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ABSTRACT The base station (BS) switching technique has recently attracted considerable attention for
reducing power consumption in wireless networks. In this paper, we propose a novel BS switching and sleep
mode optimization method to minimize the power consumption, while ensuring that the arriving user traffic
is sufficiently covered. First, the user traffic in multiple time slots was predicted using the long-short term
memory (LSTM) prediction model. Subsequently, we solved the Lyapunov optimization problem to obtain
the optimal BS switching solution from the trade-off relationship between the reduced power consumption
by BS switching and the user traffic handled in time series. Finally, we selected the sleep mode for the
switched result by calculating the wake-up time and the power consumption ratio of each sleep mode.
Simulation results confirm that the proposed algorithm successfully reduces the total power consumption
by approximately 15% while preventing the user data queue from diverging in multiple time slots.

INDEX TERMS Base station switching, base station sleep mode, LSTM prediction, Lyapunov optimization.

I. INTRODUCTION
Recently, user traffic in the wireless networks has exploded
because of increase in the amount of various large-scale con-
tents along with the commercialization of the fifth generation
(5G) wireless systems. With the growth of wireless networks,
green communication has attracted considerable attention for
environmental protection [1], [2]. It is observed that wireless
networks cover 2% of the total amount of CO2 emissions
from the earth [3], thereby facilitating global warming. In par-
ticular, operating the base station (BS) consumes 70-80%
of the total energy in wireless networks [4], [5]. Therefore,
recent studies have attempted to control the switching strat-
egy of the BS to maximize energy efficiency [6]. The BS can
be switched into the On/Off status to reduce its power con-
sumption [7]. However, most studies regarding BS switching
have considered only two states, either ON or OFF, and
have failed to take into account the sleep mode defined by
its sleeping depth. In reality, the BS sleep modes can be
configured by analyzing its hardware elements [8], according
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to the respective components operating in each mode. For
example, when only a short sleeping time is allowed, we can
efficiently reduce the total power consumption by switching
off only the components that can rapidly change its state,
which can be called ‘‘light’’ sleep mode. Consequently,
we can save more energy in various scenarios by optimizing
the sleep mode, compared with a scheme that uses only the
ON and OFF states. Moreover, the wake-up time, which
corresponds to the switching delay from operation instruction
to actual operation of BS, must be considered. However,
existing researches have not considered this significant factor
for the practical application of BS switching.

In this study, we optimized the switching strategy of the
BS (i.e., controlling the On/Off states) to reduce power con-
sumption by considering the actual data traffic of users.
Regarding the user traffic, we employed a long-short term
memory (LSTM) scheme to handle dynamic traffic in a time
series. LSTM [9] is a type of recurrent neural network (RNN)
that feeds the output of the previous step to the input layer
of the current step, which is a dynamic feedback connection,
and is suitable for modeling dependencies that occur in a
time series [10]. Using LSTM, we first predict user traffic
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in a short future time slot and then solve the Lyapunov opti-
mization problem to obtain the optimal BS switching result
by analyzing the trade-off relationship between the power
consumption reduced by BS switching and the user traffic to
be accommodated. Finally, we optimize the BS sleep mode
for multiple time slots while considering the wake-up time of
the sleep modes. The main contributions of this study can be
summarized as follows.
• We formulated the objective BS switching and sleep
mode optimization problem by developing models of
power consumption, BS sleep mode, and user traffic.
The power consumption and sleep models were defined
by analyzing the BS hardware elements, whereas the
user data traffic was considered as a queue. Subse-
quently, we established an equation to minimize the
power consumption while maintaining queue stability.

• The proposed LSTM-based prediction model forecasts
future user traffic to reduce the overhead of passing
traffic information to the BS, based on past communi-
cation information of the user, including user position,
signal-to-noise ratio (SNR), and the traffic situation.
Subsequently, we solved the Lyapunov optimization
problem to obtain the optimal BS switching result in a
time series with the predicted user traffic set. In the BS
switching scheme, a user relay algorithm was proposed
to handle users when the BS switches to the sleep status.
Moreover, we proposed a sleep mode section algorithm
by analyzing the switched result set of BSs to determine
the optimal result when applying the sleep depth over
multiple time slots.

• The LSTM-based traffic prediction model was com-
pared with the linear prediction and RNN-based models.
Performance evaluations revealed that the root mean
square error (RMSE) of the LSTM-based traffic predic-
tion model is smaller than that of the linear prediction
and RNN-based models by up to 64.9% and 23.5%,
respectively. Thereafter, we analyzed the average user
data queue that converges in a stable state to ensure that
user traffic is sufficiently covered. Moreover, the pro-
posed algorithms significantly reduced the total power
consumption compared with the full-operating status
by 15%.

The remainder of this paper is organized as follows.
In Section II, we review related works on BS switching
systems. In Section III, the overall optimization problem is
formulated. The design of the LSTM-based user prediction
is described in Section IV. Section V discusses the BS
switching model by Lyapunov optimization for each time
slot. Subsequently, Section VI optimizes the BS sleep mode
for multiple time slots. We evaluate the performance of
the proposed models in Section VII. Finally, Section VIII
concludes this study.

II. RELATED WORK
In this section, we review existing related studies on BS
switching systems. Unlike in the past, when performance

improvement was focused on increasing wireless network
traffic, green communication has recently attracted attention.
The studies in [11], [12] attempted to reduce the BS power
consumption, which accounts for the majority of the total
network energy consumed. Wang et al. [11] minimized the
BS power consumption and improved the utility efficiency of
green energy by optimizing the user connection and band-
width allocation problem. Han et al. [12] distributed the
traffic load to reduce the communication overhead between
the user and BS. Consequently, the power consumption of the
network was significantly reduced.

Moreover, the strategies for turning off the BS have
emerged to further dramatically reduce its power con-
sumption [13], [14]. Ghazzai et al. [13] analyzed the
next-generation cellular network for green communica-
tion. The authors suggested the direction of BS switching
research while considering the effect on the quality of ser-
vice (QoS) of users. Thereafter, Han et al. [14] analyzed
various studies on BS switching strategies, such as random
sleeping, distance-based sleeping, and traffic-based sleeping.
To achieve this, various studies aimed to optimize the BS
switching problem [15], [16]. Wu et al. [15] defined a simple
BS sleep mode in a single-cell network. The BS switches into
sleep mode when the system is empty, and wakes up when N
defined users gather in the cell. Yang et al. [16] proposed a
method to minimize the number of active BSs while ensuring
the QoS of users by formulating the minimum energy con-
sumption problem as an integer programming model.

However, to apply this system to a practical situation,
other factors must be considered to determine the switching
states. Therefore, a switching strategy to reduce the total
power consumption by analyzing the user traffic was pro-
posed in previous studies [17], [18]. Yu et al. [17] mini-
mized the energy cost by jointly determining the set of BSs
to be activated and the transmission power level with the
predictable traffic flow of users. Peng et al. [18] determined
the number of BSs during peak traffic times to provide
high-quality service to users; some of the BSs remain active
during the idle period, whereas the remaining BSs are ter-
minated to reduce the power consumption. Moreover, studies
in [19]–[21] focused on energy efficiency through BS control
by analyzing information such as user density and mobility.
Cai et al. [19] aimed to minimize the power consumption of
heterogeneous networks according to user uniformity. If the
user set is uniformly distributed, the system searches for the
optimal operating strategy by determining the switching set
of small-cell BSs from the location set. If the user set is
non-uniformly distributed, both user density and BS location
set are considered for the switching decision. Thereafter,
Feng et al. [20] maximized the energy efficiency using the
game theoretical approach. They proposed a switching strat-
egy by investigating the correlation between a user bidding
strategy and BS switching cost. Gao et al. [21] proposed a
switching strategy that considers the time to reach a specific
BS to increase energy efficiency while observing the user
mobility.
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However, these previous studies failed to consider the
delay when the BS switches the On/Off status, which is not
realistic because it cannot be switched within such a short
time. Therefore, the BS wake-up time can be considered by
analyzing the hardware factors, while considering the sleep
depth of BS [8], [22]. However, the switching strategy in
the previous studies, including those proposed by [8], [22]
can incur a significant overhead when applied to wireless
networks. To overcome this, recent studies attempted to adapt
a machine-learning model while establishing an efficient
BS switching strategy [23], [24]. They used the compensa-
tion concept for the switching strategy through the learning
model. However, they did not consider the wake-up time of
the switching, and ambiguity exists regarding the user traffic
being sufficiently covered.

To overcome these problems, studies in [7], [25] con-
sidered the different sleep levels and wake-up times in
the system that aims to reduce the power consumption.
Masoudi et al. [25] formed four different levels of sleep
modes of BS to adapt in various scenarios while considering
the wake-up times. Thereafter, based on the traffic model,
the authors proposed reinforcement learning approach to
optimize the BS switching strategy while using real mobile
traffic data. However, it may vulnerable to traffic changes
caused by BS switching because it is based on current user
traffic. Pervaiz et al. [7] considered themultilevel sleepmodel
to adapt to dynamic networks with fluctuating traffic profiles.
The authors predicted the BS vacation time, which allows
the system to minimize the effect of wake-up time while
saving energy. However, it is necessary to guarantee that
user traffic is sufficiently covered for practical application
to real systems. The previous studies [7], [25] proposed BS
sleeping strategy with divided sleep modes and wake-up
times, to adapt in various real systems. However, there exist
limitation that the proposed system has to control the over-
head occurred at synchronizing the user traffic information.
Moreover, it cannot ensure that the user traffic is sufficiently
covered, whichmakes adapting into real systems challenging.

In this study, we predicted the user traffic for short time
slots by LSTM-based model, to make our system work more
worthy in the real world, by solving the limitations of previ-
ous studies. The predicted user traffic data in time series can
reduce the overhead occurred at passing traffic information to
the BS. Thereafter, we used the traffic data in the BS switch-
ing strategy while ensuring that the user traffic is covered,
by considering the remaining data traffic of user as a queue.
By expressing the remaining amount of requested traffic as
a queue, it is possible to reliably guarantee the processing of
user requirements than previous models that simply consider
energy efficiency. Moreover, we determined the sleep mode
of each BS by considering the wake-up time in a stable BS
switching strategy in a time series.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this study, we considered a wireless small-cell network
comprisingM users and N small-cell BSs. Assuming that the

BSs are completely synchronized with each other, we focused
on downlink communication. The set of users and BSs are
denoted by M = {1, 2, . . . ,M} and N = {1, 2, . . . ,N },
respectively. Let � = {�t

n | n ∈ N}, where �t
n represents

the set of users that are connected to BS n at time slot t .
Here, we aim to reduce the total power consumption of

the network model while ensuring that each user’s traffic is
covered. To this end, we introduce the power consumption
model, sleep mode of the base station, and user traffic model
in the following subsections.

A. POWER CONSUMPTION MODEL
Understanding small-cell hardware is important for designing
power-saving modes that can take advantage of switching off
certain hardware components under low traffic. To utilize the
sleep mode of BSs and calculate the power consumption of
the system, we developed a hardware model for a small-cell
BS designed in [26]. As described in [26], three parts exist
on the hardware of small-cell BS. The first part consists of a
microprocessor that implements and manages a standardized
radio protocol stack and associated baseband processing as
well as the backhaul connection to the core network. The sec-
ond part includes a field-programmable gate array (FPGA)
and other integrated circuits to implement various functions
such as data encryption, hardware authentication, and net-
work time protocol. The third part consists of radio-frequency
(RF) components for transmitting and receiving data. More-
over, there is also an RF power amplifier (PA) in the third part
that transfers high-power signals to the transmitting antenna.

Considering the hardware model of the small-cell BS,
the largest components of the total power consumption are
associated with the RF front end (45%) and the temperature-
compensated crystal oscillator (TCXO) heater (7%). This
indicates that switching off these components can reduce the
total power consumption by over 50%.Meanwhile, switching
on the RF front end requires a few hundred milliseconds.
Moreover, the TCXO also requires time to reheat. However,
considering the analysis in [27], no disruption of the small-
cell operation occurs, except for an induced clock drift.

B. BASE STATION SLEEP MODE
Based on the designed power consumptionmodel, we applied
the sleep mode of the BS defined in [27] to reduce the total
power consumption of the system. As described in [27],
the sleep modes of small-cell BS were defined, and ordered
by ‘‘depth.’’ The defined sleep modes of the BS are as
follows:
• On: The small-cell BS is in full operation, and it con-
sumes the maximum power.

• Stand-by: The small-cell BS is in ‘‘light’’ sleep and can
rapidly wake up. The RF and TCXO heaters are turned
off.

• Deep-sleep: The small-cell BS is in ‘‘deep’’ sleep, and
it needs a relatively longer time to wake up. Only the
power supply, backend connection, and generic CPU
core are turned on.
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FIGURE 1. System model of this paper at time slot t . Because BS 3 is switched into sleep mode, users 1 and 7 relay the traffic of
users 3 and 4, respectively. Moreover, user 2 is handed over to BS 1 from BS 3.

• Off: The small-cell BS is turned off, but consumes a
small amount of power for activation. However, this
power consumption is negligible, and is considered to
be approximated to zero.

For the defined sleep modes, the wake-up times are sum-
marized in Table 1, referring to [27]. The power consumption
in Table 1 is expressed as a percentage, with respect to the
amount of power consumed in the ‘‘On’’ mode, which is
100%. From now on, we will collectively call ‘‘Stand-by’’
mode, ‘‘Deep-sleep’’ mode, and ‘‘Off’’ mode as ‘‘sleep
mode’’ for convenience in switching strategy. It is evident
that the BS power consumption varies depending on the user
traffic in the cell. However, as it is well known, the BS circuit
power is responsible for most of the power consumption,
and the transmission power allocation is relatively small.
In addition, considering that the transmission power by the
traffic is a factor that increases the complexity, but is not as
impact as the switching mode factor of the BS. Therefore,
we did not include the instantaneous transmission power
change according to the user traffic in our power consumption
model.

TABLE 1. Wake-up times and power consumption for each sleep mode in
small-cell BS.

C. USER TRAFFIC MODEL
In this subsection, we introduce the user traffic model for
formulating the BS switching problem. When switching the
BS into sleep mode, the most important aspect is to confirm
whether user traffic is sufficiently covered. To handle this
problem, we first denote S tm as the required data amount of
user m at time slot t . Thereafter, the power consumption of
BS n at time slot t is denoted as Ptn. Here, we define the BS
switching factor as

αtn =

{
1, if BS n is ‘On’ mode at time slot t
0, otherwise.

(1)

If BS n is ‘‘Stand-by’’, ‘‘Deep-sleep’’, or ‘‘Off’’ mode at
time slot t , it indicates that BS n is switched to sleep mode,
therefore αtn is 0.

In this study, we assumed the systemwhere the BS cells are
not dense, which is disadvantage for users; thus, the system
can be extended to various real systems such as heteroge-
neous networks (HetNet) with dense cells, and drone net-
works with sparse cells. To handle the traffic of users when
their connected BS is turned off, the handover technique to
another BS or relay technique between users can be used.
In general, the BS communication has better performance
than relay between users; therefore we attempted to con-
nect to other BS first. Thereafter, we considered the device-
to-device (D2D) network, which is typically used for relaying
systems [28]. We assumed the relaying system based on the
model in [29] for the remaining users, as depicted in Fig. 1.
In other words, if αtn = 0, user m ∈ �t

n employs the relay
network to cover its traffic. Thus, we can define the relay
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factor as

β ti,j =

{
1, if user i relays the traffic of user j
0, otherwise.

(2)

If β ti,j = 1, this indicates that user j requests its traffic be given
to user i at time slot t because the BS to which user j belongs
to is turned off. Moreover, β ti,i = 1 if user i directly receives
data from the BS without using a relay.

However, although this is a system-wide gain, it would be
disadvantageous for the users in terms of power consumption.
According to [30], the power consumption of user increases
because of the transmission process. However, it is relatively
negligible compared to the power consumption of the BS;
therefore we aim to minimize the power consumption of the
BS, ignoring the additional energy consumed by the user, for
efficiency of the entire network [31].

Thereafter, δtn denotes the sleep depth of BS n at time slot t ,
which is expressed as

δtn =


3, if BS n is ‘‘Off’’ mode.
2, else if BS n is ‘‘Deep-sleep’’ mode.
1, else if BS n is ‘‘Stand-by’’ mode.
0, otherwise.

(3)

Based on the defined factors, we express the arrival data
traffic atm,n of each user m included in BS n at time slot t as

atm,n = S tm −
M∑
i=1,
i6=m

β ti,m · S
t
m +

M∑
j=1,
j6=m

β tm,j · S
t
j . (4)

This indicates that the amount of data is delegated to the
relaying entity. To make our system robust, we assume that
there exists no exception of one user receiving a relay network
while assisting other users as a relay.

Then, the signal to interference and noise ratio (SINR) of
user m included in BS n can be expressed as

γ tm,n =
ptm,n · g

t
m,n∑N

j=1,j6=n
∑

i∈�tj
pti,j · g

t
i,j + σ

2
, (5)

where ptm,n, g
t
m,n, and σ

2 denote the transmission power
of BS n to user m at time slot t , channel gain, and the
power of additive white Gaussian noise (AWGN), respec-
tively. According to Shannon’s capacity theorem, the data rate
of user m in BS n, denoted as C t

m,n, can be expressed as

C t
m,n = Bn log2

(
1+ γ tm,n

)
. (6)

Now, the departure data traffic of user m in BS n can be
expressed as

btm,n = α
t
n · C

t
m,n ·

M∑
i=1

β tm,i, (7)

where Bn is the bandwidth of each sub-channel of BS n.
In other words, the system allocates bandwidth depending on

the number of relaying users to focus on processing of the
relaying entity.

In this study, the small-cell BS maintains the data queue of
each user to store and forward data from the BS to the user.
The queue is assumed to be simultaneously known by all BSs.
We denote the queue size of user m on BS n at time slot t
as Qtm,n. From the defined arrival and departure data traffic,
the data queue evolves as

Qt+1m,n =
[
Qtm,n + a

t
m,n − b

t
m,n
]+
, (8)

where

[x]+ = max {x, 0}. (9)

D. PROBLEM FORMULATION
Based on the designed user traffic model, we formulate the
optimizing problem of this system in this subsection. Our
aim is to minimize the total power consumption of BSs while
the user data requirement is sufficiently covered. To this end,
we can express the constraint indicating that the given queue
should satisfy the mean rate stability to guarantee stability as

lim
T→∞

1
T

T−1∑
t=0

E[Qtm,n] <∞, ∀m ∈M, ∀n ∈ N. (10)

Finally, the overall optimization problem can be expressed
as

P1 : min
αtn,

β tm,n,

δtn


lim
T→∞

1
T

T−1∑
t=0

N∑
j=1

αtjP
t
j (11a)

s.t. lim
T→∞

1
T

T−1∑
t=0

E[Qtm,n] <∞, (11b)

btm,n ≤ ρmax , ∀m ∈M, ∀n ∈ N, (11c)

αtn = {0, 1}, ∀n ∈ N, (11d)

β ti,j = {0, 1}, ∀i, j ∈M, (11e)

δtn = {0, 1, 2, 3}, ∀m ∈M, ∀n ∈ N, (11f)

where ρmax is the limitation of the maximum QoS require-
ment of each user. Because we assume the relay network to
supplement user traffic when the BS is switched off, and it is
not directly considered in the equation, we set (11c), which
holds themaximum departure requirement that can ensure the
stability of the relay network. The minimum limitation of the
QoS requirement of each user can be satisfied through the
stability of the queue; therefore, it can be ignored.

The formulated problem (P1) is a non-convex problem by
the binary terms αtn and β tm,n and the discrete variable δtn.
Moreover, equations (11a) and (11b) are the time domain
objective function and constraints, which transform the prob-
lem into anNP-hard problem. To overcome this issue, we pro-
pose an algorithm that solves the Lyapunov optimization
problem for the BS switching problem in Section V. We aim
to minimize the total power consumption while guaranteeing
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the queue stability constraint by Lyapunov optimization. Sub-
sequently, we employmachine learning techniques to achieve
the original goal of reducing the total power consumption by
utilizing sleep mode optimization, which is determined from
sleep duration by switching results. Thus, we first predict the
user traffic in Section IV.

IV. USER TRAFFIC PREDICTION
For more accurate BS On/Off and relay strategies, we use
the LSTM model to predict future user traffic requirements.
The LSTM model is a variation of the RNN model, which
can capture the pattern from the time-series data. It attempts
to resolve the vanishing/exploding gradient problem in the
classic RNN model by using cell states, which include four
types of gates. Fig. 2 represents the process of LSTM cell,
and Eq. (12) describes the equations of the forward pass for
the LSTM cell.

ft = σ (Wf × [xt , ht−1]+ bf ), (12a)

it = σ (Wi × [xt , ht−1]+ bi), (12b)

ot = σ (Wo × [xt , ht−1]+ bo), (12c)

c̃t = tanh(Wc × [xt , ht−1]+ bc), (12d)

ct = ft × ct−1 + it × c̃t , (12e)

ht = ot × tanh(ct ), (12f)

where xt is the input vector, ft is the forget gate vector, it
is the input/update gate vector, ot is the output gate vector,
ht is the hidden state vector, c̃t is the cell input activation
vector, and ct is the cell state vector.Wf ,Wi,Wc, andWo are
weight matrices, while bf , bi, bc, and bo indicate bias vectors.
σ () represents a sigmoid function.

FIGURE 2. Process of the LSTM cell.

The 4G trace dataset with channel and context metrics
is used for the LSTM model training [32], and is collected
from two major Irish mobile operators. The dataset con-
tains 135 traces, with an average duration of 15 min per
trace. Fig. 3 demonstrates the process of LSTM-based model
for traffic prediction. At the training step, the input dataset
is pre-processed with feature selection and normalization.
The main features included in pre-processed dataset are as
follows.
• Timestamp: timestamp of sample. Each sample has an
interval of 1 second.

FIGURE 3. Process of training and testing of the LSTM-based traffic
prediction model.

• Position: each position is provided as (X, Y), which
is calculated from the longitude and latitude of GPS
coordination.

• SNR: SNR value at the mobile user.
• Downlink traffic: downlink traffic measured at the user
in Kbits.

• Uplink traffic: uplink traffic measured at the user in
Kbits.

• Distance: distance between the serving cell and the user.
After pre-processing, the LSTM-based model is trained with
pre-processed training data. The validation loss is checked
for every epoch, and the training step is completed when the
validation loss increases for two epochs in a row because
we consider increase in the validation loss as a symptom
of overfitting. We chose the RMSE as the loss function to
measure the accuracy of the prediction algorithm. Eq. (13)
represents the RMSE for each sample prediction.

RMSE =

√√√√ n∑
i=1

(
ŷi − yi

)2
n

. (13)

After the training, the testing procedure begins. For each time
step, the input data xt is pre-processed similar to the training
step. Future user traffic predictions for the next time steps are
performed using the LSTM-based model; they are used in the
process of BS switching and sleep mode optimization algo-
rithms, as indicated in Section V and Section VI, respectively.

V. BASE STATION SWITCHING STRATEGY
A. LYAPUNOV OPTIMIZATION PROBLEM FORMULATION
In Section III-D, a mathematical model for the BS switching
optimization problem is designed. As shown in our objec-
tive function (P1), the proposed problem is a time-domain
function, which becomes an NP-hard problem. To solve this
problem, the Lyapunov drift optimization technique [33]
is suitable because we can observe the trade-off between
power consumption and data queue stability. In this section,
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the traffic is considered to be constant, according to predic-
tions in Section IV. Then, let 2t denote the vector of the
remaining data queues at time slot t . Thereafter, the quadratic
Lyapunov function can be defined as

L t =
1
2
(2t )T2t

=
1
2


N∑
j=1

∑
i∈�tj

(
Qti,j

)2 , (14)

where (2t )T denotes the transpose of 2t . Then, let 1t

be a conditional quadratic Lyapunov function, which can
be formulated as E

[
L t+1 − L t | 2t

]
, i.e., the drift in time

slot t [33]. The dynamic policy is designed to solve the pro-
posed optimization formulation by observing the current data
queue sizes Qtm,n and determining the switching selection of
the BS to minimize a bound on [34]

N∑
j=1

αtjP
t
j − V ·1

t , (15)

where V is a positive constant value parameter used to control
the drift policy, which affects the reward-data queue trade-off.

When we switch BSs, a reward is received. Based on the
Lyapunov approach [33] with a reward for selection, we can
transform the optimization problem as

min
αtn,

β tm,n,

δtn



N∑
j=1

αtjP
t
j + V ·

N∑
j=1

∑
i∈�tj

Qti,j
(
ati,j − b

t
i,j

)
. (16)

Finally, we can define the objective function as

P2 : min
αtn,

β tm,n,

δtn



N∑
j=1

αtjPtj + V ·
∑
i∈�tj

Qti,j
(
ati,j − b

t
i,j

)
s.t. (11c), (11d), (11e), and (11f ). (17)

Now, we solve the problem (P2) to minimize the power
consumption of BSs.

B. ALGORITHM DESIGN
To solve the formulated problem (P2), we first design an
algorithm for the relaying process. When we switch BS n
to sleep mode at time slot t (i.e., αtn = 0), the traffic of all
users in �t

n must be relayed to other users that are available
to use their connected BS. Therefore, before designing the
switching algorithm for BSs in the system, we developed a
relay algorithm for users disconnected from their BS.

As depicted in Algorithm 1, BS n checks whether it is
switched to the sleep mode at time slot t . For all users
associated with BS n, it first determines whether user m is
transferable to BS n′ where n′ 6= n. From [30], it is proved
that communication with BS is more efficient than a relay
network in terms of both energy efficiency and performance.
Therefore, if the user can be transferred when considering

Algorithm 1 User Handover/Relay Algorithm
1: if αtn = 0 then
2: for m ∈ �t

n do
3: if m can be forwarded to BS n′ then
4: Qtm,n′ ← Qtm,n.
5: �t

n← �t
n/{m}.

6: �t
n′ ← �t

n′ ∪ {m}.
7: else
8: Btm← Btm ∪ {m}.
9: β tm,i← 0, ∀i ∈M.
10: Calculate Scoretm,i, ∀i ∈ M, i /∈ �t

n by
Eq. (18).

11: Select user p in BS q that has the best score
from Btm where C t

p,q does not exceed ρmax
after relayed.

12: β tp,i← 1, ∀i ∈ Btm.
13: Btp← Btp ∪ Btm.
14: Btm← ∅.
15: end if
16: end for
17: end if

the coverage, all information including queue is delivered to
BS n′; otherwise, user m is assisted by another relay user
which is associated with BS l (αtl = 1) using D2D link.
If there are multiple relay users, user m must select the most
preferable relay user that has the best D2D link quality and
least remaining queue size. Therefore, the preference score
Scoretm,i of relay user i for user m is defined by

Scoretm,i =
∑
p∈Btm

(
Qmax − Qti,j

)
· S tp · γ

t
p , ∀i ∈ K, (18)

where Btm denotes the set of users that user m needs to assist
as a relay user at time slot t (i.e., p ∈ Btm when β tm,p = 1),
γ tp denotes the SINR of shorter link of either i orm from p, j is
the BS index which is associated with user i,Qmax denotes the
maximum size of the queue, and K is a set of users that can
assist userm as a relay user. The score increases in proportion
to the remaining queue size of user i and the preference of the
relay network to that user. Moreover, the traffic of the user to
be relayed is multiplied to obtain a a fair result. Then, in the
algorithm, user m is included in Btm, and the all-relay factor
fromm is set to 0. Thereafter, the system selects user p that has
the best score from Btm among all users not included in �t

n.
Finally, the users inBtm aremoved toBtp, which is then relayed
from user p.
Because the factors αtn, ∀n ∈ N and β ti,j, ∀i, j ∈ M are

closely related to each other, we have to select the initiating
factor from a system perspective. To accomplish this, we sort
all BSs in ascending order according to the total arrival traffic,
as depicted in Algorithm 2.

Arr tn =
∑
m∈�tn

atm,n. (19)
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Algorithm 2 BS Switching Algorithm
1: while t ≤ T do
2: Nt

← Sort BSs by Arr tn in ascending order.
3: for n ∈ Nt do
4: Try to switch BS n into sleep mode (i.e., αtn = 0).
5: Select relay β t by Algorithm 1.
6: if Objt decreases then
7: Accept switching action of BS n.
8: Nt

← Nt/{n}.
9: Nt

← Re-sort BSs by Arr tn in ascending
order.

10: end if
11: end for
12: if Qmax − Qth < Qtm,n then V = V +1V .
13: else if Qtm,n < Qt−1m,n then V = V −1V .
14: end if
15: end while

In this case, an additional amount of data from relaying can
be considered by calculating the arrival traffic, as defined
in (4). Therefore, using this technique, we can attempt to
sequentially switch the less important BSs into sleep mode.
Then, we have to select the overall relay of users in�t

n using
Algorithm 1. To observe the queue state changed by this
action, we use the objective value of Eq. (P2) as

Objt =
N∑
j=1

αtjPtj + V ·
∑
i∈�tj

Qti,j
(
ati,j − b

t
i,j

). (20)

In the algorithm, we observe the change in Objt caused by
switching BS n. If the switching action induces a decrease
in Objt , the system accepts this decisive action. Therefore,
the system removes BS n from the candidate BS list Nt and
re-sorts the set because the arrival traffic of the BSs is changed
by the relay of users in BS n.
However, this switching strategy cannot guarantee that the

data queue will not exceed the maximum queue size Qmax
because the constraint (10) only observes whether the queue
diverges. To overcome this, the weight factor V is varied
dynamically to avoid potential queue overflow [35]. If the
data queue is almost full, the weight factor V is increased to
weigh the data process. In contrast, the system reduces V to
achieve higher power saving of the BSs if the queue becomes
stable. This procedure is depicted in line 12 to line 13 in
Algorithm 2, where Qth denotes the threshold for preventing
queue overflow. The varying amount1V and the initial value
ofV are experimentally obtained to determine the appropriate
values depending on the channel and queue models of this
system.

VI. ADAPTIVE SLEEP MODE SELECTION STRATEGY
In this section, we select the sleep depth of the BSs in the
switching result. In Section V, we optimized the switching
factor αtn of the BSs and relaying factor β

t
i,j for all users in the

FIGURE 4. Switched result of BSs for multiple time slots.

time series. Consequently, we obtained a map of the overall
switching result, as depicted in Fig. 4. Now, the sleep depth of
BSs should be determined, which is simply decided based on
whether the BS sleeps, that is, αtn = {0, 1}. Considering the
defined sleep modes of the BSs in the previous section III-B,
we characterize the status based on sleep duration and effi-
ciency. Let ton, tstandby, tdeepsleep, and toff denote the wake-up
times for each sleep mode. Hence, we can define the initial
sleep mode of each BS by comparing its sleep duration and
wake-up time. However, there could be a case where the
initial sleep mode selection result of BS n is that from t =
i to j− 1 is ‘Stand-by’, t = j is ‘On’, and j+ 1 to k is ‘Stand-
by’, where i < j < k . In other words, BS n can sleep deeper
and longer, from time slot i to k , by switching into sleep
mode at time slot j. Therefore, although the switched result is
optimal in the time series, it can also be changed as indicated
in time slot j in the aforementioned situation. When the mode
changes, it should not be optimal in switching result, but it
must be changed to become optimal result when considering
the sleep mode. To this end, we first find the BS-time candi-
date set that can affect the sleep depth of nearby time slots.
At the first use of Algorithm 3, the sleep depth of BSs is

Algorithm 3 Sleep Mode Selection Algorithm
1: Determine switching result for all BSs by Algorithm 2.
2: Initialize δtn, ∀n ∈ N by observing the sleep duration of

BSs and comparing with {ton, tstandby, tdeepsleep, toff}.
3: Nc← Explore candidate BS-time set.
4: repeat
5: Select (n, t) ∈ Nc.
6: Try to switch BS n at time slot t .
7: Nc,n ← Affected BS-time set from re-switching of

candidate (n, t).
8: Optimize the switching problem by Algorithm 2.
9: if

∑
t≤τ≤T Obj

τ
c decreases then

10: Accept switching action of BS n at time slot t .
11: Define sleep mode δkj , ∀(j, k) ∈ Nc,n.
12: Nc← Explore candidate BS-time set.
13: end if
14: until Nc is not empty set.
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initialized by comparing the sleep duration and wake-up time
of each mode. Then, the system explores the BS-time slot set
(n, t) that exists between the long sleep conditions of BS n.
To this end, we can simply use a breadth-first search (BFS)
algorithm for switching maps. This is processed for all BSs,
and then inserted into the candidate set Nc. Subsequently,
the system attempts to switch into the sleep state of BS n at
time slot t . However, because the original set was the optimal
switching result, the total Obj value for overall time slots
along with the application of the sleeping depth should be
calculated and compared. Thus, we calculate the Objtc as

Objtc =
N∑
j=1

P t
j + V ·

∑
i∈�tj

Qti,j
(
ati,j − b

t
i,j

). (21)

where P t
j is calculated by applying power consumption ratio

on sleep mode δtj .
Because the determined switching set before time slot t

is not affected, the system calculates Objc after time slot t .
Then, the system accepts the re-switching action if Objc for
all time slots decreases. Thereafter, the system may change
the sleep mode of BS-time set Nc,n, which is affected by the
re-switching result of candidate (n, t). The candidate set Nc
is explored after re-switching, which is repeated until there
exists no element in Nc.

VII. SIMULATION RESULTS
In this section, we evaluate the performance of the pro-
posed scheme, for which we developed a system model using
MATLAB. In the simulations, we set the field size to 2 km×
2 km, whereas the number of users and BSs are set to 500 and
25, respectively. The maximum limitation of queue sizeQmax
is 500, while Qth is set to 50. Furthermore, the power con-
sumption of each BS in one time slot is assumed to be 1500
watt during the ‘‘On’’ mode. Then, the power consumption of
the BS in other sleepmodes is calculated according to Table 1.
The maximum QoS of each relay is limited to 5 Mbps, and
we assume that the bandwidth is 20 MHz for each cell. The
simulation parameters are listed in Table 2.

TABLE 2. Simulation parameters.

We first conduct a performance evaluation for user traffic
prediction. To evaluate the performance of our LSTM-based
prediction model, the following two comparison models are

presented: a linear prediction model and an RNN-based
model. The linear prediction model predicts future traffic
with previous and current traffic values. For example, if the
previous and current user traffic is 15 Mbits and 16 Mbits,
predictions after one and two time slots will be 17 Mbits and
18 Mbits, respectively. The RNN-based prediction model is
the same as the LSTM-based prediction model, except that
the RNN cell is used instead of the LSTM cell. We used
80%, 10%, and 10% of the dataset in [32] as our training,
validation, and testing data, respectively. Fig. 5 demonstrates
the validation loss of RMSE during training. The linear pre-
diction model has constant validation loss because it does
not require a training step. The LSTM-based and RNN-based
models converged after 15 training epochs with validation
losses of approximately 2,711 Kbits and 2,897 Kbits, respec-
tively. The validation loss of the linear prediction model
is significantly higher than those of the other two models
because linear prediction cannot leverage past dependencies.
Fig. 6 illustrates the prediction loss of RMSE versus future
time slots to predict. To leverage past dependencies, future
user traffic predictions are conducted after 100 time slots.
The RMSE of the three prediction models rises as the number

FIGURE 5. Validation loss versus training epoch at the training step.

FIGURE 6. Prediction loss versus future time slots to predict.
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FIGURE 7. Variation of Obj t value with each V value and different 1V values versus time slot.

of future time slots to predict increases. Among the three
models, the LSTM-based model demonstrated the smallest
RMSE.Moreover, the RMSE differences between LSTM and
other models increase as time slots to predict increases. The
RMSE of the LSTM-based traffic prediction model is smaller
than those of the linear prediction and RNN-based models
by up to 64.9% and 23.5%, respectively. The results of our
proposed model show improved performance because the
LSTM can resolve the vanishing/exploding gradient problem
and capture the long-term and short-term dependencies by
using cell states. Consequently, it is proved that our proposed
LSTM-based model predicts user traffic for future time slots
more accurately compared with other models. Therefore,
we can successfully expand to optimizing process of the BS
switching strategy by reducing the overhead that occurs when
passing the traffic information to the BS.

From the predicted user data set, we analyzed how V and
1V affect the Objt for the proposed BS switching algo-
rithm in Fig. 7. Fig. 7(a) and Fig. 7(b) present that the Objt

converges to the optimal value from Algorithm 2 with an
initial value of V = 0.5 × 10−2 and V = 0.1 × 10−1,
respectively. It is shown that a larger value of 1V raises
the width of the oscillation and increases the convergence
speed. In contrast, a small1V gradually converges with small
oscillation, but it takes a long time to stabilize. This can be
seen as another trade-off between the speed and stability of
reaching convergence as the varying amount of the weight
factor V in our Algorithm 2 is different. In other words,
a large amount of 1V may create a slight delay to users in
the beginning instead of reaching the stable point quickly. For
both the V values, as depicted in Fig. 7, the Objt value that
indicates the trade-off relationship between user traffic and
power consumption converges; therefore our proposed model
is proved to be a stable system, which means that the user
traffic can be processed within a given time while considering
the actual user data traffic.

Fig. 8 presents the average data queue size of overall users
in each time slot. As presented in Fig. 8(a), the proposed
algorithm can reduce the data queue size, considering the
appropriate initial value V and varying amount 1V obtained
by the experiment. As previously indicated, when the 1V
value is large, it vibrates after rapidly reaching a stable state;
however, the vibration magnitude is larger than the queue
status with a small 1V . In contrast, if inappropriate V and
1V values are selected, the entire Objt cannot be converged.
Consequently, as shown in Fig. 8(b), the data queue diverges
in an unstable state.

After confirming the stability of the proposed algorithm,
as shown in Fig. 9, we show that our model reduces the
total power consumption of BSs. Varying amounts are cal-
culated using 1V 1 = 0.01 V and 1V 2 = 0.1 V . We used
the accumulated power consumption, which indicates that
because the time to convergence varies according to the scale
of V and 1V , it is slightly different at the beginning and
converges later. The proposed model consumes significantly
less power than that consumed at the fully operating status
for all simulated values. However, comparing the differences
between various inputs in the graph is challenging; hence,
we analyzed the average value of 500 time slots that were
executed for 100 runs, as summarized in Table 3. In Eq. (20),
V controls the weight between the power consumption and
queue stability. Therefore, because a larger V value increases

TABLE 3. Average queue size and power consumption (KWatt) for each
case.
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FIGURE 8. Variation of average user data queue for cases that maintain a stable state and create an unstable state.

FIGURE 9. Total power consumption of proposed model with variable V
and 1V values. The varying amounts are calculated as 1V 1 = 0.01V and
1V 2 = 0.1V .

the weight of the queue, the system aims to achieve a lower
queue size compared to that obtained by a smaller V value.
Consequently, as presented in Table 3, the average queue
size with V = 0.1 × 10−1 is lower than the case with
V = 0.5 × 10−2. However, as V increases, the system has
a relatively low weight for power consumption; therefore,
the power consumption slightly increases compared to the
casewith a smallerV . Thus, compared to the power consump-
tion when operating all BSs, the reduction ratios of cases V =
0.5×10−2 with 1V 1, V = 0.5×10−2 with 1V 2, V = 0.1×
10−1 with 1V 1, and V = 0.1× 10−1 with 1V 2 are 14.98%,
15.05%, 15.17%, and 14.65%, respectively. In other words,
our proposed algorithm reduced the total power consumption
by optimizing the BS switching and sleep mode efficiently
while the user data traffic is sufficiently covered.
Finally, we analyze the effect of Algorithm 3, as shown

in Fig. 10. The wake-up time is applied to all results with

FIGURE 10. Effect of sleep mode optimization algorithm for total power
consumption with V = 0.1× 10−1 and 1V = 0.1× 10−3.

the values in Table 1. When the sleep mode is not applied,
most BSs cannot be switched to the sleep mode because only
the On/Off states exist. When only the switching algorithm
is applied (i.e., Algorithm 2 only), the power consumption is
reduced, but is relatively high; this is owing to the fact that
sleep depth optimization is not performed, and the system
tries to optimize the switching results in each time slot, but
does not consider the switching results in time series. In other
words, it is not possible to optimize the overall system with
only the optimal switching result. Therefore, the system can
save energy as much as possible within a given sleep duration
by adapting our sleep mode selection algorithm.

VIII. CONCLUSION AND FUTURE DIRECTIONS
In this study, we proposed BS switching and sleep mode
optimization algorithms with an LSTM-based user prediction
model. The LSTM-based traffic prediction model forecasts

VOLUME 8, 2020 222721



G. Jang et al.: BS Switching and Sleep Mode Optimization With LSTM-Based User Prediction

the future traffic of users using past communication infor-
mation, including the position and traffic of users. There-
fore, the system successfully reduced the overhead occurred
in synchronization of traffic information between users and
BSs, by forecasting future user traffic from LSTM-based
prediction model. From the predicted user traffic set, a BS
switching algorithm is proposed by solving the Lyapunov
optimization problem, while the user traffic included in the
sleeping BS is sufficiently handled by a user relay algorithm.
Subsequently, the sleep depth is assigned to the switched
BS result set using the proposed sleep mode selection algo-
rithm. The simulation results confirmed that our proposed
algorithms significantly reduced the total power consump-
tion while ensuring that the user data queue converged to
a stable state. In other words, our proposed BS switching
and sleep mode optimization system reduced the total power
consumption while ensuring that user traffic is sufficiently
covered. Consequently, our model solved the limitations of
existing models in terms of user traffic handling and overhead
of data synchronization; therefore, the proposed BS sleeping
strategy model can be expanded to various models in actual
systems.

In this study, a D2D relay network with a simple handover
was considered to handle user traffic. For our future research,
we will extend our method to HetNet with macro cells and
small cells in dense networks to build a more realistic model,
while further strengthening the relaying technique by con-
sidering the handover technique. To this end, more complex
queue model may needed to adapt in each layer network
model. In addition, we can expand this model to save energy
when using drone cells in special disaster situations for appli-
cation to situations with sparser cells than those considered
in this study. Moreover, the additional power consumption
of each user device caused by relaying network is ignored
in our proposed model, because it is relatively small when
compared with the reduced energy in overall BS. Therefore,
we can expand the proposed model to the system that give
rewards to the users from saved power in BSs.
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