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Synopsis
More than 60 million people in the world have been diagnosed with HIV infections since the virus was recognized as
the causative agent of AIDS in the 1980s. Even though more than half of the infected patients have died, effective
disease treatment and prevention measures have not been established. ART (antiretroviral therapy) is the only proven
HIV treatment that sustains the suppression of patient viraemia. Current routine approaches to treat HIV infections
are targeted at developing vaccines that will induce humoral or cell memory immune responses. However, developing
an effective vaccine has been challenging because the HIV mutates rapidly, which allows the virus to evade immune
surveillances established against the previous strain. In addition, the virus is able to quickly establish a reservoir
and treatment is difficult because of the general lack of knowledge about HIV immune response mechanisms.
This review introduces common disease symptoms and the progression of HIV infection with a brief summary
of the current treatment approaches. Different cellular immune responses against HIV are also discussed, with
emphasis on a nanotechnology research that has focused on probing T-cell response to HIV infection. Furthermore,
we discuss recent noteworthy nanotechnology updates on T-cell response screening that is focused on HIV infection.
Finally, we review potential future treatment strategies based on the correlations between T-cell response and HIV
infection.
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INTRODUCTION

HIV is the causative agent of AIDS. HIV infection is now re-
garded as a pandemic in humans [1]. Since its discovery in
the early 1980s, AIDS has killed more than 30 million people
worldwide [2]. HIV is known to infect a variety of immune
response cells such as CD4+ , CD8+ T lymphocytes, macro-
phages, dendritic cells and natural killer cells. Extensive study
of the infection mechanism has revealed that HIV enters the im-
mune cells by HIV envelope glycoprotein conjugation, which
recognizes the receptor molecules on the immune cells [3]. Once
HIV enters the immune cell, the cell membrane interacts with
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the viral envelopes. Then, HIV releases its viral capsids inside
the cell for viral replication [4]. ART (antiretroviral therapy) is
the only currently proven therapy that can reduce the mortal-
ity associated with human HIV infection [5–8]. However, ART
does not sufficiently remove the virus from the host and is ac-
companied by incomplete CD4+ T cell recovery. Clinical risk
factors such as cardiovascular diseases [9] including myocar-
dial infarction [10,11], have also been associated with ART.
Most importantly, ART is too expensive for developing coun-
tries, where one-third of all AIDS-related human deaths have
occurred.

This review addresses the therapeutic potential of HIV
immunotherapy with a particular focus on the use of
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multifunctional T cells. In addition, this report also reviews high-
throughput, integrated single-cell analysis techniques for the dis-
covery of multifunctional T cells, which have shown promise in
controlling HIV progression.

HIV TRANSMISSION AND
PROGRESSION

The progression of HIV is analysed by measuring the level of
viraemia and the amount of T cells, and is categorized into four
stages: virus incubation, transmission/migration, acute infection
and the symptomatic stage. The initial virus incubation stage
is difficult to assess before an individual is symptomatic since
it usually occurs without clinical manifestations. Thus, studies
on SIV (simian immunodeficiency virus) infection in macaques
have provided an animal model that describes the initial trans-
mission and disease propagation mechanisms of HIV-1 in hu-
mans [12,13]. The SIV model described CD4+ cells at the portal
of entry (e.g. genital mucosal tissue) as the first targets of viral
replication. The local expansion of SIV in both resting and activ-
ated CD4+ T cells takes place during the first week of infection.
Then, the virus rapidly migrates to the gut-associated lymphoid
tissue, where it induces massive depletion of memory CD4+ T
cells, and establishes a self-propagating infection in secondary
lymphoid organs. An acute infection stage is reached, approxim-
ately 2–4 weeks following the virus transmission, in which the
infected individuals experience clinical manifestations such as
cold-like symptoms including fever and sore throat induced by
pharyngitis [14,15]. This stage is also characterized by malaise, a
condition of an abnormally high proportion of monocytes in the
blood and prevalent lymph node malfunctions. Physiologically,
it induces not only massive viral replication in the absence of
immune response, but also causes a 100-fold increase in HIV
RNA counts [14,15]. Furthermore, it results in a significant loss
of CD4+ T cells in peripheral blood that eventually leads to the
symptomatic stage of infection (i.e. AIDS) [16]. After the acute
infection stage, an asymptomatic stage reappears and can last for
a lifetime unless the patient reaches the last infection stage or
AIDS.

CELL-MEDIATED HIV TREATMENT
SHOULD REPLACE CONVENTIONAL
THERAPEUTIC METHODS

Although ART has been successful in treating HIV infection
[17,18], this treatment is expensive which greatly reduces the
accessibility for patients that need it. Furthermore, in most devel-
oping countries, ART is initiated after the disease has progressed,
and these individuals often experience one or more complica-
tions. Once ART is initiated, immunosuppressed individuals with

infections or low CD4+ T-cell counts are at risk for immune re-
constitution inflammatory syndrome [19]. Thus, improved ther-
apies have been developed to minimize the side effects, enhance
drug interaction with the virus, and increase drug resistance to
viral mutations.

Cost-effective vaccinations have been proposed as an optimal
solution to prevent HIV-1 infection in developing countries. Vac-
cine treatments were first designed with either live attenuated
virus or whole-killed virus or subunits of virus. However, the
US Food and Drug Administration have not approved the uses of
these vaccine techniques for HIV vaccine development due to the
safety concerns and the inability of the vaccine to induce widely
applicable neutralizing antibody responses [20,21]. Today’s ap-
proaches for vaccine development utilize plasmid DNA or live re-
combinant vectors engineered to express HIV-1 antigens [22,23].
Although these gene delivery approaches have appeared prom-
ising, they are not desirable in actual cases of HIV-1 infection
because DNA vaccines usually require high doses to elicit clin-
ically effective immune responses. Vaccine approaches that are
currently available are focused on sustaining the disease at a
non-symptomatic stage and include both humoral and cellu-
lar level treatments. For example, a phase IIb human trial (the
Step Vaccine trial) was conducted to determine if T-cell vac-
cine reduces viraemia or the infection rate [24]. The efficacy of
cell-mediated immune responses was assessed using adenovirus
five-based vaccine (MRKAd5) that contained gag, pol and nef
inserts. Although the MRKAd5 vaccine elicited more apparent
T-cell response than the combinatory vaccination with ALVAC
and AIDSVAX, this vaccine did not reduce the early plasma viral
level or prevent HIV infection. Recently, the largest vaccine trial
in human subjects (RV-144 Thai Trial) reduced the risk of HIV in-
fection by administering ALVAC-HIV (recombinant canarypox
vector vaccine) and AIDSVAX B/E (a recombinant glycopro-
tein 120 subunit vaccine) prime-boost regimen [25]. This study
showed a limited but significant protection from HIV acquisition.
A vaccine efficacy of 31.2 % was demonstrated in 16395 subjects
(P = 0.04), without substantial changes in the degree of viraemia
or the CD4+ T-cell count. Although the reported efficacy is mod-
est and insufficient against HIV acquisition, this combination of
recombinant avian poxvirus live vector vaccine and subsequent
booster injections of a glycoprotein 120 provides a potential HIV
treatment for lower-risk participants. Prior to the RV-144 Thai
trial, a phase 2 trial of this prime-boost platform in 2004 induced
humoral and cellular immune response that lead to large-scale re-
sponses [26]. However, administration of the envelope glycopro-
tein subunit alone failed to show protective efficacy in phase 3
trials [27,28].

To date, most vaccine strategies typically generate only 100–
1000 specific memory CD8+ T cells per million lymphocytes
in the blood [29]. The rapid viral mutation of HIV is another
major obstacle in vaccine development, particularly because the
significant mutation of the Env gene amino acid sequence allows
the virus to evade recognition by immune cells [30,31]. Further-
more, insufficient information of the immune defence mechanism
against HIV-1 infection makes vaccine development an even more
challenging task. Cell-mediated immunotherapeutic approaches
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Figure 1 Cellular and drug-driven approaches in HIV treatment

have been introduced to overcome the limitations associated with
current therapeutic modules.

CELL-MEDIATED THERAPY POTENTIAL

Humoral immunotherapy (e.g. neutralizing antibodies) is one
possible approach to treating HIV [32–35]. As previously dis-
cussed, HIV-1 Env glycoprotein protects the virus from recog-
nition by immune antibodies. Although there are some broadly
reactive antibodies that can compete with glycoprotein on HIV-1
Env’s CD4-binding sites, the CD4-binding site is only partially
accessible to the antibodies, which makes it difficult for humoral
approaches [36,37].

The cellular level immune response is as important as the
humoral level immune response in defence against viral infec-
tions (see Figure 1). T-cells promote proliferation of the other im-
mune cells, enhance immune responses and deliver effector func-
tions by cytokine secretion. Hence, virus-specific T-lymphocyte
responses are critical in controlling HIV-1 progression at a cel-
lular level. For example, HIV-specific CD8+ T cells have im-
paired cytolytic function. Moreover, the reports have indicated
that the increased frequency of activated lymphocytes, manifes-
ted by up-regulation of activation marker CD38 on CD8+ T
cells, is correlated with displaying HIV disease progression and
viral replication [38,39]. Specifically, CD4+ T cells have a role
in LTNP (long-term non-progression) to AIDS [40]. Vaccination

in the absence of CD4+ T cells reduced CD8+ T-cell-mediated
protection after SIV infection [41]. Therefore it is suggested that
the T-cell contribution is important in HIV disease suppression.
In addition to the limitations of conventional vaccine approaches
and the challenges for neutralizing antibody production, inevit-
able participation of T cells in HIV retention has led researchers
to consider a cell-mediated approach such as an adaptive transfer
of immune cells.

For this reason, combining early viral suppression using ART
with cellular immunotherapy is thought to augment HIV-specific
immune response. For example, IL (interleukin)-2, IL-7 and IL-
15 have been identified as the primary regulators of T-cell ho-
moeostasis and may be considered as a immunotherapeutics to
support vaccine-promoted T-cell responses for the treatment of
HIV/SIV [42]. A phase I human trial demonstrated that a single
administration of IL-7 affected maturation of circulating human
B cell [43]. In addition, a phase I/IIa study demonstrated the im-
munological effect of recombinant human IL-7 in human subjects
with insufficient immune restoration [44]. Repeated administra-
tion of T-cell regulator IL-7 (i.e. eight subcutaneous injections of
two doses of IL-7, 3 and 10 μg/kg) showed that naı̈ve and central
memory CD4+ and CD 8+ T cells were significantly increased
in a dose-dependent manner. Several parameters such as effective
dose, dosing interval and adverse side effects are under investig-
ation to develop more effective immunotherapy [42]. Therefore
the combination therapy would strengthen T-cell responses by re-
covering both humoral and cellular immune responses and thus
could replace the current life-long drug therapy method by en-
hancing viral control.
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IMMUNOLOGIC FUNCTIONS IN HIV-1
SUPPRESSION

Both CD4+ and CD8+ T-cell activities are crucial in immune re-
sponses to HIV-1. Research has been focused on how these T-cells
react and function under HIV-1 infection [45,46]. T cells have het-
erogeneity and appear to have very diverse functions as a group.
Functional subsets of CD4+ T cells, such as TH1 (T-helper 1) and
TH2 (T-helper 2) cells, are defined by the cytokines they produce,
such as IFN-γ (interferon-γ ) and IL-4, respectively, or by inter-
action with other cells, including follicular helper T cells known
as B-cell helper cells, pro-inflammatory TH17 (T-helper 17) cells
and Treg (regulatory T) cells which regulate autoimmune disease
and the immune system by suppressing T-cell activities [47–49].
Each individual T cell is comprised a particular subset of T-cell
functions. Proinflammatory cytokines [e.g. IL-2, TNF-α (tumour
necrosis factor-α), IL-12 and -13], chemokines [e.g. CXCL10
(CXC motif chemokine ligand 10)] and lipopolysaccharide are
thought to be involved in modulating HIV-specific immune re-
sponse. For example, the frequency of IFN-γ -producing T cells
has been adapted to assess vaccine-induced responses that are
specific for HIV-1 infection [50]. TNF-α elicits the death of a
variety of intracellular infectious viruses, including HIV-1 [51].
Also, IL-2 promotes the expansion of CD4+ and CD8+ T cells
and works synergistically with other cytokines, thereby increas-
ing the immune responses to HIV-1 [52]. In addition, IL-21,
produced primarily by the CD4+ T cells, plays a crucial role in
promoting the humoral response. IL-21 is believed to promote
terminal differentiation of B cells, increase Ig production and
to help develop TH17 [53]. A list of cytokines, chemokines and
defensins involved in HIV suppression is thoroughly reviewed in
the article by Alfano and Poli [54].

T-CELL RESPONSE AND THE
IMPORTANCE OF LONG-TERM
NON-PROGRESSORS

Isolated virus from LTNPs exhibits normal replication kinet-
ics and lacks any genetic insertions or deletions, implying that
host factors are responsible for durable control of HIV [55].
Extremely low genetic diversity within the env gene of plasma
virus from those isolated viruses suggests limited viral envel-
ope replications and mutations. These findings may indicate
that the key factors promoting long-term maintenance of the
HIV-1 lie within the host-mediated control of competent virus
replication [56].

It has been suggested that T-cell-mediated HIV control does
not necessarily correlate with the frequency or the magnitude
of the response. Despite the critical role of CD8+ T cells in
cytolytic activities of HIV infection, the progression does not
show a correlation with CD8+ T-cell counts, whereas HIV pro-

gression is highly related to a decline in CD4+ T-cell count.
For this reason, many researchers have focused on the ‘quality’
of T-cell response, a combination of functions that T cells are
able to carry out, instead of the frequency of T-cell populations
or phenotype characterization [57]. Furthermore, owing to the
complexity of a native immune system, the synergistic effect
produced by interactions between T cells and other cells is also
important. For example, CD4+ , CD25+ and Treg cells are in-
volved in suppression of both CD4+ and CD8+ T cells [58].
Exposure of Treg cells to HIV virus causes the Treg cells to have a
2–5-fold increase in suppressive activities. Infected Treg cells also
become resistant to induced apoptosis like other resting CD4+

T cells.
In this respect, the cell behaviour in LTNPs is of interest in un-

derstanding the mechanism of HIV suppression by humoral and
cellular immune responses. Within the group of LTNP individu-
als, individuals who maintain an undetectable plasma viraemia
are called elite controllers. Comparing T-cell responses of the
LTNPs and those of the progressors will provide information
about immune response involved in HIV suppression. LTNPs are
thought to have a better T-cell response than progressors, includ-
ing better proliferative and cytolytic capacity, multifunctionality
and genetic factors [e.g. possession of HLA (human leucocyte
antigen) class I alleles that select for key epitopes]. Studies have
shown that elite controllers have high frequencies of HIV-specific
CD4+ and CD8+ T cells compared with highly active ART sup-
pressed subjects or non-controllers [59]. Therefore in this review,
we focused on the importance of T cell multifunctionality in im-
munosuppression of HIV (see Figure 2) and recently developed
integrative nanotechnologies that are ongoing actions to integrate
a close linking of nanotechniques, including chemical, biological
and medical sciences for analysing single T-cell functions. Integ-
rating measurements can be achieved using nanotechnologies,
such as the microfluidic system. In this manner, this integrative
approach might offer a new clue that could lead to better treatment
of HIV infections.

MULTIFUNCTIONAL T CELLS
FINE-TUNING THE IMMUNE
RESPONSE

T-cell characteristics have been proposed as a possible solution
to HIV-1 infection because of the ability of T cells to coun-
teract the low level of viraemia maintained by HIV-1 LTNPs
[60]. There is a consensus that the improved control of HIV is
associated with increased prevalence of multifunctional CD4+

T cells that produce two or more different cytokines simul-
taneously, although the mechanisms of the disease control are
still unclear. It has been suggested that there is a distinct pop-
ulation of functional cytokines secreted from T cells and this
cytokine population is a more potent effector. A study using
multiparameter flow cytometry showed that the LTNPs have an
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Figure 2 Possible pathways of reaction for multifunctional immune cells against HIV

increased prevalence of T cells that express IL-2 only or both
IL-2 and IFN-γ , whereas the progressors had CD4 T+ cells that
expressed only IFN-γ [61]. Several factors account for the op-
timal protective function of multifunctional CD4+ or CD8+ T
cells. Multifunctional T cells secrete more IFN-γ on a per-cell
basis (∼10-fold greater), and the cells demonstrate more efficient
cytolytic activity when both IFN-γ and TNF-α are released from
the same T cell [61,62]. Observed CD8+ T cells that secreted
both INF-γ and TNF showed more enhanced levels of cyto-
lytic activity [63]. Elite controllers were also able to produce a
stronger and wider breadth of cytokines and chemokines, includ-
ing antiviral factors after HIV stimulation; PBMC (peripheral
blood mononuclear cell) from elite controllers produced signific-
antly more IFN-γ , granulocyte -macrophage colony-stimulating
factor (GM-CSF), interferon-induced protein-10 (IP-10), MCP-
10 (monocyte chemotactic protein-10), MCP-3, TNF-α and IL-2
than the HIV seronegative individuals after p55 stimulation. In
comparison, PBMCs obtained from progressors produced the
lowest levels of HIV-induced cytokines.

There are various factors that generate multifunctional T cells.
First, the frequency of T cells, antigen sensitivity of TCRs (T-cell
receptors) and the amount of antigen load required for TCR activ-
ation are effectors of the multifunctional T-cell response. Studies
have shown that HIV-specific CD8+ T cells with high antigen
sensitivity display multifunctional secretory profiles [64]. Exper-
iments with the TH1 CD4+ cell model in mice indicated that
multifunctionality appeared with an increased concentration of
the ligand [65]. In the cytomegalovirus-specific CD4+ memory
human T-cell model, an increasing co-stimulation increased the
frequency of responding CD4+ T cells, and IFN-γ producing
cells also produce IL-2 with increased co-stimulation. However,
it is important to note that heterogeneity in the co-stimulation
threshold amount existed within a sample. Secondly, a lineage
is an important determinant of multifunctionality. The lineage

where the effector T cell has been derived from could be also an
important factor; CD8+ T cells engineered from naı̈ve rather than
memory subsets had better efficacy in adoptive immunotherapy
[66]. Upon antigen stimulation, naı̈ve CD4+ T cells become ef-
fector cells such as TH1 or TH2 cells. When antigens are cleared,
a smaller population of cells remains as central memory cells
and reside in lymphoid organs, or effector memory cells. These
cells reside in peripheral tissues to respond to similar future anti-
genic attacks. Therefore precise modulation in these determining
factors could be a promising strategy to augment T-cell multi-
functionality.

KEY STRATEGIES TO DEVELOP
CELL-MEDIATED HIV TREATMENT

Despite recent developments, T-cell-mediated immunity is faced
with various challenges associated with viral mechanisms. The
virus tends to limit the T-lymphocyte responses by inducing muta-
tions in T lymphocyte epitopes to escape from a cellular im-
mune defence system [67]. Attempts to control viral replication
by implementing diverse epitope-specific T-cell responses have
failed due to immunodominance constraints [68]. In addition,
the CD8+ T-lymphocyte responses are supposed to be deposited
on a limited number of epitopes. Therefore while T-lymphocyte
multifunctional immune responses are expected to be effective
against HIV-1, the limitation of vaccine-elicited cellular immune
responses makes it difficult to provide practical protection against
the acquisition of HIV-1 infection. The successful isolation and
improvement of a specific subset of T cells is the key to devel-
oping cell-mediated HIV treatment. The following discussion is
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focused on a functional screening and quantification of T-cell
subsets that are effective in disease control.

TECHNIQUES FOR LIMITING
CONVENTIONAL MULTIPLEXED
CHARACTERIZATION

ELISpot (enzyme-linked immunosorbent spot) and ICS (intra-
cellular cytokine staining) are common immunoassays for quan-
tification of HIV-specific immune cell response. ELISpot is a
popular assay that detects low-frequency T-cell responses [69].
ELISpots were originally developed to quantitate memory B-cell
responses secreting antibodies, and have subsequently been adap-
ted for various tasks that allow the simultaneous detection of mul-
tiple antibodies. Especially, the identification and enumeration of
cytokine-producing cells at the single-cell level HIV-specific im-
mune response. However, this method requires a large number
of cells and requires sacrifice of the cells for the assay. It does
not retain the cell viability, and also requires a cost-intensive
HLA types/epitopes typing procedure for antigen stimulation.
A microfabricated platform using aptamer-modified electrodes is
also available for simultaneous cytokine detection. Cytokine cap-
ture using micropatterned, aptamer-modifed electrodes allows for
multiplexed detection of TNF-α and IFN-γ secreted from T cells
fed and bound by microfluidic channels. In this platform, cytokine
secretion dynamics (e.g. quantity and rate) can be measured [70].
However, as in the conventional ELISpot method, neither of these
assays is suitable for cell-type specific (e.g. central memory or
effector) protein detection.

The ICS method allows for rapid enumeration of cytokine-
producing T cells in a large pool of cells [71]. A great advantage
of flow cytometry is the possibility of simultaneous phenotype
characterization of antigen-specific T cell by multicolour flow
cytometry. The multiparameter flow cytometry is able to char-
acterize multiple functions of individual T cells [61]. ICS can
be used in combination with other flow cytometry protocols–
the so-called secretion assay–for immunophenotyping using cell
surface markers or with MHC (major histocompatibility com-
plex) multimers to detect an antigen-specific response, making
it an extremely flexible and versatile method. Recent studies
using multiparameter flow cytometry have shown different func-
tional diversity of T lymphocytes in terms of cytokine secretion,
degranulation, proliferation and effector functions [62]. For ex-
ample, combined fluorescent peptide and MHC tetramers have
increased the number of simultaneous T-cell sorting specialties
by up to 15. Despite the multiplexity of the flow cytometry-
based method, ICS has some intrinsic drawbacks. First of all,
ICS does not retain cell viability, and thus, recovery of cells for
clonal expansion is difficult. In addition, since a protein transport
inhibitor is added to retain the cytokines within the cell, it is
difficult to determine whether the detected cytokines are intra-
cellular, secreted or membrane-bound [72]. Moreover, dynamic
monitoring of an individual cell is difficult since the secretions

of the cells upstream may affect others. Lastly, since a single
pathogenic protein can give rise to several epitopes that bind dif-
ferent MHC molecules that are characteristic of each individual,
there is a need for a high-throughput screening system that in-
corporates cell cultures and antigen presentation via professional
antigen-presenting cells. To overcome such obstacles for the ef-
fective screening of HIV-specific immune responses, methods
to monitor multiple immune response markers consistently at
single-cell resolution – as demonstrated in integrated single-cell
analytic applications – have been developed.

INTEGRATIVE SINGLE-CELL ASSAY

Immune cells found in the clinical samples are diverse in terms
of their functions, clonotypic breadth and lineage [73]. Antigen-
specific cells diversify by effector function, differentiation stage
and migratory capacity, which may differ even within a single
clone [74,75]. However, conventional techniques do not account
for this inherent heterogeneity; they only capture a mean response
from a heterogeneous population of cells, and thus, do not provide
the in-depth analysis of disease mechanisms, proteomic interac-
tions and the clonotypes of the immune response. Therefore more
comprehensive and multiplexed analysis at single-cell resolution
is important. Some examples of reported integrative single-cell
assays are discussed here. Three major categories of integrative,
novel single-cell assays are microfluidic assays, nano-microwell
assays and nano-micro droplet assays (see Figure 3) [76–78].

Ma et al. [76] reported a microfluidic platform designed for
highly multiplexed and quantitative measurements of secreted
proteins from a single cell (Figure 3A). This microchannel-based
system is reliable for assessing high functional heterogeneity at
the single-cell level. Once a small number of cell populations are
introduced into the system, cells are isolated in each microcham-
ber (0–40 cells per chamber). The system utilizes a DNA-encoded
antibody library barcode array to capture the secreted proteins
from single cells. Each barcode-encoded glass substrate is coated
with a distinctive antibody. Fluorescence intensities for each pro-
tein from each microchamber are analysed for quantification. This
single-cell barcode chip system showed a multiplexing capacity,
by quantifying 12 different inflammatory cytokines and determ-
ining heterogeneity in active tumour antigen-specific cytotoxic
T lymphocytes. In addition, this system only requires a small
(∼1×104 cells) number of cells to detect less than a thousand
copies of proteins. Therefore this platform is advantageous be-
cause of its smaller sample size, higher sensitivity and superior
multiplexing capacity that could be applied to analyse the cellular
level immune responses of HIV-specific cells.

The second approach would be a soft lithographic technique
that utilizes microengraving that has also been used to produce
a set of replicated protein-printed microarrays (Figure 3B) [77].
Each spot on the microarray is composed of the proteins secreted
by a single cell. General fabrication steps are as follows. Once
the polydimethylsiloxane microwell array is fabricated a series of
photolithographic techniques is applied and a cell suspension is
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Figure 3 Integrative single-cell assays for multiplexed analysis of individual immune cell function
(A) Microfluidic assay based on a DNA-encoded antibody library. Reprinted by permission from Macmillan Publishers Ltd:
Nature Medicine (Ma, C., Fan, R., Ahmad, H., Shi, Q., Comin-Anduix, B., Chodon, T., Koya, R.C., Liu, C.C., Kwong, G.A., Radu,
C.G. et al. A clinical microchip for evaluation of single cells reveals high functional heterogeneity in phenotypically similar T
cells. 17, 738–743), copyright (2011). (B) Protein-printed nano-microwell assay fabricated by the microengraving technique.
Reprinted by permission from National Academy of Sciences, USA: Varadarajan, N., Kwon, D.S., Law, K.M., Ogunniyi, A.O.,
Anahtar, M.N., Richter, J.M., Walker, B.D., Love, J.C. Rapid, efficient functional characterization and recovery of HIV-specific
human CD8+ T cells using microengraving. Proc. Natl. Acad. Sci. U.S.A. 109, 3885–3890. Copyright (2012) National
Academy of Sciences, USA. (C) Nano-micro droplet assay using a coded droplet library. Reprinted by permission from
National Academy of Sciences, USA: Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J.B.,
Rothberg, J.M., Link, D.R., Perrimon, N. and Samuels, M.L. Droplet microfluidic technology for single-cell high-throughput
screening. Proc. Natl. Acad. Sci. U.S.A. 106, 14195–14200. Copyright (2009) National Academy of Sciences, USA.

applied onto the microwells (0.1–1 nl each). The individual cell
is deposited in each well and the array is placed onto a capture
antibody-coated supportive glass slide. Secreted products from a
cell are deposited on the surface of the glass slide. The identi-
fied individual cells can be recovered by micromanipulation for
further in vitro characterization. Therefore this high-throughput
system can perform identification, recovery and clonal expansion
of cells that produce antigen-specific antibodies. The multipara-
metric datasets describe the antigenic specificity, isotype and af-
finity of the antibodies secreted from large numbers of individual
primary B cells [79]. In addition, studies also reported charac-

terization and recovery of HIV antigen-specific human CD8+ T
cells from human subjects [72], as well as monitoring dynamic
cytokine secretion from individual human CD3+ T cells from
peripheral blood [73]

The third approach is to utilize a droplet-based microfluidic
system that allows the single cells to be encapsulated in indi-
vidual aqueous droplet with a volume of 1 pl–10 nl (Figure 3C)
[78]. A sequential process of encapsulation, incubation, manipu-
lation and analysis can be performed on the microfluidic device
[78,80,81]. In these systems, the specific sequential steps of
droplet screening are: (1) preparation of a coded droplet library
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by the combination of different concentrations of mitomycin C
and fluorescent optical labelling; (2) mixing a library droplet and
a cell-containing droplet; (3) on-chip incubation; and (4) meas-
urement of each droplet’s fluorescence for both assay and drug
coding read-out. Therefore successful development of libraries
that are associated with HIV antigen-specific cells may provide a
feasible high-throughput platform for screening T-cell response.

To determine molecular level identification and gene signa-
tures that encompass antigen specificity, a Fluidigm Biomark
dynamic array could be introduced [82]. This qPCR-base single-
cell gene-profiling technique can assay up to 96 genes from 96
individual cells in a single experiment. In the context of CD4+

T cells, transcription factor gene profiling correlated with cellu-
lar function may enable identification of the functional subsets
of the antigen-specific T cells. In addition to these technical de-
velopments, various up-to-date clinical aspects of HIV immuno-
therapy, such as cytokine therapy, immune-modulating drugs and
monoclonal antibodies, have also been actively studied and some
of the recent advances are summarized in a review article by
Kim and Han [83]. Recent developments in HIV nanomedicine
are also addressed in the review articles [84,85]. Clinical aspects
of nano/microfluidic technologies for diagnosing HIV are also
addressed in a review article by Lee et al. [86].

In summary, we discussed the development of multiplexed
formats of immunoassay techniques to study HIV-specific im-
mune response with a particular focus on the microfabricated
platforms for single-cell analysis. The integrative single-cell as-
say can be further developed as a promising and powerful cell-
mediated immunotherapeutic platform to identify, characterize
and sort a variety of T-cell functions and subsequently profile-
specific T-cell responses to HIV.
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