #500 and the first 500 timeslots were
sufficient to show the characteristics of the three compared
approaches. Therefore, we plotted comparison graphs during
the first 500 timeslots to show the results.

B. WORKLOAD BUFFER SIZE
First, the workload buffer size is considered to verify the
stability of the system for each examined approach, as pre-
sented in Fig. 2. The simulation results reveal that all
three approaches obtain a stable workload buffer. Partic-
ularly, when the λ̄[t] is configured equal to 8.167 Mbps
(for resulting 2.003 Megacycles/ms) during 500 simulation
timeslots, averaged properties Q̄[t] of the workload buffer
size according for LAG, ARRIVAL_AVG, and MAX_FREQ
are 1.244, 1.737, and 0.001 KB, respectively (see Table 2).
It is observed that the MAX_FREQ strategy keeps the work-
load buffer size approximately at the almost-empty state due
to the use of highest CPU frequency. Meanwhile, although
the expected CPU frequency of the LAG algorithm (i.e.,
1.998 GHz) is smaller than the CPU frequency of the
ARRIVAL_AVG approach (i.e., 2.003 GHz), the LAG algo-
rithm maintains a lower time-averaged workload buffer size
with only small-scale fluctuations.

C. PROCESSING ADAPTABILITY
In order to evaluate the processing adaptability of the MEC
server relative to the workload arrival, we consider the deriva-
tive of the processing rate from the workload arrival rate.
In Fig. 2, small-scale oscillations of the workload buffer size
for the LAG algorithm and the MAX_FREQ strategy show
that the processing rate is sufficient to handle the arrival
rate. The MAX_FREQ strategy achieves workload buffer
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TABLE 2. Statistical results.

FIGURE 2. Workload buffer size fluctuation.

stability due to its high CPU frequency, while the LAG
algorithm achieves such stability since it adapts the CPU
frequency according to the current workload buffer size and
workload arrival rate. On the contrary, the ARRIVAL_AVG
approach leads to a large-scale fluctuations since it does
not adapt its CPU frequency with respect to the workload
arrival rate. From the numerical perspective, Table 2 sum-
marizes the average differential of the processing rate from
the workload arrival rate within the LAG, ARRIVAL_AVG,
and MAX_FREQ approaches, which are 2.36, 2.81, and 0.03
Megacycles/ms, respectively.

D. COMPUTING LATENCY
It is worth recalling that the computing latency threshold
ε of 1.5 ms was established as the maximum computation
duration limit for time-sensitive IoT services. Fig. 3 plots the
computing latency during 500 simulation timeslots. It shows
that the trend of computing latency as a function time (in
Fig. 3) and the workload buffer size (in Fig. 2) are homol-
ogous for the ARRIVAL_AVG and MAX_FREQ approaches
since such strategies use constant CPU frequencies regard-
less of the time variation of the workload arrival rate. The
MAX_FREQ achieves the minimum computing latency due
to the highest CPU frequency configuration. In the case of
the ARRIVAL_AVG approach, the computing latency varies
heavily in the range of (0, 4.94) ms compared to the accept-
able latency threshold ε of 1.5 ms. On the contrary, the
LAG algorithm flexibly adapts to the workload arrival rate to
provide a time-averaged expected computing latency of 1.21

FIGURE 3. Computing latency.

FIGURE 4. Cumulative energy consumption.

ms, which satisfies the bound ε without any latency violations
in any timeslot (refer to Table 2).

E. ENERGY CONSUMPTION
Table 2 shows the time-averaged expected energy consump-
tion per timeslot (mJ/ms) for the three examined approaches.
These results show a minimum energy consumption pro-
vided by the ARRIVAL_AVG approach as proved in (17)
is 19.99 × 10−3 mJ/ms compared to 20.18 × 10−3 mJ/ms
(approximately a 0.95% increase) of the LAG algorithm and
33.85 × 10−3 mJ/ms (approximately a 69.33% increase) of
the MAX_FREQ strategy. It is seen that the differences in
energy consumption between the ARRIVAL_AVG approach
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and the LAG algorithm are insignificant. On the other hand,
theARRIVAL_AVGapproach violates the computing latency
constraint of less than 1.5 ms. From the LAG algorithm’s per-
spective, it achieves a 67.74% reduction in energy consump-
tion compared to the maximumCPU frequency configuration
(i.e.,MAX_FREQ). The cumulative energy consumption cor-
responding to all examined approaches is illustrated in Fig. 4.

IV. CONCLUDING REMARKS
This paper presents a novel algorithm inspired by the Lya-
punov optimization framework to allocate optimal CPU fre-
quency in latency-aware green mobile edge computing plat-
form for unmodeled time-sensitive Internet-of-Things traffic
within a 5GFRANs. EachMEC server calibrates its ownCPU
frequency using the proposed LAG algorithm for achieving
minimum energy consumption given a pre-defined maxi-
mum computing latency threshold while stabilizing workload
buffers. In layman’s terms, we let the CPU run as slowly
as possible to reduce energy usage while completing all
the jobs within a given time. The LAG algorithm flexibly
and dynamically adapts to unmodeled time-varying workload
arrival rates while balancing the tradeoff between energy
consumption and computing latency requirement to establish
green MEC platforms. Moreover, we have shown that the
computational complexity of the LAG algorithm is O(1),
which proves that it is a viable low-complexity solution and
can be easy to implement on emerging MEC systems.
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