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Abstract: This paper proposes voltage-stability based on congestion management (CM) for
electricity market environments and considers the incorporation of wind farms into systems as
well. A probabilistic voltage-stability constrained optimal power flow (P-VSCOPF) is formulated
to maximize both social welfare and voltage stability. To reflect the probabilistic influence of CM
in the presence of wind farms on voltage stability, Monte Carlo simulations (MCS) are used to
analyze both the system load and the wind speed from their probability distribution functions.
A multi-objective particle-swarm optimization (MOPSO) algorithm is implemented to solve the
P-VSCOPF problem. A contingency analysis based on the voltage stability index (VSI) for line
outages is employed to find the vulnerable line of congestion in power systems. The congestion
distribution factor (CDF) is also used to find the optimal location of a wind farm in CM. The optimal
pricing expression, which is obtained, with respect to preserving voltage stability, by calculating
both the locational marginal prices (LMPs) and the nodal congestion prices (NCPs), is demonstrated
in terms of congestion solutions. Simultaneously, the voltage stability margin (VSM) is considered
within the CM framework. The proposed approach is implemented on a modified IEEE 24-bus
system, and the results obtained are compared with the results of other optimal power flow methods.

Keywords: congestion management; probabilistic voltage-stability-constrained optimal power flow;
congestion distribution factor; voltage stability margin; multi-objective particle swarm optimization;
wind farm

1. Introduction

Congestion management (CM) is one of the most critical transmission problems of open access
environments [1]. Congestion occurs in a power market if the transmission system is incapable of
adjusting all of the desired transactions because of the existence of system violations [2]. System
congestion may also threaten the reliability of the power system by making it more vulnerable
to sudden disturbances. It may also impede market efficiency, forcing consumers to reduce their
electric power consumptions because of the rises in market prices. As the organizations responsible
for maintaining power system security efficiently, independent system operators (ISOs) have to
mitigate congestion problems by using market-based tools and/or effective operating facilities [3].
Market-based techniques using both locational marginal prices (LMPs) and nodal congestion prices
(NCPs) have been proposed to manage and relieve transmission congestion [4]. The LMP is the
generation marginal cost of meeting both the power demands and the transmission losses at a specific
node, and the NCP is the cost of satisfying network security parameter limits. Consequently, the
market price structure both provides the marginal cost of generating units and indicates the system
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security cost of the power network. Thus, it is currently used by ISOs as well as many researchers as
CM pricing [5,6]. In addition, the influence of CM can be analyzed through the results obtained from
LMPs and NCPs.

Recently, wind energy has emerged as a critical candidate for bridging the gap between global
power supply and demand [7]. Wind energy is primarily considered as a sustainable method of
mitigating severe problems that result from the use of fossil fuels, such as market volatility, social
conflict, and global warming [8,9]. Hence, special attention should be paid to wind energy sources in
the CM of the electricity market. CM is essential to the efficient operation of any electricity market,
with a special emphasis on wind energy. Assume that several buses in a power system each have
strong potential for wind installation. An ISO should consider several factors in determining the
optimal placements for wind farms in order to alleviate transmission congestion via additional power
injection. CM that uses proper power injection reduces both the component of the LMP associated
with the congestion price and reduces transmission losses. Several CM problems involving renewable
energy sources have been analyzed in the literature [10–12]. In [10], the authors proposed a new
optimal model of congestion management with an emphasis on the promotion of renewable energy
sources in a competitive electricity market. In [11], the CM problem incorporated a wind farm based
on the sensitivity factor. In [12], the authors addressed transmission congestion relief by considering
both the sizes and the sites of new renewable energy sources. However, the impact of renewable
energy congestion relief on the probabilistic approach was not considered. Wind behavior is often
unpredictable, as it is a stochastic phenomenon. In particular, wind speed is highly dependent upon
the weather conditions, geographical region, and season. Wind farms, which deploy many wind
turbine generators to harness wind energy for electricity production, have a variable power outputs
due to variations in wind speed [13]. Therefore, the rapid global growth of wind power capacity may
increase the uncertainties for congestion problems. A reliable probabilistic method that can consider
random wind speeds must be found to solve congestion problems.

CM is essentially an optimization problem with an exponential number of constraints that can
be generally described as an optimal power flow (OPF) problem whose objective function is the
maximization of social welfare and whose constraints are the load flow equations and the operation
limitations [14]. In [15], the authors applied CM to the adjustments of power transfers in transmission
lines based on a transmission congestion penalty-factor. A CM method based on OPF, presented
in [16], relieved congested transmission lines by using both power generation rescheduling and
load curtailment. In [17], the authors analyzed both the enhancement of voltage loadability and the
transmission mechanisms of line outage contingencies in a smart power network and found that if
a few lines were able to be fully loaded, some voltages could be adjusted to their lower restrictions.
Although no violation occurred, even a small disturbance, such as a load change, could cause the
system to deteriorate into an unstable condition.

As the penetration of wind energy into a power network increases, the influence of wind turbines
on the voltage stability becomes more significant. Following a large incorporation of wind power
into a grid, severe problems may arise due to both the characteristics of the wind generators and
the random nature of wind. Hence, when wind power systems are connected to weak networks,
the voltage stability should be considered in addition to the uncertainties of the wind power in their
CM frameworks. Voltage stability refers to the ability of a power system to sustain steady levels of
voltage for all of the network buses after being subjected to a disturbance [18]. Voltage instability
can lead to load shedding, branch trips, or even cascading outages caused by acting protective relays.
Voltage collapse is a phenomenon in which a sequence of voltage instability events leads to a blackout.
Generally, the closeness to voltage collapse can be used to measure the voltage stability of a power
system. In systems with weak connections among areas, congestion problems frequently occur due
to either overloading or voltage security requirements. Several techniques have been proposed to
solve voltage security problems in CM. In [19], a multi-objective method was presented to maximize
both the social benefits of the power market and the distance to the maximum loading point. In this
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method, which employed a loading margin, the ISO paid more for security enhancement. In [20],
a method for ensuring voltage security after the implementation of CM was proposed. However, it
did not consider the diverse effects of different loads on the voltage security. In addition, due to the
complexities of power-system stability problems, both the solution spaces resulting from inter-area
power transfer problems and the system stability boundaries may become complicated. As such,
traditional optimization techniques can occasionally fail or encounter numerical difficulties with
objective functions. In contrast, both particle swarm optimization (PSO) and differential evolution are
powerful population-based searching algorithms [21]. However, transforming a typical single-objective
PSO into a multi-objective PSO requires reestablishing both the best local and global individuals to
seek a front of optimal solutions.

In this paper, we propose an approach to solving CM problems, focusing in particular on both
voltage stability and wind farms in the electricity market. The problem is modeled as a probabilistic
voltage-stability constrained optimal power flow (P-VSCOPF) to maximize both the social welfare
and the voltage stability margin. A multi-objective particle swarm optimization (MOPSO) algorithm
is used to determine the P-VSCOPF solution for mitigating the transmission congestion problem.
Since wind speed is a random variable and load forecasting contains uncertainties as well, we apply
a probabilistic approach based on Monte Carlo simulations (MCSs). The contingency analysis for
line outages is also considered by using the voltage stability index (VSI). The optimal sites of wind
farms are determined based on the congestion distribution factor (CDF), and the voltage stability
margin (VSM) is considered within the CM framework. Simultaneously, optimal pricing expressions
for relieving congestion are derived with linear programming (LP).

2. Uncertainty Analysis and Wind Farm Modeling

2.1. Wind Speed

Wind speed is a random variable, and its fluctuations over a period are expressed by probability
distribution functions. In general, wind speed can be described using either a two-parameter Rayleigh
or a Weibull distribution [22]. The Rayleigh distribution is the simplest distribution used to describe
average wind speed because it has only a single model parameter: b. Its probability distribution and
cumulative distribution functions are, respectively,

fSw(Sw; b) =
Sw

b2 exp

(
−1

2
Sw

2

b2

)
(1)

and

FSw(Sw; b) = 1− exp

(
−1

2
Sw

2

b2

)
(2)

As a distribution recommended in literature, the Weibull distribution is also widely utilized to
both represent wind speed distribution and compute wind energy potential [23]. It is thought to fit the
probability distribution for wind speed better than the Rayleigh distribution does because of its more
flexible shape granted by its additional parameter. The probability density function of the Weibull
distribution is formulated as

fSw(Sw; k, a) =
kSk−1

w
ak exp

[
−
(

Sw

a

)k
]

, Sw > 0, k, a > 0. (3)

The Weibull distribution has a two-parameter function characterized by both a and k.
These parameters determine the wind speed necessary for the optimum performance of a wind-energy
conversion system. A survey of the literature indicates that the shape parameter of the Weibull
distribution for estimating the global wind energy conditions ranges from 1.2 to 2.75. The cumulative
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distribution function of the Weibull distribution, which gives the probability of the wind speed, is
expressed as

FSw(Sw; k, a) = 1− exp

[
−
(

Sw

a

)k
]

(4)

2.2. System Load

To reflect a proper probabilistic approach, the uncertainty in the system load must be considered.
The pattern of the system load is assessed by accumulating the consumption periodically over daily,
weekly, or monthly periods. Uncertainties related to the predicted load data are usually considered by
using a normal distribution with a standard deviation. A normal probability distribution function can
be expressed as

fL(PL) =
1√

2πσL2
exp

[
− (PL − eL)

2

2σL2

]
(5)

2.3. Wind Turbine Modeling

The power output of a wind turbine is associated with the wind speed, which is converted
to electrical power by different types of wind turbine generators. Our model representing a wind
turbine’s power is given by

Pw(Sw) =


0 Sw < Scut−in

Pw,rated
S2

w−S2
cut−in

S2
rated−S2

cut−in
Scut−in < Sw < Srated

Pw,rated Srated < Sw < Scut−out

0 Sw > Scut−out

(6)

Figure 1 shows the representative power curve for a wind turbine. The cut-in wind speed Scut−in
is the minimum speed required to generate power. If the wind speed reaches the cut-in value, power
is generated by the wind turbine. The generator produces the machine’s rated power Pw,rated when the
wind speed reaches the rated wind speed Srated. As shown in Figure 1, power production is almost
constant between Srated and Scut−out. At the cut-out wind speed Scut−out, power generation is shut
down to protect the wind turbine from damage and defects, and the power output becomes zero.
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Recently, both permanent magnet synchronous generators (PMSGs) and doubly fed induction
generators (DFIGs) have begun to be used more widely [24]. PMSG wind turbines have more highly
reliable operations, lower maintenance expenses, and smaller weights with simpler structures than
DFIG wind turbines do. Accordingly, this paper focuses on PMSG wind turbines. Maximum power
point tracking control is usually employed to maximize the turbine energy-conversion efficiency
through the regulation of the rotational speeds of variable-speed wind turbines. Depending on the
wind’s aerodynamic conditions, the power captured by the wind turbine can be maximized versus
rotational speed characteristics by adjusting the coefficient Gp, which represents the aerodynamic
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efficiency of the wind turbine and is a function of the tip speed ratio (TSR). The maximum mechanical
output power of the wind turbine is then defined as

Pmax =
1
2

ρπR2S3
wGp,opt

(
β, γw,opt

)
(7)

The optimal TSR of the mechanical output is given as

γw,opt =
ωm,optR

Sw
(8)

For the PMSG wind turbine modeled in this paper [24], the maximum value of the power
coefficient (Gp,opt = 0.4412) is obtained according to the optimal value of the TSR (γw,opt = 6.9) calculated
using (8). Because wind farms consist of several PMSG wind turbines, the power coefficient of a wind
farm located at bus i is the sum of the active powers generated by the wind turbines, given by

PWF,i =
NTn

∑
n=1

PWT,n (9)

3. Proposed Congestion Management Approach

3.1. P-VSCOPF

Power systems, including wind farms, are open systems. This means that any external parameter
can influence their functionalities, which can lead to rather uncertain systems. The proposed OPF
for CM is implemented as a P-VSCOPF, which is a nonlinear, multi-objective optimization problem.
A probabilistic method has been developed using MCSs that apply random sampling of the uncertain
parameter probability density function to solve the problems. In our study, a multi-objective OPF is
formulated as

Min − (w1)(CDPD − CSPS)− w2λc (10)

The objective function contains both social welfare and maximum loading margins with weighting
factors of w1 > 0 and w2 > 0. Here, we assume that w1 = (1− w) and w2 = w, (for 0 < w < 1).
The value of the weighting factor is increased so that stability takes precedence over cost. Hence, the
system becomes more stable and has higher operating costs.

The equality and inequality constraints for the problem are as follows:
Power flow equations:

f (δ, V, QG, PS, PD) = 0 (11)

f (δc, Vc, QGc , λc, PS, PD) = 0 (12)

Supply and demand bid blocks:

PSmin ≤ PS ≤ PSmax (13)

PDmin ≤ PD ≤ PDmax (14)

Generation reactive power limit:

QGmin ≤ QG ≤ QGmax (15)

QGmin ≤ QGc ≤ QGmax (16)

Thermal limit:
Iij(δ, V) ≤ Iijmax (17)

Iji(δ, V) ≤ Ijimax (18)

Iij(δc, Vc) ≤ Iijmax (19)
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Iji(δc, Vc) ≤ Ijimax (20)

Voltage security limit:
Vmin ≤ V ≤ Vmax (21)

Vmin ≤ Vc ≤ Vmax (22)

Loading margin:
λcmin ≤ λc ≤ λcmax (23)

Here, the subscript c represents the system’s maximum loading condition. Equation (12) is related
to a loading parameter, which guarantees that the system network has the required margin of voltage
stability. The generation and load in the present state, with the loading parameter λc, are expressed as

PG = PG0 + PS (24)

PL = PL0 + PD (25)

PGc = (1 + λc + kGc)PG (26)

PLc = (1 + λc)PL (27)

In the proposed P-VSCOPF-based approach, the critical loadability λc can be expressed as a
measure of system congestion. The loadability is maximized to receive the impact of the voltage
stability limit. Therefore, the total maximum loadability (TML) and the available loading capability
(ALC) can be defined, respectively, as

TML = (1 + λc)∑ PLi (28)

ALC = λc∑ PLi = λcTTL (29)

Here, TTL is the total transaction level at the current operating point. In Equation (29), the ALC is
computed for the product of λc and TTL.

3.2. Stability Margin

To make the system more robust against voltage-related disturbances, a suitable level of voltage
stability should always be maintained in the power system. The continuation method is used as a tool
for voltage security studies in [25]. In this work, the VSM is applied to measure the voltage stability,
and the load is assumed to be of the constant-power type. Figure 2 illustrates the bifurcation curve
between the power and the voltage. In the P-V curve, the maximum value of the loading parameter,
from the base case up to the saddle node bifurcation (SNB) point, which is regarded as the voltage
collapse point, indicates the VSM, which is described as the loading distance between the base case
and the SNB point in voltage collapse:

VSM = PSNB − Pbase (30)

Appl. Sci. 2017, 7, 573  6 of 19 

maxjiccji I)V,(I ≤δ (20) 

Voltage security limit: 
maxmin VVV ≤≤  (21) 

maxcmin VVV ≤≤  (22) 
Loading margin: 

maxmin ccc λλλ ≤≤ (23) 

Here, the subscript c represents the system’s maximum loading condition. Equation (12) is 
related to a loading parameter, which guarantees that the system network has the required margin 
of voltage stability. The generation and load in the present state, with the loading parameter cλ , 
are expressed as 

SGG PPP
0

+= (24) 

DLL PPP
0

+= (25) 

GGcG P)k1(P
cc

++= λ (26) 

LcL P)1(P
c

λ+= (27) 

In the proposed P-VSCOPF-based approach, the critical loadability cλ  can be expressed as a 
measure of system congestion. The loadability is maximized to receive the impact of the voltage 
stability limit. Therefore, the total maximum loadability (TML) and the available loading capability 
(ALC) can be defined, respectively, as 

+=
iLc P)1(TML λ  (28) 

TTLPALC cLc
i

λλ ==   (29) 

Here, TTL is the total transaction level at the current operating point. In Equation (29), the ALC 
is computed for the product of cλ  and TTL. 

3.2. Stability Margin 

To make the system more robust against voltage-related disturbances, a suitable level of 
voltage stability should always be maintained in the power system. The continuation method is 
used as a tool for voltage security studies in [25]. In this work, the VSM is applied to measure the 
voltage stability, and the load is assumed to be of the constant-power type. Figure 2 illustrates the 
bifurcation curve between the power and the voltage. In the P-V curve, the maximum value of the 
loading parameter, from the base case up to the saddle node bifurcation (SNB) point, which is 
regarded as the voltage collapse point, indicates the VSM, which is described as the loading 
distance between the base case and the SNB point in voltage collapse: 

baseSNB PPVSM −=  (30) 
Equation (30) illustrates that a greater VSM results in a more stable system from a voltage 

stability viewpoint. On the other hand, a stressed power system typically experiences a low VSM. 

 
Figure 2. Bifurcation curve for voltage stability analysis. 

Figure 2. Bifurcation curve for voltage stability analysis.



Appl. Sci. 2017, 7, 573 7 of 19

Equation (30) illustrates that a greater VSM results in a more stable system from a voltage stability
viewpoint. On the other hand, a stressed power system typically experiences a low VSM.

3.3. Sensitivity Analysis

3.3.1. VSI Analysis

Steady-state voltage stability analysis includes the determination of an index called the VSI, which
is an approximate measure indicating both the most critical bus and the closeness of the system to
voltage collapse. To determine the most critical and congested line between buses i and j, contingency
ranking is implemented by determining the voltage collapse point from the post-contingency operating
conditions. The maximum loading point will move in accordance with variations in both the system
topology and the control variables if transmission line outages occur. Since some sensitivity exists
between the loading margin and the transmission parameters, a new sensitivity-based branch outage
contingency ranking method [26] is used in our study to carry out the contingency selection. This is
computed using both the power flow variables and the loading parameter with respect to changes in
the transmission line flows. The VSI can be found from the following equation:

VSI =

∣∣∆Pij
∣∣•∣∣Pij

∣∣
|∆λc|

(31)

In order to evaluate the weight of each line, a scaling method involving lines with heavy loads is
applied. From Equation (31), the contingency line must be the most vulnerable line according to the
smallest voltage stability margin. This line is ranked at the top of the list. This technique ranks the
contingencies correctly with respect to their impacts on the VSM. The VSI can be used as a real-time
operational tool because of its low computational effort requirements. In addition, the VSI is similarly
associated with a security cost, which is defined as the amount expended on security improvements to
satisfy the N − 1 criterion. The security cost contains the additional costs incurred by the system to
ensure N − 1 security.

3.3.2. CDF

The optimal location of a wind farm can also be obtained through a sensitivity analysis with
respect to the power flow injection of any bus n. This analysis introduces information about the
variations in power transfer, and therefore, about loading the system with respect to the variations in
the power injection of any bus. This study utilizes these sensitivity factors, called CDFs, which are
based on the VSI. The derivation of the CDF is given in Appendix A, and the factors are obtained as

CDFic jc
n =

∆Pic jc
∆Pn

(32)

3.4. MOPSO Algorithm

The optimization model of P-VSCOPF involves highly complicated implementations of both the
objective and constraint equation differentials. To overcome the major restrictions faced by many
traditional methods, evolutionary computation algorithms (e.g., PSO or differential evolution) can be
used as reliable alternatives in many complex engineering optimization applications [17]. In this paper,
the MOPSO based on the Newton–Raphson method is used as the optimization algorithm for the
P-VSCOPF problem. The proposed MOPSO is suitable for solving constrained, nonlinear optimization
problems. This technique can be managed easily, and it provides good convergence characteristics
with high computing efficiencies compared to conventional PSO. Moreover, it obtains good starting
values for the initial population before the PSO process begins by using the Newton–Raphson method.
Thus, it offers a better performance in finding the optimal Pareto front.
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The velocity and position vectors of a particle in an n-dimensional space are given by

Xa = (xa1, · · · , xan) (33)

Za = (za1, · · · , zan) (34)

The best position calculated by a particle is

Pbesta = (xa1
best, · · · , xan

best) (35)

The particle among all of the particles in the population that has the best position can be
represented as

Gbestg = (xg1
best, · · · , xgn

best) (36)

The position and velocity of each particle, updated after (k + 1), steps is calculated by

Xa
(k+1) = Xk

a + Zk+1
a (37)

The velocity of the ith individual during the (k + 1)th iteration can be computed by

zt+1
an = Wzt

an + c1r1(Pbestt
an − xt

an) + c2r2(Gbestt
gn − xt

an) (38)

Finally, the inertia weight parameter W can be expressed as

W = (Wi −W f )×
(itermax − iter)

itermax
+ W f (39)

Figure 3 shows the MOPSO process. This application is used to check the feasibility of the
non-dominated solutions.
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3.5. Price Analysis

The LMPs are the key factors in both managing the transmission congestion and identifying the
spot price. The LMPs are utilized by using a linear programming (LP) approach to compute the power
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dispatch schedules while simultaneously maximizing the social welfare function. Network congestion
causes LMP differences at the buses. These should be minimized to relieve the congestion while
also keeping their values as low as possible. LMPs are commonly associated with both the bidding
costs and the dual variables (Lagrange multipliers) of the power flow equation [25]. The Lagrange
multiplier is the shadow price for the load flow constraints of the OPF, and it describes each congested
transmission line on the network. A higher multiplier means, in general, a greater influence of the
corresponding congested transmission line on the prices at each location. Using Equations (10)–(27),
the expressions for the LMPs are computed to be

LMPSi = φPSi
= CSi + µPSmaxi

− µPSmini
− φcPSi

(1 + λ∗c + k∗Gc
)

LMPDi = φPDi
= CDi − φQDi

tan(ϕDi )− µPDmaxi
+ µPDmini

−φcPDi
(1 + λ∗c )− φcQDi

(1 + λ∗c ) tan(ϕDi )

(40)

Equation (40) contains terms related to the loading parameters, which consider the generation
marginal cost of the electricity responsible for both supply and demand, including the system losses
of each transmission line. Note that the LMPs have additional terms that rely on the voltage security
constraints. Thus, these equations represent the manner in which the voltage stability coordinates the
existing prices.

This paper also proposes NCPs to both maintain network security parameter limits and send
an appropriate signal based on the price of electricity. Equation (40) can be used to perform a
decomposition calculation in order to obtain NCPs that are associated with the transmission line limits.
The equation to determine the NCP is given as

NCP =

(
∂ f T

∂X

)−1
∂ZT

∂X
(µmax − µmin) (41)

which shows that the NCPs not only involve transmission congestion but also estimate the degree
of congestion severity. After clearing the electricity market from the P-VSCOPF solution, our work
uses an LMP payment mechanism for the CM as a cost settlement process that is performed according
to the market participants’ contributions to both the system congestion and the system losses [26].
In doing so, the total ISO payment is computed as the difference between the supplier and consumer
payments as

PayISO = ∑
i

CSi PSi −∑
j

CDj PDj (42)

Overall, the proposed approach is implemented sequentially, as shown in Figure 4.
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Equation (40) contains terms related to the loading parameters, which consider the generation 
marginal cost of the electricity responsible for both supply and demand, including the system losses 
of each transmission line. Note that the LMPs have additional terms that rely on the voltage 
security constraints. Thus, these equations represent the manner in which the voltage stability 
coordinates the existing prices. 

This paper also proposes NCPs to both maintain network security parameter limits and send 
an appropriate signal based on the price of electricity. Equation (40) can be used to perform a 
decomposition calculation in order to obtain NCPs that are associated with the transmission line 
limits. The equation to determine the NCP is given as 
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which shows that the NCPs not only involve transmission congestion but also estimate the degree 
of congestion severity. After clearing the electricity market from the P-VSCOPF solution, our work 
uses an LMP payment mechanism for the CM as a cost settlement process that is performed 
according to the market participants’ contributions to both the system congestion and the system 
losses [26]. In doing so, the total ISO payment is computed as the difference between the supplier 
and consumer payments as 

 −=
j

DD
i

SSISO jjii
PCPCPay  (42) 

Overall, the proposed approach is implemented sequentially, as shown in Figure 4. 
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4. Simulation Results

The validity applying of the proposed approach to CM was evaluated using the modified IEEE-24
bus system, as shown in Figure 5. This system consisted of ten generating plants connected by 11 buses,
38 transmission lines, and 17 loads [27], with bus 13 designated as a slack bus. To solve the P-VSCOPF
problem, the maximum number of MOPSO algorithm iterations was set to 100. r1 and r2 were uniform
random factors that were assigned values between 0 and 1 both at each step and for each particle in
the swarm in order to add randomness to the velocity update. The inertia weight W was decreased
from 0.9 to 0.4 for different iterations. Each of the acceleration coefficients c1 and c2 were set equal
to 2 in order to achieve a stochastic factor with a mean value of unity. The simulation results were
analyzed using the power system analysis toolbox (PSAT) for both MATLAB (version, Manufacturer,
City, US State abbrev. if applicable, Country) and GAMS (version, Manufacturer, City, US State abbrev.
if applicable, Country) in the optimization package [28].
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4.1. Probability Distributions of Wind Power and Load

In consideration of the probabilistic variability of both wind speeds and loads, an MCS is
conducted to select both the wind power and the system load as input variables. To estimate the
Weibull parameters of wind speeds, two years of historical wind speed data were collected from a
wind turbine in Seongsan-eup on Jeju Island, South Korea [29]. These data were used as the input
for a 2-MW PMSG wind turbine. Our study assumed that wind power generation consumes no fuel.
Figure 6 illustrates the cumulative distribution curve of the power output based on a 2-MW wind
turbine using an MCS with 1000 samples. The mean value of the wind power output is approximately
1 MW. The normally distributed system load uncertainty is shown in Figure 7. It is considered using
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the mean value of the period in which congestion occurs more frequently. For statistical purposes, the
normal distribution representing the load uncertainty can be obtained with a standard deviation of 5%.
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4.2. Optimal Locations of Wind Farms

The optimal sites of wind farms with respect to CM were obtained via a CDF based on VSI.
In consideration of the contingency analysis, the ten highest transmission-line VSI values were
calculated, and the results are shown in Table 1. Note that the line outage between buses 3 and
24 was the most severe because it had the smallest security margin. The critical line, which had the
highest security margin value, was considered a potential candidate for CM. These CDFs are obtained
based on the VSI data and are given in Table 2. Higher CDFs values indicate that the lines are more
critical to power transfer in the transmission lines. Table 2 illustrates that the power injections of bus 3
are the biggest influence on the power flowing through this line. Based on the CDFs results, we find
that suitable wind farm locations are typically among the load-side buses. As shown in Figure 5,
a wind farm was placed at bus 3, which was the optimal location regarding CM. This wind farm was
composed of 300 PMSG wind turbines rated at 2 MW each. The total wind power capacity of 600 MW
represented approximately 20% of the total generation capacity.



Appl. Sci. 2017, 7, 573 12 of 19

Table 1. Ranking results and corresponding VSI values.

Rank Between Buses VSI

1 3–24 1121.57
2 23–20 735.85
3 17–16 698.50
4 16–14 473.11
5 19–20 475.72
6 19–16 350.73
7 18–17 335.22
8 21–15 304.80
9 10–6 274.51

10 1–2 223.31

Table 2. CDFs for lines between buses 3 and 24.

Bus CDF Bus CDF

1 0.4330 13 −0.0768
2 0.4853 14 −0.3205
3 1.3113 15 −0.7625
4 0.3358 16 −0.634
5 0.0359 17 −0.5492
6 −0.4014 18 −0.5419
7 −0.0498 19 −0.5507
8 0.1511 20 −0.4097
9 0.3992 21 −0.6040
10 0.1580 22 −0.5824
11 −0.0463 23 −0.3308
12 0.0232 24 −1.8239

4.3. Solution Results and Comparison

To verify the effectiveness of the proposed approach, the performances of conventional OPF,
VSCOPF, and P-VSCOPF with respect to CM were compared for the modified IEEE-24 bus system.
In our study, all three methods were utilized to consider the optimal installation of the wind farm in
bus 3, which is obtained through a CDF based on VSI. However, both conventional OPF and VSCOPF,
which take into account only the mean values of loads and the wind farm’s output, do not consider
the probabilistic effects between the loads and the wind farm’s variability. Meanwhile, P-VSCOPF
consists of two parts: an MCS for selecting both the wind output and load input variables and MOPSO
for solving the multi-objective optimization problem. It was implemented based on 1000 MCS trials.
Table 3 presents the optimal solution results for P-VSCOPF. Note that these results represent the mean
values of 1000 MCS trials based on MOPSO. The power generation (PG) in bus 3, which was connected
to the wind farm, was 295.1 MW. This value was determined by the performance of 1000 MCSs with
probabilistic variables taken into account. Figure 8 reveals the estimates of the Pareto optimal front,
which relates PayISO and the loading parameter λc. Note that the Pareto optimal front of the test
system exhibits highly nonlinear relationships between the social welfare and the voltage stability
margin. A suitable range for the weighting factors is approximated to be 0.4–0.8. In fact, for values
smaller than 0.4, system security can almost be ignored, and for values higher than 0.8, market power
will happen. On the other hand, with respect to the weighting factors within this range, an importance
of between 0.4 and 0.8 was assigned to the voltage security. Therefore, we assume that the results of
our work apply to test systems with w = 0.6.
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Table 3. Optimal solution results for P-VSCOPF.

Bus LMP ($/MWh) NCP ($/MWh) PG (MW) PD (MW) PayISO ($/h)

1 19.4849 0.1934 172 95.04 −1499.55
2 19.5338 0.2067 172 128.04 −858.71
3 18.7920 0.0381 295.1 158.40 2976.65
4 20.1954 0.3120 0 91.48 1847.48
5 19.9423 0.2783 0 62.48 1245.99
6 20.2911 0.3769 0 119.68 2428.43
7 20.2384 0.3134 220.9 161.22 −1208.19
8 20.6143 0.3823 0 150.48 3102.04
9 19.7676 0.2084 0 154.00 3044.22
10 19.8959 0.2633 0 171.60 3414.13
11 19.7557 0.0982 0 0 0
12 19.7065 0.0519 0 0 0
13 19.5299 0.0000 237.8 233.20 −99.62
14 19.5805 0.0460 0 256.08 5014.17
15 18.7755 −0.2834 167 461.64 5532.00
16 18.9073 −0.2417 155 132.00 −434.87
17 18.5877 −0.3417 0 0 0
18 18.7890 −0.3691 400 439.56 −2176.06
19 19.0499 −0.1925 0 238.92 731.42
20 18.9498 −0.2156 0 168.96 4551.40
21 18.3782 −0.3990 400 0 −3201.76
22 17.9248 −0.5160 300 0 −7351.28
23 18.8138 −0.2532 350 0 −12417.08
24 18.5280 −0.3474 0 0 −7040.64
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Figure 9 compares the LMPs and the NCPs. As shown in Figure 9a, for CM, the LMP differences
were less with P-VSCOPF than they were with either the conventional OPF or VSCOPF. It is clear
that the congestion problems were resolved by minimizing the LMP differences and then maintaining
them at the lowest possible levels. As shown in Figure 9b, the range of NCP values was −0.6954 to
0.5962 $/MWh. Here, NCP values at bus 13 (the slack bus) were zero. Lower NCP values indicate
lower congestion in the test system. The congestion mitigation of P-VSCOPF was the most effective
among those of all of the methods, since the NCP of P-VSCOPF was the lowest. A comparison of
the results obtained in each case reveals that the best solution for CM was obtained with P-VSCOPF.
Consequently, appropriate realizations of both the voltage stability constraints and the contingency
analyses not only result in a better distribution of electricity prices but also reduce the influence of
system congestion.
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Table 4 shows a comparison of the optimal solutions for the three methods. Compared to both
the conventional OPF and the VSCOPF, the proposed approach provides higher values for time to
live (TTL), TML, and ALC. The use of enhanced LMPs also results in an improved total ISO payment,
although the accrued system losses are higher according to the TTL. Meanwhile, the conventional OPF
provides the lowest VSM of 364.37 MW after CM has been applied. Despite the fact that the OPF relives
congestion, it does not ensure secure operations of the power network. The stability margin could be
low, leading to a vulnerable network. When compared to the OPF, the VSCOPF alleviates congestion,
ensuring the power system’s security in terms of voltage stability. Nevertheless, the stability margin of
VSCOPF remains low after congestion relief has taken place. This means that the total ISO payment
should increase because of the additional set of system constraints. In addition, neither the conventional
OPF nor the VSCOPF considers the probabilistic effects between the congestion and the wind farm’s
variability, taking only the mean value of the wind farm’s output into account. On the other hand, the
proposed approach not only provides the system with a larger VSM of 685.43 MW but can also relieve
congestion by considering the margin of the system’s stability with respect to the uncertainty in the
wind farm. The ISO makes selective payments to both participants that can mitigate congestion as
well as those that affect the system stability margin significantly.
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To evaluate the ongoing security after CM has been executed, the voltage profiles of the buses for
the three methods are shown in Figure 10. The horizontal and vertical axes represent the bus numbers
and the voltage magnitudes, respectively. A good voltage profile is one of the indications of a more
secure power system. The voltages of P-VSCOPF are the highest among all methods for all of the
buses. Thus, P-VSCOPF not only provides a greater stability margin but also leads to a better voltage
profile than the other OPF methods do. This means that the system is more robust and can maintain
stability even under the most severe circumstances.

Table 4. Comparison of optimal solutions of three methods.

Method TTL (MW) System Losses (MW) TML (MW) ALC (MW) PayISO ($/h) VSM (MW)

Conventional OPF 3056.97 52.63 3246.19 189.22 1049.95 364.37
VSCOPF 3139.86 42.39 3555.11 385.25 820.13 640.87

P-VSCOPF 3222.77 41.92 3638.04 415.36 812.26 685.43
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5. Conclusions

In this paper, a probabilistic, multi-objective approach for CM that considers both voltage stability
and wind energy was proposed. P-VSCOPF was formulated as a multi-objective problem not only for
maximizing social welfare but also for improving the voltage stability margin. It can be used to assist
both ISOs and planners in visualizing the nonlinear relationships between power transfer levels and
voltage stability margins via the MOPSO algorithm. MCSs were applied to select the input variables of
both wind speed and load by using the probability distribution functions. The problem was solved
using 1000 trials of an MCS. The VSI was calculated to increase the accuracy of the sorting and ranking
technique in the contingency analysis. The optimal location of a wind farm, with a special emphasis on
CM, was also determined using the CDF. The influence of the wind output variations on the congestion
price, which is related to both the LMPs and the NCPs, was analyzed. The VSM, ALC, and TML were
employed as measures of voltage stability. To illustrate its effectiveness, the proposed approach was
both demonstrated and compared to the conventional OPF and VSCOPF using the modified IEEE-24
bus system with wind farms. The simulation results revealed that the P-VSCOPF achieved discernible
advantages over all of the other OPF methods. It was able to not only minimize the LMP differences
and lower the NCP for CM but also increase the VSM. Therefore, the information provided by the
proposed approach can be useful in both the planning and operation of various power systems.
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Nomenclature

Constants
ρ Air density (=1.205 kg/m2)
γw,opt Optimal tip speed ratio
Gp,opt Optimal power coefficient of wind turbine
R Rotator radius
ωm,opt Optimal rotational speed
Scut−in Cut-in speed of wind turbine
Srated Rated speed of wind turbine
Scut−out Cut-out speed of wind turbine
Pmax, Pmin Maximum and minimum limits of possible power
λcmax , λcmin Maximum and minimum limits of loading margin
PSmax , PSmin Maximum and minimum limits of supply bid
PDmax , PDmin Maximum and minimum limits of demand bid
QGmax , QGmin Maximum and minimum limits of reactive power
Iijmax Maximum limit of line currents between nodes i and j
Vmax, Vmin Maximum and minimum limits of voltage magnitude
µmax, µmin Maximum and minimum limits of shadow price
T Scheduling time (e.g., 24 h)
c1, c2 Acceleration coefficients
Variables
β Blade pitch angle
Sw Wind speed
b Scale parameter of Rayleigh distribution
k, a Shape and scale parameter of Weibull distribution
σL Standard deviation of load
eL Expected value of probability variable
w Weighting factor
Pw,rated Rated power of wind turbine
PWF,i Active power output of wind farm at bus i
PWF,n Active power of nth wind turbine
∆Pn Variation in active power of nth bus
PG, PL Power outputs of generator and load, respectively
PGo , PLo Current power outputs of generator and, respectively
PS, PD Supply and demand bid volumes (in MW), respectively
CS, CD Bid prices for supply and demand (in $/MWh)
QG Generator reactive power
∆Pic jc Variation of power flow in critical condition
Pij, Pji Power flowing through lines in both directions
Vi, Vj Voltage magnitude at buses i and j, respectively
Iij, Iji Line currents in both directions
PSNB Power output of SNB point for voltage collapse
Pbase Power output at base operating point
δi, δj Voltage angle at buses i and j, respectively
θij, Yij Angle and magnitude of ijth element of Ybus, respectively
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λc Loading parameter under critical conditions
kGc Loss distribution factor
ϕ Lagrange multiplier
µ Dual variable
ϕDi Constant load demand power factor angle
Xk

a , Zk
a Position and velocity of ith particle at iteration k, respectively

Wi, W f Initial and final values of inertia weight
Numbers and Sets
Jr Reduced Jacobian matrix
NTn Number of wind turbines
k Number of iterations
itermax Maximum number of allowed iterations
r1, r2 Random numbers between 0 and 1

Appendix A. Derivation of CDF

The real power flow on line k connected between bus i and bus j is formulated as [30]:

Pij = |Vi|
∣∣Vj
∣∣∣∣Yij

∣∣cos(θij − δi + δj)−V2
i Yij cos θij. (A1)

Applying the approximation of a Taylor series expansion and ignoring the effects of the remaining
higher-order terms, Equation (A1) gives

∆Pij =
∂Pij

∂δi
∆δi +

∂Pij

∂δj
∆δj +

∂Pij

∂Vi
∆Vi +

∂Pij

∂δj
. (A2)

Equation (A2) can be rewritten as

∆Pij = aij∆δi + bij∆δj + cij∆Vi + dij∆Vj. (A3)

The coefficients in Equation (A3) are formulated from the partial derivatives of the real power
injection corresponding to the variables δ and V and given as

aij = ViVjYij sin(θij + δj − δi), (A4)

bij = −ViVjYij sin(θij + δj − δi), (A5)

cij = VjYij cos(θij + δj − δi)− 2ViYij cos θij, (A6)

dij = ViYij cos(θij + δj − δi). (A7)

The Newton–Raphson Jacobian relationship is considered in determining the CDFs as[
∆P
∆Q

]
= [J]

[
∆δ

∆V

]
=

[
J11 J12

J21 J22

][
∆δ

∆V

]
(A8)

Taking the coupling between ∆P–∆δ and ∆Q–∆δ into consideration and assuming that the reactive
power flows are constant (i.e., ∆Q = 0), the power injections variations can be expressed by

∆P = J11∆δ + J12∆V, (A9)

0 = J21∆δ + J22∆V. (A10)

Equations (A9) and (A10) then become

∆P = J11∆δ− J12 J−1
22 J21∆δ = Jr∆δ. (A11)
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From Equation (A11), the value of the voltage angle variation is given by

∆δ = [Jr]
−1∆P. (A12)

From Equation (A10), the voltage variation with respect to the variations in power can be written
as

∆V = J−1
22 J21∆δ = J−1

22 J21[Jr]
−1∆P. (A13)

Equations (A12) and (A13) are formulated as

∆δi =
n

∑
l=1

mil∆Pl i = 1, 2, ..., n, i 6= s, (A14)

∆Vi =
n

∑
l=1

milv∆Pl i = 1, 2, ..., n, i 6= s. (A15)

Substituting Equations (A14) and (A15) into Equation (8), the variation in real power flow becomes

∆Pij = aij

n

∑
l=1

mil∆Pl + bij

n

∑
l=1

mjl∆Pl + cij

n

∑
l=1

mjlv∆Pl + dij

n

∑
l=1

mjlv∆Pl . (A16)

Equation (A16) can be rewritten as

∆Pij = (aijmi1 + bijmj1 + cijmi1v + dijmj1v)∆P1

+...(aijmin + bijmjn + cijminv + dijmjnv)∆Pn
. (A17)

Thus, the CDF corresponding to both the nth bus and the line ij, connecting buses i and j, can be
obtained as

∆Pij = CDFij
1 ∆P1 + CDFij

2 ∆P2 + ... + CDFij
n ∆Pn, (A18)

CDFij
n = aijmin + bijmjn + cijminv + dijmjnv. (A19)
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