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ABSTRACT The prosumer market allows prosumers to sell their energy surplus to consumers. The prosumer
should offer the amount of energy to sell and its unit price to the contracted consumers while economically
operating their system. This paper presents optimal operations and business strategies to maximize the
prosumer’s benefit by utilizing an energy storage system and ensuring a contract with residential consumers
under a progressive pricing policy, where electricity unit price increases with the amount of monthly
electricity consumption. By the proposed method, a prosumer under time-of-use pricing scheme stores
abundant renewable energy or utility energy at a low price and uses it during a high-price period. Moreover,
the proposed optimization can determine the amount of energy and the unit price that the prosumer will
offer as a contract in a way that gives consumers strong motivation for the contract; the contract can
eventually alleviate consumers’ electricity rates by avoiding a high-price zone. For optimization, a quadratic
objective problem with quadratic constraints is formulated, and the interior-point algorithm with the Hessian
function is used. This study investigates the effectiveness of the proposed method not only under the various
penetration rates of renewables but in consideration of uncertainties of renewables and loads. Based on actual
field data from Jeju Island of South Korea for 30 days, numerical simulations were performed, and the results
indicate that the prosumer’s operating costs were reduced by about 12%, simultaneously offering a smaller
contract price to the consumer. The Hessian function of the Lagrangian reduced the processing time for the
optimization by a maximum of 98.3%. Finally, the ensemble forecast method generating multiple statistical
scenarios was tested to address the uncertainty of renewables, showing that the uncertainty had no impact
on the contract price and energy.

INDEX TERMS Energy management, energy storage, uncertainty, energy efficiency, progressive pricing,
prosumer.

NOMENCLATURE
Variables of the Optimization Problems

x State variables
u Control variables
ti Time index
PPOC Power influx at the point of connection

(POC) (kW)
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PESS Power output of the energy storage system
(ESS) (kW)

PPV Power output of photovoltaics (PVs) (kW)
PWD Power output of wind generators (WGs) (kW)
PD A prosumer’s power loads (kW)
SOC State of charge (SOC) level of the ESS (%)

Parameters of the Optimization Problems

1t Optimization time step
n Total number of hourly time steps
C Time-of-use (TOU) unit price ($/kWh)
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EmaxESS Energy capacity of the ESS (kWh)
PmaxPOC Maximum active power at the POC (kW)
PminPOC Minimum active power at the POC (kW)
SOCmax Maximum SOC level (%)
SOCmin Minimum SOC level (%)
SOC init Initial SOC level (%)

Variables for Residential Progressive Pricing

F0 Monthly electricity charge of a consumer to a
utility under no prosumer contract ($)

F Monthly electricity charge of a consumer to a
utility under a prosumer contract ($)

EL Consumers’ monthly electricity consumption
(kWh)

Parameters for Residential Progressive Pricing

Cui Electricity rate for Zone i ($/kWh); i = 1, 2, 3, 4
Bi Basic charge for Zone i ($/household);

i = 1, 2, 3, 4
Ei Maximum energy for Zone i (kWh); i = 1, 2, 3

Variables for the Prosumer Contract

Cp Unit price of a prosumer contract ($/kWh)
Ep Monthly amount of energy that a prosumer

supplies to consumers (kWh/month)
Ps Contracted power under a prosumer contract

(kW)
Rc A consumer’s revenue earned through the

contract ($)

Parameters for the Prosumer Contract

Nd Number of days in a month
Rminc Minimum Rc ($)

I. INTRODUCTION
The increasing penetration of renewable energy in electric
power systems provides a blueprint for a future business
model in power industries such as the prosumer mar-
ket, where a prosumer can provide conventional electricity
consumers with surplus energy in peer-to-peer, prosumer-to-
grid, or prosumer group forms [1]. Although residential con-
sumers with photovoltaic (PV) panels have the opportunity to
gain an economic benefit by taking part in an openmarket [2],
a virtual cluster of prosumers can increase the benefit by
reducing the total forecasting inaccuracy [3]. Several pro-
sumers also form a community, which can facilitate the par-
ticipation of prosumers in the energy market [4]. Moreover,
an industrial prosumer with a high capacity of renewable
energy can play the role of a prosumer by supplying surplus
renewable energy to consumers [5]. The authors also pre-
sented the optimal scheduling of an energy storage system
(ESS) and real-time operation while taking into account the
fulfillment of prosumer contracts.

In the prosumer market, a prosumer contract defines the
unit price for the energy transition from a prosumer to a
consumer, the period for which energy is supplied, and the

energy capacity. One of the strongest motivations by which a
consumer makes a contract with the prosumer is the reduction
in the consumer’s electricity rate in such a way that the
prosumer supplies some portion of the consumer’s energy
requirement instead of a utility at a unit price that is different
from that offered by the utility. In this context, before signing
a contract, a prosumer needs to offer the unit price and the
total amount of energy provision that can bring economic gain
to a consumer.

In South Korea, the progressive pricing policy has been
applied to residential electricity customers, while commercial
and industrial facilities follow the time-of-use (TOU) pricing
scheme [6]. Under the progressive pricing policy, there are
four different zones of unit prices based on the monthly
electricity usage; if a residential consumer uses electricity
beyond a threshold defined by a utility, the unit price for
the excessive amount of energy used enters the higher-unit-
price zone. However, in the TOU pricing plan, the utility
presents the unit price for each hour in advance based on the
season, provision capacity, and historical loading conditions.
This different pricing policy intends to prevent the excessive
use of household electricity and to provide more energy to
commercial and industrial consumers, ultimately aiming to
promote the national economy [7].

The prosumer contract can be attractive to residential con-
sumers suffering from high electricity rates. If consumers
import some portion of their monthly electricity usage from
prosumers, then they can avoid entering the high-unit-price
zone. In addition, the prosumer can profit from the contract
by intelligently operating an ESS and offering the amount of
energy provision and the unit price to contracted residential
consumers. In the end, prosumer contracts can bring eco-
nomic benefit to both prosumers and consumers.

Meanwhile, a prosumer with renewable energy resources
and ESSs can perform cost-effective energy management.
The prosumer operates the ESSs in an optimal way that
stores the spare energy of renewables or the energy imported
from the utility at a lower price and then releases the stored
energy when the electricity rate is high, when the amount of
renewable energy is not sufficient, or when the prosumermust
supply the energy to contracted consumers.

Previously, many researchers have studied energy man-
agement with renewable energy resources and ESSs for
operational purposes [8]–[12] or prosumer market partici-
pation [13]–[18]. Zhang et al. [8] proposed a battery ESS
planning method based on the optimization of variable-
interval reference signals and fuzzy control over ESS
charging/discharging. This method eventually aims at both
economic operation and the capability to smooth wind fluc-
tuations. Additionally, the coordinated control of distributed
generators (or renewable energy resources) and ESSs can
enhance the grid reliability and stability by regulating the
voltage [9] or frequency [10] and with three-phase balanced
operation [11]. In [12], the authors presented the optimal
power flow for the integrated community energy system in
consideration of the heat and electricity co-utilization, three
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phases, and different scheduling time horizons. From a mar-
ket standpoint, the ESS enables PV owners to join the energy
market efficiently [13]. In [14], the authors used model pre-
dictive control for the market participation of PV plants with
ESSs. The authors of [15] proposed a stochastic optimization
method that balances between prosumers’ energy supply and
consumer demands. In this work, the authors selected the unit
prices of electricity randomly to consider unpredictable mar-
ket behaviors. Meanwhile, [16] investigated the optimal bid-
ding strategy of prosumers in energy and secondary reserve
markets in real-time and day-ahead markets, and [17] studied
prosumer’s optimal scheduling in the day-ahead, real-time,
andwholesalemarket, aiming profitmaximization and imbal-
ance costs minimization. The authors of [18] presented the
distributed bidding strategy in the distribution-level energy
market, thereby achieving a global optimization from the
distribution system operator’s perspective.

The main contribution of this work is threefold as follow:
1) The paper presents the business strategies under both

the progressive pricing policy and the TOU pric-
ing scheme. None of the previous studies [8]–[18]
addressed the progressive pricing policy, where the
monthly total energy consumption of a consumer is
of prime interest since it directly determines the con-
sumer’s electricity rate.

2) The second contribution of the paper is to present
an optimization method that finds the optimal price
and capacity that reduce the monthly electricity rate
of residential consumers–thus leading to a prosumer
contract–and, simultaneously, schedules the ESS oper-
ation to reduce the prosumer’s operating costs. The pre-
vious works [13]–[18] consider neither the prosumer
contract nor the optimal price and capacity for the
prosumer to offer under the contract.

3) Last but not least, the paper performed numerical
simulations considering various practical conditions
such as minimum customer revenue, optimization
performance, renewable penetration rates, and the
uncertainty of renewable energy. Among them,
the uncertainty is addressed by generating multiple sta-
tistical scenarios, using the interdependencies among
look-ahead times and forecast bins. In the end, the sim-
ulation results prove the effectiveness of the proposed
prosumer energy management under the prosumer con-
tract and two different pricing schemes.

Indeed, [19] presented optimal hedge strategies for demand
response; however, the target of the work was a combined
heat and power consumer aiming at reducing the electric rate
by reacting to the real-time pricing. In comparison, this paper
focuses on the prosumer who offers the price and the amount
of energy to contracted consumers; note that the consumers
are under progressive pricing. From the consumers’ perspec-
tive, the proposed method can be a hedge contract to alleviate
their electric rates.

The remainder of this paper is organized as follows.
Section II describes two pricing schemes–progressive and

TOU pricing–and the prosumer contract. Then, Section III
presents the formulation of the proposed optimization prob-
lem, followed by an explanation of the optimization solver in
Section IV. Section V presents the numerical simulation and
its results, and this paper is concluded in Section VI.

II. PRICING MECHANISM DESCRIPTIONS
This section describes the actual progressive and TOUpricing
scheme in South Korea to understand the motivation of the
proposed business strategy. Then, the prosumer market archi-
tecture and the contract between a prosumer and consumers
are explained.

A. PROGRESSIVE PRICING
Table 1 summarizes the monthly progressive pricing scheme
in South Korea, expressing four price zones corresponding
to low, medium, high, and extremely high unit prices. The
unit prices of Zones 3 and 4 are almost 3 and 7.6 times larger
than that of Zone 1, respectively. Therefore, for residential
consumers under this pricing policy, it is of prime concern to
avoid the use of utility electricity beyond Zone 3 or 4.

For example, if the monthly electricity consumption of a
residential consumer exceeds 1000 kWh, then the electricity
charge for the month can be computed as follows:

F0 = Cu1E1 + Cu2E2 + Cu3E3
+Cu4(EL − E1 − E2 − E3)+ B3, (1)

where E1, E2, and E3 are 200, 200, and 600 kWh, respectively
as computed from Table 1.

TABLE 1. Monthly progressive pricing policy in South Korea [6].

B. TOU PRICING
Commercial or industrial facilities with renewable energy
resources and ESSs can act as prosumers by selling surplus
energy to consumers. Aforementioned, commercial or indus-
trial customers pay their electric bills by the TOU pricing.
Hence, for the following simulation studies, the actual elec-
tricity rate under the TOU pricing in South Korea is applied
to prosumers (refer to Table 2). The rates in Table 2 con-
sist of on-, mid-, and off-peak prices in summer for indus-
trial service B (300 kW or more demand), high-voltage A
(3300–66000 V), and option II (the average usage time
of 200–500h per a month) [6].
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TABLE 2. Hourly Electricity Rates (Summer) [6].

FIGURE 1. Prosumer market and contract.

C. PROSUMER CONTRACT
In general, the electricity usage of residential consumers
peaks from 18:00 to 21:00; therefore, a prosumer contract can
be made to supply electric energy during that time. Provided
that the prosumer provides contracted consumers with a con-
stant amount of power, the contracted power can be calculated
as follows:

Ps = Ep/(3Nd ). (2)

Fig. 1 depicts the prosumer market architecture and con-
tract relationships among the utility, a prosumer, and con-
sumers. The utility provides electricity to both industrial
(or commercial) prosumers and residential consumers, who
pay their electric bills to the utility under different pricing
schemes; while progressive pricing applies to consumers,
the TOU pricing to prosumers. A prosumer contract based on
Ep, Ps, andCp (agreed upon by the prosumer and a contracted
consumer) may change the monthly electricity charge that the
consumer pays to both the utility and prosumer into F . The
computation of F depends on how much energy the utility
supplies to the consumer after the prosumer’s provision; that
is, EL − Ep. As listed in Table 3, there are three computation

TABLE 3. Prosumer provision cases.

cases for an extreme loading condition (that is, EL is within
Zone 4). Note that the case where the consumer’s electricity
rate zone still remains at Zone 4 even after the prosumer’s
provision is not considered in this paper since this case brings
little economic benefit to the consumer, which might give the
consumer no motivation for a prosumer contract.

For Case 1, F can be computed as follows:

F(Ep,Cp) = Cu1(EL − Ep)+ CpEp + B1. (3)

The unit price paid by a consumer to a prosumer, Cp, is deter-
mined by the prosumer, on the basis of the proposed opti-
mization method described in the following section. Thus,
the consumer revenue, Rc(= F0 − F), is obtained as follows:

Rc(Ep,Cp) = Cu1(E1 − EL)+ Cu2E2 + Cu3E3
+Cu4(EL − E1 − E2 − E3)+ B3 − B1
+Cu1Ep − CpEp. (4)

For Case 2, F and Rc can be calculated as follows:

F(Ep,Cp) = Cu1E1 + Cu2(EL − E1 − Ep)

+CpEp + B2, (5)

Rc(Ep,Cp) = Cu2(E2 − EL + E1)+ Cu3E3
+Cu4(EL − E1 − E2 − E3)

+B3 − B2 + Cu2Ep − CpEp. (6)

Finally, for Case 3, F and Rc can be obtained as follows:

F(Ep,Cp) = Cu1E1 + Cu2E2 + CpEp
+Cu3(EL − E1 − E2 − Ep)+ B3, (7)

Rc(Ep,Cp) = Cu3(E3 − EL + E1 + E2)+ Cu3Ep
Cu4(EL − E1 − E2 − E3)− CpEp. (8)

III. OPTIMIZATION PROBLEM FORMULATION
The proposed optimization problem is formulated to mini-
mize the operational costs of a prosumer by scheduling a
dispatchable ESS and determining the unit price and amount
of energy of a prosumer contract. Note that the operating costs
are mainly the TOU-based electricity rates paid to a utility
for energy import at the point of connection (POC) reduced
by the payment from the contracted consumers. Importantly,
this optimized scheduling relies on the prediction of monthly
profiles for renewables and electricity loads, of which vari-
ability may result in different outcomes from the optimized
ones during actual operation. However, this variable nature
is beyond the scope of this paper and will remain as future
research work.
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The optimization problem can be formulated as follows:

min
x,u

n∑
i=1

{K (ti)PPOC (ti)} − CpEp, (9)

such that

x = [PPOC (t1), · · · ,PPOC (tn), SOC(t1), · · · , SOC(tn)]T ,

u = [PESS (t1), · · · ,PESS (tn),Cp,Ep]T ,

n = 24×Nd ,

K (ti) =

{
C(ti) if PPOC (ti) ≥ 0,
0 otherwise.

The sum of the K (ti)PPOC (ti) indicates the total TOU price
that a prosumer pays to a utility, which should be minimized
from the economic perspective of the prosumer. The term
CpEp is the total price that a consumer pays to the prosumer
under the prosumer contract, which should be maximized.
Note that there is no incentive for energy export at the POC
from a prosumer to a utility. As described in (9), the opti-
mization problem is quadratic and subject to several linear
and nonlinear constraints in the following subsections.

This work focuses on the optimization of industrial or com-
mercial prosumers, who have relatively small electric power
systems. Although energy usage beyond the system limit may
affect the optimality of the proposed approach, prosumers’
network constraints, such as the operational limits of voltages
and currents, are not considered here to focus on the pro-
sumer contract. Nevertheless, it is worthwhile to formulate
the empirical constraints, including the grid-side congestion
and the nonfulfillment of contracts. These factors will be
reflected in future works.

A. POWER BALANCE CONSTRAINTS
At the POC, the power balance between the renewable energy
resources, the ESS, and the power exchange with the utility,
and the demands of the prosumer and contracted consumers
must be satisfied. The ESS can be a supplier in the discharg-
ing mode or a consumer in the charging mode. Hence, for
i = 1, · · · , n,

PPOC (ti)+ PPV (ti)+ PWD(ti)+ PESS (ti)

= PD(ti)+ Ps(ti), (10)

where the system capacity or the transformer rating limits the
POC power as follows:

PminPOC ≤ PPOC (ti) ≤ P
max
POC for i = 1, · · · , n. (11)

B. REAL POWER CONSTRAINTS OF THE ESS
In the ESS, the amount of energy to be discharged or charged
depends on the state of charge (SOC) level as follows:{

SOC(ti−1)− SOCmax

100

}
EmaxESS ≤ PESS (ti)1t, (12)

PESS (ti)1t ≤
{
SOC(ti−1)− SOCmin

100

}
EmaxESS , (13)

where i = 1, · · · , n and SOC(t0) = SOC init . Note that
converter ratings limit the real power output of the ESS as
follows:

PminESS ≤ PESS (ti) ≤ P
max
ESS . (14)

It should be noted out that practical ESSs have device-
specific charging/discharging efficiencies as models pre-
sented in [20] and [21]. However, for simplification, this
work does not take into account those efficiencies; instead,
the more realistic modeling of an ESS is left as our future
work.

C. SOC CONSTRAINTS
The ESS charging/discharging operation changes the SOC
level within boundaries. For i = 1, · · · , n,

SOC(ti) = SOC(ti−1)−
PESS (ti)1t
EmaxESS

× 100, (15)

SOCmin
≤ SOC(ti) ≤ SOCmax . (16)

D. CONSUMER SATISFACTION CONSTRAINT
A prosumer must ensure that a contracted consumer gains at
least the minimum revenue, Rminc , to have motivation for the
prosumer contract. Hence,

Rc(Ep,Cp) > Rminc . (17)

This constraint is quadratic as expressed in (4), (6), and (8).

IV. NONLINEAR OPTIMIZATION
The proposed optimization problem has a quadratic objective
function with linear and quadratic constraints and is generally
expressed as follows:

min
y

1
2
yTQy+ f T y+ c, (18)

subject to

1
2
yTHiy+ kTi y+ di ≤ 0,

pTj y+ qj = 0,

where y = [xT , uT ]T that has a components. When there are
m inequality constraints and n equality ones, i = 1, · · · ,m,
and j = 1, · · · , n. Further, Q ∈ Ra×a and Hi ∈ Rm×m are
symmetric matrices. Note that f , ki, and pj are vectors with
dimensions of a, m, and n, respectively, and that c, di, and qj
are scalars.

To solve this nonlinear optimization problem efficiently,
the interior-point algorithm with the gradient and Hessian of
the objective and constraint functions is employed [22]. The
interior-point method has widely been used for large-scale
problems because it can transform an original constrained
optimization problem into an unconstrained one, thereby
having apparent advantages in convergence and computation
time. The interior-point algorithm with the gradient and Hes-
sian presents good convergence, accurate results, and high
computational performance because of the simplicity and
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convenience of its unconstrained optimization techniques.
However, the algorithm is sensitive to the initial value. The
Hessian of the Lagrangian is expressed as follows:

∇
2
yyL(y, λ) = ∇

2f (y)+
∑

λi∇
2
(
yTHiy+ kTi y+ di

)
+

∑
λj∇

2
(
pTj y+ qj

)
, (19)

where λi and λj are Lagrange multipliers.
In the numerical simulation presented in the following

section, the fmincon function of the MATLAB optimization
toolbox is used as a solver for the proposed optimization.
The computing hardware is a PC equipped with an Intel
Core i7-4980HQ 2.80-GHz CPU and 16-GB RAM running
the 64-bit Windows 10 operating system.

V. NUMERICAL SIMULATION
To validate the proposed optimization method, numerical
simulation is performed with the test-bed parameters listed
in Table 4. The simulation uses the PV, wind generator (WG),
and load profiles of an industrial prosumer based on actual
field data from Jeju Island of South Korea for the summer
of 2017 (see Fig. 7 in Appendix). For a residential consumer’s
load profile, a general daily load curve based on actual field
measurement data [23] (see Fig. 2) is used with a variation
of 10%. The consumer’s monthly total electricity consump-
tion,EL , is 1372.3 kWh as listed in Table 4; therefore, the con-
sumer’s monthly electricity rate is originally $496.06 (= F0).

TABLE 4. Simulation base conditions.

FIGURE 2. Base load profile of a residential consumer.

As a base case with no prosumer contract, only ESS
operational schedules are optimized. Thus, the optimization
problem for this base case can be formulated as follows:

min
x,u

n∑
i=1

{K (ti)PPOC (ti)} (20)

with the same constraints as the optimization problem defined
in Section III except for the consumer satisfaction constraint
in (17). To solve this problem, a linear programming method
is used, and the solver is the linprog function of theMATLAB
optimization toolbox. According to the base-case simulation,
the operating cost of the prosumer is $2170.20.

For the numerical simulation in this study, the three pro-
sumer provision cases listed in Table 3 are tested. The fol-
lowing subsections describe the simulation results performed
under various practical conditions such as three prosumer
provision cases, different minimum customer revenues, dif-
ferent optimization functions, different renewable penetration
rates, and the uncertainties of renewables and loads.

A. OBSERVATIONS FROM THE PROSUMER
PROVISION CASES
Since a consumer’s monthly electricity consumption
(i.e., 1372.3 kWh) is in Zone 4 of the progressive pricing
scheme, the consumer has strong motivation for the prosumer
contract to avoid payment at the unit price of Zone 4. The
proposed optimization with a minimum consumer revenue
(Rminc ) of $100 is performed for all cases in Table 3, and
the results are displayed in Table 5. The results indicate
that Case 1 maximizes the prosumer’s economic benefit
(i.e., $261), but the prosumer contract price (Cp) for Case 2 is
the smallest at 0.3206 $/kWh, which is a more attractive price
to the consumer than those for other cases. Hence, Case 2 is
desirable for promoting the contract with the consumer.

TABLE 5. Simulation results for different cases (Rmin
c = $100).

Fig. 3 depicts that the active power output of the ESS
and POC for Case 2 with Rminc = $100, indicating that the
power influx from the utility increases since Day 21. This
increase is because renewable energy production is deficient
in comparison to the prosumer load since Day 21 as shown
in Fig. 2.

B. OBSERVATIONS RELATED TO THE MINIMUM
CUSTOMER REVENUE
In this section, the influence of the minimum customer rev-
enue, Rminc , on the prosumer revenue from the prosumer con-
tract is investigated by simulating Case 2 with various values
of Rminc . The simulation results indicate that the proposed
optimization method produces the same customer revenue
as Rminc and that the prosumer revenue linearly decreases
with the consumer revenue, as shown in Fig. 4. Therefore,
the prosumer can set up a business plan based on the revenue
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FIGURE 3. Active power output of the ESS and POC.

FIGURE 4. Relationship between the consumer and prosumer revenues
as the minimum consumer revenue, Rmin

c , varies. Note that the proposed
method yields the same consumer revenue as Rmin

c .

relationship in Fig. 4, suggesting a unit price and revenue to
the consumer before a contract is signed.

C. OBSERVATIONS RELATED TO THE
OPTIMIZATION PERFORMANCE
As simulation conditions, the first-order optimality toler-
ance, step tolerance, and constraint violation tolerance are
10−6, 10−10, and 10−6, respectively. The average processing
time for solving the experiments of Case 2 with Rminc =

$10, 50, 100, 200, 250, 300, and 350 is 70.2s.
Table 6 lists the processing times to obtain solutions for

Cases 1-3 with Rminc = $100, indicating that, without using
the Hessian function of the Lagrangian in (19), the processing
time is, at maximum, 59.4 times those of the cases when using
the Hessian function; note that optimization results are iden-
tical, regardless of the use of the Hessian function. Accord-
ingly, solving the proposed optimization problem requires the
Hessian function to obtain efficient computing performance.

D. OBSERVATIONS RELATED TO RENEWABLE
PENETRATION RATE
In the test cases presented the previous sections, a total pene-
tration rate of renewables, including the PV and wind energy,

TABLE 6. Processing times for optimization (Rmin
c = $100).

is 61.7% from the perspective of energy production. In order
to investigate the impact of the renewable penetration rate
on the prosumer and consumer benefits, several simulations
with various renewable penetration rates are performed, with
Case 2 and Rminc = $100. The penetration rate is adjusted by
scaling up or down the PV and wind generations.

From Table 7 that compares the results, it can be observed
that the prosumer benefit due to the prosumer contract
increases with the penetration rate while the consumer benefit
sustains at $100 (i.e., Rminc ) for any cases. It is noteworthy that
the prosumer benefit is maintained at $248 below the 40%
penetration rate, which indicates that even when available
renewable energy is rare, the prosumer can earn at least
$248 by the prosumer contract, using the ESS operation with-
out compromising the consumer’s benefit. It can be stated
that the proposed optimal scheduling method is effective for
prosumer energy management regardless of the amount of
renewable energy.

E. CONSIDERATION OF UNCERTAINTIES
The previous numerical experiments are based on perfect
foresight on the future renewable generation and prosumer
load. However, in practical applications, all those parame-
ters are, by nature, uncertain, and therefore the proposed
method cannot achieve a truly optimal solution. As an
effective measure dealing with the uncertainty, the ensem-
ble forecast, which generates alternative future trajectories
based on probabilistic forecast information, has been stud-
ied [24]. A strong advantage of the ensemble forecasts is to
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TABLE 7. Simulation results for different penetration Rate of renewables (Case 2, Rmin
c = $100).

generate multiple statistical scenarios (i.e., trajectories) in
such a way that the forecast interdependencies among look-
ahead times are considered. Each trajectory becomes an input
to the deterministic framework, and for a jth scenario genera-
tion, all state and control variables in (9) should be updated as
follows:

x(j) = [P(j)POC (t1), · · · ,P
(j)
POC (tn), SOC

(j)(t1), · · · ,

SOC (j)(tn)]T ,

u(j) = [P(j)ESS (t1), · · · ,P
(j)
ESS (tn),C

(j)
p ,E

(j)
p ]T .

Finally, the outputs of each generated scenario eventually
form a final decision as follows:

ûk =
Ns∑
j=1

f (j) u(j)k , (21)

where ûk is the final decision of the kth control variable
considering all uncertainties, Ns is the number of scenarios
generated, f (j) is the probability of the jth scenario realization,
and u(j)k is the kth control variable under the jth scenario
realization. Note that this final decision may not be the most
optimal solution for actual practice but feasible for all the
possible scenarios.

Before scenario generation, the statistical model of forecast
errors should be developed based on the historical forecast
and observation data. Many parametric [25] or nonparametric
models [26] can be used, but this study employs the normal
distribution with zero means for simplification. Furthermore,
the statistical model is divided into five forecast bins accord-
ing to the measured value, each of which describes the prob-
ability distribution of the forecast errors. Since this section
mainly focuses on the effectiveness of the proposed prosumer
energy management scheme under the uncertainties, the fore-
cast errors that follow the normal distribution with zero mean
and a standard deviation of 0.01 are generated. For instance,
the statistical model of each forecast bin for wind power is
described in Fig. 5.

For scenario generation, this study adopts the inverse trans-
form method [24], [26]. The cumulative distribution function
(CDF) of power prediction for the lead-time t , denoted by
F(p̂t ), can be transformed into a CDF 8(Xt ) because both
CDFs are uniformed distributed within [0, 1]. Note that 8−1

FIGURE 5. The forecast error distributions of wind power for five forecast
bins.

FIGURE 6. Wind power forecast under 10 alternative scenarios.

is the probit function, expressed as follows:

8−1 : p→
√
2 erf−1(2p− 1), (22)

where erf is the error function. Note that Xt is normally
distributed with zero mean and unit standard deviation and
that the random vector X = [X1,X2, . . . ,Xk ]T follows
the multivariate normal distribution, where k is the maxi-
mum lead time; in other words, X ∼ N (µ,6), where µ
is the mean values and 6 is the covariance matrix includ-
ing the cross-correlation among Xt , which can be computed
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FIGURE 7. The PV, WG, and load profiles of the industrial facility for 30 days.

TABLE 8. Simulation pesults in consideration of uncertainties (Case 2,
Rmin

c = $100).

by the recursive estimation [24]. That is, when there are
m observations,

6 =
1

m− 1

m∑
i=1

X (i)X (i)T , (23)

where X (i) is the ith observation. At last, the scenarios can
be generated by producing the multivariate normal random
variables, which are then transformed into power forecast p̂t .
This generation is performed about PV and wind generation
outputs and prosumer loads. As an example, Fig. 6 illustrates
ten forecast scenarios of wind generation.

For the final decision making, the proposed optimization
is repeatedly executed under 10, 20, and 30 scenarios, with
maintaining Case 2 and Rminc = $100. After testing all the
scenarios, the final decision û is determined according to (21).
Table 8 shows the simulation results when applying û to the
ESS operation and prosumer contract. It can be noticed from
the table that when 20 scenarios are generated, the operat-
ing costs are minimum; nevertheless, the prosumer contract
price and energy in û are the same as the case under perfect
foresight, which is presented in Table 5. Hence, we can see
that the decision on the prosumer contract is irrelevant to
the uncertainties. From Table 8, we can also observe that
the prosumer’s operating costs for Case 2 and Rminc = $100
are around $2111.8 regardless of the number of scenarios,
which is much higher than the case under perfect foresight
(i.e., $1909.9 as shown in Table 5). This increase is inevitable
because of the uncertain nature of the renewables and loads.
We can, rather, highlight the fact that the prosumer benefit
from the prosumer contract is around $265 regardless of the

number of scenarios. In the end, it is verified that the proposed
prosumer optimization can bring benefits to both prosumers
and consumers even in consideration of uncertainties.

VI. CONCLUSION
In this paper, an optimization method that simultaneously
schedules a prosumer’s ESS economically and obtains the
optimal unit price and energy capacity that the prosumer
offers to residential consumers suffering from high electricity
rates due to the progressive pricing scheme was proposed.
The primary purpose of computing the prosumer price and
energy capacity is to encourage the consumers to sign the
prosumer contract by guaranteeing their revenue. In this con-
text, the contribution of this paper is that a prosumer can
take into account revenue from the prosumer contract and
the consumer’s motivation for the contract while optimally
scheduling the prosumer’s energy resources such as ESSs.

On the basis of actual field data from Jeju Island of
South Korea for 30 days, numerical experiments were per-
formed with an optimization problem formulated using
a quadratic objective function and quadratic constraints.
Finally, it is concluded that the proposed optimizationmethod
ensures economic benefit to both prosumers and consumers
through optimal ESS operations and the prosumer contract;
the prosumer’s operating costs are reduced by about 12% in
Case 2. Moreover, the case that aims to move the consumer’s
pricing from Zone 4 to Zone 2 yields the optimal solution for
minimizing the prosumer contract price (i.e., 0.3206 $/kWh)
in Case 2, which is, therefore, more attractive to the consumer.
The simulation results also indicate that the proposed method
can give the consumer the same revenue as the predefined
minimum consumer revenue and that the use of the Hessian
function of the Lagrangian for the optimization can con-
siderably enhance the computing performance by reducing
the processing time by maximum 98.3% in Case 3. In the
end, this study proves that the proposed method can bring
those benefits not only under the various penetration rates
of renewables but in consideration of uncertainties of renew-
ables and loads. The uncertainty is addressed through the
generation of multiple statistical scenarios based on forecast
interdependencies among look-ahead times. As a result, it is
found that the operating costs slightly differ by the number of
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scenarios generated, but the uncertainty has no impact on the
prosumer contract price and energy.

In future works, the risk due to uncertainties can be
addressed by a risk criterion such as value-at-risk or con-
ditional value-at-risk, which measures the risk of loss from
the investment viewpoints. The different risk adoption levels
can be influential constraints in prosumer energy manage-
ment, and therefore it is meaningful to observe the impact on
optimization results. Besides, consumers can choose multiple
energy sources and contracts not only with prosumers but
with utilities to hedge their electric bills in the real-time
pricing scheme.

APPENDIX
FIELD DATA FOR THE PV, WG, AND LOAD PROFILES
Fig. 7 shows the PV, WG, and load profiles of an industrial
facility on Jeju Island of South Korea for 30 days during the
summer of 2017.
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