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Abstract: This paper presents an adaptive event-triggered control strategy for guaranteeing prede-
fined tracking performance of uncertain nonlinear underactuated underwater vehicles (UUVs) in the
three-dimensional space. Compared with the related results in the literature, the main contribution
of this paper is to develop a nonlinear error transformation approach for ensuring predefined three-
dimensional tracking performance under the underactuated property of 6-DOF UUVs and limited
network resources. A nonlinear tracking error function is designed using a linear velocity rotation
matrix and a time-varying performance function. An adaptive event-triggered control scheme using
the nonlinear tracking error function and neural networks is constructed to ensure the practical
stability of the closed-loop system with predefined three-dimensional tracking performance. In the
proposed control scheme, auxiliary stabilizing signals are designed to resolve the underactuated
problem of UUVs. Simulation results are presented to illustrate the effectiveness of the theoretical
methodology.

Keywords: nonlinear error transformation; event-triggered tracking; predefined three-dimensional
tracking performance; neural networks; underactuated underwater vehicles (UUVs)

1. Introduction

Control of nonlinear underwater vehicles is attracting much research attention recently,
due to its practical application in submarine survey, exploration, oceanographic mapping,
and region search for deep-sea wrecks [1–6]. The initial studies have focused on the
planar or depth control design of underwater vehicles in the two-dimensional space [7–11].
However, these studies in the two-dimensional space provide limited solutions to various
tracking problems in the practical three-dimensional underwater environment. For more
practical application, three-dimensional control approaches have been studied for nonlinear
underwater vehicles described by 5-degrees-of-freedom (5-DOF) or 6-DOF kinematics and
dynamics. In [12], a path following controller was designed for 5-DOF underwater vehicles
with ocean current disturbances. A ocean current observer to detect an external current was
designed for trajectory tracking of 5-DOF underactuated underwater vehicles (UUVs) [13].
In [14,15], fuzzy-based or neural-network control techniques were developed for uncertain
5-DOF UUVs with external disturbances. To deal with uncertain 6-DOF models with the roll
motion, three-dimensional trajectory tracking control designs were developed using several
control techniques such as backstepping control [16,17] and sliding mode control [18].
However, in the aforementioned results, the transient and steady-state performance metrics
of tracking errors cannot be designed a priori. To preselect the tracking performance
metrics of underwater vehicles, the prescribed performance design technique [19] has
been combined with the control methodologies of underwater vehicles [20–23]. In [21], a
region tracking controller with predefined transient performance was designed for fully
actuated underwater vehicles in presence of an ocean current and a thruster fault. Neural-
network-based prescribed performance control designs were investigated for uncertain
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5-DOF UUVs [22] and 6-DOF fully actuated underwater vehicles [20]. In [23], a prescribed
performance control design was developed for 6-DOF UUVs. Despite these efforts, the
controllers designed in [20–23] should be continuously updated and thus cannot be used
in the network-based control environment with limited communication bandwidth. Since
underwater acoustic communication has limited bandwidth, low propagation speed, and
high energy consumption, the data transmission for the network-based control should be
kept to a minimum amount [24]. Thus, it is significant to investigate an event-triggered
control design issue for ensuring predefined three-dimensional tracking performance under
the underactuated property of 6-DOF UUVs and limited network resources.

Event-triggered control strategies have been proposed to address control problems
of linear and nonlinear systems under capacity-limited networks [25–28]. In the event-
triggered control, the signal transmission burden can be reduced in the communication
network because control inputs are executed only when certain triggering conditions are
satisfied. Owing to this advantage, adaptive event-triggered control approaches have been
actively developed for uncertain nonlinear systems [29–32]. However, the event-triggered
control of underwater vehicles was only studied to design a depth controller in the two-
dimensional space [33]. To the best of our knowledge, no studies have been reported
thus far on the event-triggered control problem for ensuring predefined three-dimensional
tracking performance of uncertain 6-DOF UUVs.

On the basis of the above discussion, the purpose of this paper is to present an
adaptive event-triggered control strategy with predefined three-dimensional tracking
performance for uncertain nonlinear 6-DOF UUVs. It is assumed that all nonlinearities in
the dynamics of the UUV are unknown. Compared with the related results [20–23,33] in
the literature, the main contribution of this study is to develop an error-transformation-
based adaptive event-triggered tracking law for achieving predefined three-dimensional
tracking performance while overcoming the underactuated problem of the nonlinear 6-
DOF dynamics. To this end, a nonlinearly transformed tracking error function using a
linear velocity rotation matrix and a time-varying performance function is presented. A
neural-network-based adaptive event-triggered control scheme is recursively designed to
ensure predefined three-dimensional tracking performance of the uncertain UUV where
neural networks are employed to approximate unknown nonlinearities. In the proposed
control scheme, auxiliary stabilizing signals using neural networks are derived to deal
with the underactuated control design problem. We rigorously prove that the resulting
event-triggered tracker ensures the practical stability of the closed-loop system and the
exclusion of Zeno behavior.

The rest of this paper is outlined as follows. In Section 2, we introduce the 6-DOF
kinematics and dynamics of uncertain nonlinear UUVs and formulate the predefined three-
dimensional tracking performance control problem. A neural-network-based adaptive
event-triggered tracker is constructed using the nonlinearly transformed tracking error
function and the auxiliary stabilizing signals, and the closed-loop stability is analyzed in
Section 3. Simulation studies are given in Section 4. Finally, we conclude in Section 5.

2. Problem Formulation

The kinematics for the position and attitude of an UUV can be described by

η̇ = R1(ζ)υ
ζ̇ = R2(ζ)ω

(1)

where η = [x, y, z]>; x, y, and z are the positions of the center of gravity in an inertial
coordinate frame, ζ = [φ, θ, ψ]>; φ, θ, and ψ denote roll, pitch, and yaw angles, respec-
tively, υ = [u, v, w]>; u, v, and w are surge, sway, and heave velocities, respectively, and
ω = [p, q, r]>; p, q, and r denote the roll, pitch, and yaw angular velocities in the body-fixed
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frame, respectively. Here, the linear velocity rotation matrix R1(ζ) and and the angular
velocity transformation matrix R2(ζ) are given by

R1(ζ) =

 cθcψ sθcψsφ − sψcφ sθcψcφ + sψsφ

cθsψ sθsψsφ + cψcφ sθsψcφ − cψsφ

−sθ cθsφ cθcφ


R2(ζ) =

 1 tθsφ tθcφ

0 cφ −sφ

0 sφ/cθ cφ/cθ


with s(·) = sin(·), c(·) = cos(·), and t(·) = tan(·). The structure of the neutrally buoyant
UUV concerned in this paper is depicted in Figure 1.

Figure 1. The structure of the UUV.

The dynamics of the UUV is given by

M
[

υ̇
ω̇

]
= C(υ, ω) + G(ζ) + τ (2)

where M = M1 + M2; M1 ∈ R6×6 and M2 ∈ R6×6 are the matrix of the rigid-body mass
and the added mass, respectively, C(υ, ω) ∈ R6 is a vector derived by the Coriolis and
damping matrices, G(ζ) ∈ R6 is a vector induced from the gravitation and the buoyancy
of the UUV, and τ = [τX, τY, τZ, τK, τM, τN ] is a vector denoting the control forces and
moments. In this paper, the torpedo-shaped UUV model is considered to deal with the
tracking problem. The torpedo-shaped UUV cannot move directly to the y- or z-direction
in the body reference frame and the roll movement is undesirable in the practical UUV [34].
Thus, the underactuated torque vector τ = [τX, 0, 0, 0, τM, τN ] is considered in this paper.
The detailed definitions of M, C, and G are presented in Appendix A. For more details for
the model of UUVs, see [35,36].

Assumption 1. The nonlinear function vectors C(υ, ω) and G(ζ) are unknown for the control de-
sign.

Assumption 2. The desired three-dimensional trajectory ηd ∈ R3 and its derivatives η̇d ∈ R3

and η̈d ∈ R3 are bounded.

Problem 1. Our problem is to design an adaptive event-triggered control law τ for ensuring prede-
fined three-dimensional tracking performance of the uncertain UUV described by (1) and (2) so that
the position trajectory η of the UUV follows the desired trajectory ηd in the three-dimensional space.
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3. Adaptive Event-Triggered Control with Predefined Three-Dimensional
Tracking Performance

In this section, an adaptive event-triggered control methodology using an error trans-
formation function and stabilizing auxiliary signals is established to ensure predefined
three-dimensional tracking performance of the UUV. The dynamic surface design proce-
dure using the predefined performance concept is derived step by step.

Step 1: Let us consider the kinematics (1) and define the position errors
s = [s1, s2, s3]

> = η − ηd. Then, to ensure predefined three-dimensional tracking per-
formance under the underactuated property, we define the nonlinearly transformed error
surface Γ1 = [Γ1,1, Γ1,2, Γ1,3]

> as

Γ1 = R−1
1 (ζ)Φ− ρ (3)

where Φ = [Φ1, Φ2, Φ3]
>, and ρ = [$, 0, 0]> denotes the radius of error surface with the

design constant $. Here, the design constant $ is selected relatively small compared to the
length of the UUV, and Φi, i = 1, 2, 3, is defined as

Φi

(
si
µi

)
= ln

(
δ1,iδ2,i + δ2,i(si/µi)

δ1,iδ2,i − δ1,i(si/µi)

)
(4)

where 0 < δ1,i ≤ 1 and 0 < δ2,i ≤ 1 are design constants, and µi(t) = (µi,0 − µi,∞)e−git +
µi,∞ is the performance function with design parameters gi > 0, µi,0 > 0, and µi,∞ > 0
satisfying µi,0 > µi,∞ and −δ1,iµi(0) < si(0) < δ2,iµi(0).

Lemma 1. If Γ1,i ∈ L∞, −δ1,iµi(t) < si(t) < δ2,iµi(t) is ensured for all t ≥ 0 where i = 1, 2, 3.

Proof. Let us define Θ = R1(ζ)(Γ1 + ρ) where Θ = [Θ1, Θ2, Θ3]
>. From the definition of

R1(ζ), there exists a constant R̄1 such that ‖R1(ζ)‖ ≤ R̄1. Then, from Γ1,i ∈ L∞, Θi are
bounded where i = 1, 2, 3. Thus, there exist constants Θi and Θ̄i such that Θi < Θi(t) <
Θ̄i, ∀t ≥ 0. Using the bijective property Φi : (−δ1,i, δ2,i) 7→ (−∞, ∞) [37], it holds that
Φ−1

i (Θi) < si/µi < Φ−1
i (Θ̄i). Owing to −δ1,i < Φ−1

i < δ2,i, we have −δ1,iµi(t) < si(t) <
δ2,iµi(t) for all t ≥ 0.

Remark 1. In (3), R−1
1 (ζ) and ρ are combined with the nonlinear error function vector Φ in

order to design the underactuated control scheme with the predefined three-dimensional tracking
performance. From Lemma 1, the boundedness of the error surface vector leads to the satisfaction of
the inequality −δ1,iµi(t) < si(t) < δ2,iµi(t) for all t ≥ 0 where i = 1, 2, 3. That is, the bounds of
the transient and steady-state performance of the position errors si(t) can be predefined by selecting
the design parameters δ1,i, δ2,i, and functions µi(t). Thus, the predefined three-dimensional tracking
performance is ensured provided that Γ1,i ∈ L∞. Accordingly, the primary focus of this study is to
design an adaptive event-triggered control scheme for ensuring the boundedness of Γ1,i.

The time derivative of Γ is represented by

Γ̇1 =Ṙ−1
1 (ζ)Φ + R−1

1 (ζ)Φ̇

=− K(Γ1 + ρ) + R−1
1 A(η̇ − η̇d − µ̇µ−1s1)

(5)

where K = −Ṙ−1
1 R1, A = diag[A1, A2, A3] with Ai = (1/(si + δ1,iµi))− (1/(si − δ2,iµi)),

i = 1, 2, 3, and µ = diag[µ1, µ2, µ3]. Here, diag[·] is the diagonal matrix.
Then, we have

K = −Ṙ−1
1 R1 =

 0 −r q
r 0 −p
−q p 0

. (6)
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Using (6), we obtain that

Γ̇1 = −KΓ1 − Kρ + R−1
1 AR1υ− R−1

1 A(η̇d + µ̇µ−1s1)

= −KΓ1 −

 0 −r q
r 0 −p
−q p 0

 $
0
0

+ H

 u
v
w

− R−1
1 A(η̇d + µ̇µ−1s1)

= −KΓ1 + N

 u
q
r

+ H

 0
v
w

− R−1
1 A(η̇d + µ̇µ−1s1)

(7)

where H = R−1
1 AR1 and

N =

 H1,1 0 0
H2,1 0 −$
H3,1 $ 0

.

Here, Hm,n means the (m, n) element of the matrix H.
Using the dynamic surface design concept [38], we define the error surface vector

e = [eu, eq, er]> with eu = u− ᾱu, eq = q− ᾱq, and er = r − ᾱr, and the boundary layer
error vector c = [c1, c2, c3] = ᾱ− α where α = [αu, αq, αr]> is the virtual control vector and
ᾱ = [ᾱu, ᾱq, ᾱr]> is the filtered signal vector of virtual control laws αu, αq, and αr that is
obtained by the first-order low-pass filter

ξ ˙̄α + ᾱ = α, ᾱ(0) = α(0) (8)

where ξ > 0 is the small constant.
Using the error surface vector e and the boundary layer error c, (7) becomes

Γ̇1 = −KΓ1 + N(e + α + c) + H

 0
v
w

− R−1
1 A(η̇d + µ̇µ−1s1). (9)

The virtual control vector α = [αu, αq, αr]> is presented as

α = N−1
(
− γ1Γ1 − H

 0
v
w

+ R−1
1 A(η̇d + µ̇µ−1s1)

)
(10)

where γ1 = diag[γ1,1 γ1,2 γ1,3]; γ1,i, i = 1, . . . , 3, are positive constants.
Substituting (10) to (9) gives

Γ̇1 = −KΓ1 − γ1Γ1 + N(e + c). (11)

We choose a Lyapunov function V1 = Γ>1 Γ1/2. Then, the time derivative of V1 is
represented by

V̇1 = −Γ>1 γ1Γ1 + Γ>1 N(e + c). (12)

where Γ>1 KΓ1 = 0 due to the skew symmetric matrix K.
Step 2: To design the underactuated torque vector τ = [τX, 0, 0, 0, τM, τN ], we define

the error surface vector Γ2 = [Γ2,1, . . . , Γ2,6]
> = v − χ where v = [υ>, ω>]> and χ =

[ᾱu, β1, β2, β3, ᾱq, ᾱr]>. Here, β1, β2, and β3 in χ are the auxiliary stabilizing signals to be
designed later.

Using (2), the time derivative of Γ2 is obtained as

Γ̇2 = M−1(F(v, ζ) + τ)− χ̇ (13)
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where F(v, ζ) = C(v) + G(ζ).
For the online approximation of unknown nonlinear function vector F(v, ζ), radial

basis function neural networks [39] are employed. Then, F can be approximated over the
compact set Υ as follows

F(x̄) = W∗>Ω(x̄) + ε (14)

where x̄ = [v>, ζ>]> ∈ Υ ⊂ R6 denotes the input vector of radial basis function neural
networks, the optimal weighting matrix W∗ is defined as W∗ = diag[W∗1 , . . . , W∗6 ] satisfying
‖W∗‖F ≤ W̄ with an unknown constant W̄ > 0, W∗f = [W∗f ,1, . . . , W∗f ,n]

> with f = 1, . . . , 6,

‖ · ‖F is the Frobenius norm, Ω denotes the Gaussian function vector Ω = [Ω>1 , . . . , Ω>6 ]
>;

Ω f = [Ω f ,1, . . . , Ω f ,n]
> with f = 1, . . . , 6, and ε ∈ R6 is a reconstruction error vector such

as ‖ε‖ ≤ ε̄ with an unknown constant ε̄ > 0.
An adaptive event-triggered tracking law is presented as

τ(t) = τ̆(tj), ∀t ∈ [tj, tj+1) (15)

tj+1 = inf{t > tj|‖Sτ(t)‖ ≥ κ1‖e(t)‖+ κ2} (16)

where tj denotes the update time of the control torque τ with j ∈ Z+, Sτ(t) = τ̆(t)− τ(t),
and κ1 > 0 and κ2 > 0 are design constants. When the event-triggering condition (16) is
satisfied, the tracking law τ is updated at tj+1 and is set to τ̆ = [τ̆1, 0, 0, 0, τ̆5, τ̆6]

> given by τ̆1
τ̆5
τ̆6

 =− γ̄2,1e +

 B1
B5
B6

−
 Ŵ>1 Ω1

Ŵ>5 Ω5
Ŵ>6 Ω6

− (ε̂ + κ2) tanh
(

e
ϑ

)
− κ1e− N>Γ1 (17)

where γ̄2,1 = diag[γ2,1, γ2,5, γ2,6]; γ2,1, γ2,5, and γ2,6 denote positive design parameters,
Ŵ1, Ŵ5, and Ŵ6 are estimates of W∗1 , W∗5 , and W∗6 , respectively, tanh(e/ϑ) = [tanh(Γ2,1/ϑ),
tanh(Γ2,5/ϑ), tanh(Γ2,6/ϑ)]> with a constant ϑ > 0, and ε̂ denotes an estimate of ε̄. Here, B1,
B5, B6 are elements of the vector B = [B1, . . . , B6]

> = Mχ̇ with χ̇ = [(αu − ᾱu)/ξ, β̇1, β̇2, β̇3,
(αq − ᾱq)/ξ, (αr − ᾱr)/ξ]>. The dynamics of the auxiliary stabilizing signals β1, β2, and β3
are designed as β̇1

β̇2
β̇3

 =M̄−1
2

(
γ̄2,2

 Γ2,2
Γ2,3
Γ2,4

− M̄1

 (αu − ᾱu)/ξ
(αq − ᾱq)/ξ
(αr − ᾱr)/ξ

+

 Ŵ>2 Ω2
Ŵ>3 Ω3
Ŵ>4 Ω4

+ ε̂

 tanh( Γ2,2
ϑ )

tanh( Γ2,3
ϑ )

tanh( Γ2,4
ϑ )

) (18)

where γ̄2,2 = diag[γ2,2, γ2,3, γ2,4]; γ2,2, γ2,3, and γ2,4 are the positive design parameters, and

M̄1 =

 0 0 mxg −Yṙ
0 −mxg − zq̇ 0
0 0 0


M̄2 =

 m−Yv̇ 0 −mzg
0 m− Zẇ myg
−mzg myg Ixx − K ṗ

.

The adaptive laws for Ŵ f , f = 1, . . . , 6, and ε̂ are designed as

˙̂W f =ς f (Γ2, f Ω f − σ1Ŵ f ) (19)

˙̂ε =ι

(
Γ>2 tanh

(
Γ2

ϑ

)
− σ2 ε̂

)
(20)

where f = 1, . . . , 6, tanh(Γ2/ϑ) = [tanh(Γ2,1/ϑ), . . . , tanh(Γ2,6/ϑ)]>, ς f = diag[ς f ,1, . . . ,
ς f ,n]; ς f ,l > 0, l = 1, . . . , n is a constant, ι, σ1 and σ2 are positive design constants.
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Let us consider a Lyapunov function V2 as

V2 =
1
2

Γ>2 MΓ2 +
1
2

tr(W̃>ς−1W̃) +
1
2ι

ε̃2 (21)

where W̃ = W∗ − Ŵ and ε̃ = ε̄− ε̂ are estimation errors, ς = diag[ς1, . . . , ς6], and tr(·)
means the trace of the matrix.

By substituting (13) and (14) into the time derivative of (21), V̇2 is obtained as

V̇2 =Γ>2 (W
∗>Ω + ε + τ̆ − Sτ)− Γ>2 B− tr(W̃>ς−1 ˙̂W)− 1

ι
ε̃ ˙̂ε. (22)

It holds that Γ>2 Sτ = e>S̄τ and ‖Sτ‖ = ‖S̄τ‖ with Sτ = [τ̆1 − τX, 0, 0, 0, τ̆5 − τM, τ̆6 −
τN ]
> and S̄τ = [τ̆1 − τX , τ̆5 − τM, τ̆6 − τN ]

>. Then, using the property Sτ(tj) = 0 for j ∈ Z+

and the event-triggering condition (16), we have −Γ>2 Sτ ≤ ‖e‖(κ1‖e‖+ κ2).
Then, using B = [B1, . . . , B6]

> = Mχ̇ and the definition of the matrix M, we have

Γ>2 B = Γ>2



B1
0
0
0
B5
B6

+ Γ>2



0

M̄1

 (αu − ᾱu)/ξ
(αq − ᾱq)/ξ
(αr − ᾱr)/ξ

+ M̄2

 β̇1
β̇2
β̇3


0
0


. (23)

Substituting −Γ>2 Sτ ≤ ‖e‖(κ1‖e‖ + κ2) and (23) into (22) and using (17) and (18),
we obtain

V̇2 ≤− Γ>2 γ2Γ2 + Γ>2 W̃>Ω− 1
ι

ε̃ ˙̂ε− tr(W̃>ς−1 ˙̂W) + ‖e‖κ2 − κ2e>tanh
(

e
ϑ

)
+ ‖Γ2‖ε̄− ε̄Γ>2 tanh

(
Γ2

ϑ

)
+ ε̃Γ>2 tanh

(
Γ2

ϑ

)
− e>N>Γ1

(24)

where γ2 = diag[γ2,1, . . . , γ2,6].

Lemma 2. [39] 0 ≤ |s| − s tanh(s/ϑ) ≤ 0.2785ϑ for s ∈ R and any positive constant ϑ.

By substituting (19) and (20) into (24) and using Lemma 2, V̇2 becomes

V̇2 ≤− Γ>2 γ2Γ2 + σ1tr(W̃>Ŵ) + σ2 ε̃ε̂− e>N>Γ1 + 1.671ε̄ϑ + 0.8355κ2ϑ. (25)

Remark 2. In the dynamics (2) of the torpedo-shaped UUV, the underactuated control torque
vector τ = [τX, 0, 0, 0, τM, τN ] should be designed. That is, the first, fifth, and sixth dynamic
equations in (2) only have the control torques τX , τM, and τN , respectively. Thus, the the auxiliary
stabilizing signals are required for the state equations for v, ω, and p (i.e., the second, third, and
fourth dynamic equations in (2)). In this study, the auxiliary stabilizing signals β1, β2, and β3 in
(18) are presented to design the underactuated control torque vector τ = [τX , 0, 0, 0, τM, τN ] while
ensuring the predefined three-dimensional tracking performance and the stability of the closed-loop
system. Because of these auxiliary stabilizing signals, the UUV dynamics (2) is stably controlled by
using the only three control inputs τX , τM, and τN .

We analyze the predefined three-dimensional tracking performance and stability of
the closed-loop system and the exclusion of Zeno behavior of the proposed event-triggered
scheme in the following theorem.
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Theorem 1. Consider the kinematics and dynamics of the uncertain UUV (i.e., (1) and (2)). For
initial conditions satisfying V(0) ≤ ∆ with a constant ∆ > 0, the adaptive event-triggered tracking
law (17) guarantees that

(i) all the closed-loop signals are semi-globally uniformly ultimately bounded;
(ii) the predefined three-dimensional tracking performance is ensured (i.e., −δ1,iµi(t) < si(t) <

δ2,iµi(t), i = 1, 2, 3, ∀t ≥ 0);
(iii) there exists an inter-event time Tm > 0 such that |tj+1 − tj| ≥ Tm.

Proof. The dynamics of the boundary layer error c is represented by

ċ = −1
ξ

c + Λ(Γ1, Γ2, c, Ŵ, ε̂, η0) (26)

where η0 = [η>d , η̇>d , η̈>d ]> and Λ = Ṅ−1{−γ1Γ1 − H[0 v w]> + R−1
1 A(η̇d + µ−1µ̇s1)} +

N−1{−γ1Γ̇− H[0 v̇ ẇ]> − Ḣ[0 v w]> + Ṙ−1
1 A(η̇d + µ−1µ̇s1) + R−1

1 Ȧ(η̇d + µ−1µ̇s1) + R−1
1

A(η̈d + µ−1µ̇ṡ1 + µ̇−1µ̇s1 + µ−1µ̈s1)} is a continuous function.
We define the Lyapunov function V = V1 + V2 + (c>c)/2 to prove this theorem.

Using (12), (25), and (26), V̇ becomes

V̇ ≤ −Γ>1 γ1Γ1 − Γ>2 γ2Γ2 −
1
ξ

c>c + c>Λ̄ + σ1tr(W̃>Ŵ)

− σ2 ε̃2 + σ2 ε̃ε̄ + 1.671ε̄ϑ + 0.8355κ2ϑ.
(27)

where Λ̄ = Λ + N>Γ1 is a continuous function. Using the inequalities tr(W̃>Ŵ) ≤
−‖W̃‖2

F/2 + W̄2/2, ε̃ε̄ ≤ ε̃2/2 + ε̄2/2, and c>Λ̄ ≤ ‖c‖2‖Λ̄‖2 /(2ϕ) + ϕ/2 with constants
ϕ > 0, (27) becomes

V̇ ≤− Γ>1 γ1Γ1 − Γ>2 γ2Γ2 −
‖c‖2

ξ
+
‖c‖2‖Λ̄‖2

2ϕ
− σ1

2
‖W̃‖2

F −
σ2

2
ε̃2 + D (28)

where D = (σ1/2)W̄2 + (σ2/2)ε̄2 + ϕ/2 + 1.671ε̄ϑ + 0.8355κ2ϑ.
Let us define compact sets Π = {Γ>1 Γ1 + Γ>2 MΓ2 + c>c + tr(Φ̃>ς−1Φ̃) + (1/ι)ε̃2 ≤

2∆} and Ξ = {η>d ηd + η̇>d η̇d + η̈>d η̈d ≤ η̄0} with a constant η̄0 > 0. Then, there exists a
constant Λ∗ such that ‖Λ̄‖ ≤ Λ∗ on Π× Ξ. By selecting 1/ξ = ξ∗ + (Λ∗)2/(2ϕ) + 1 with
a constant ξ∗ > 0, we have

V̇ ≤ −ΨV −
(

1− ‖Λ̄‖
2

(Λ∗)2

)
‖c‖2(Λ∗)2

2ϕ
+ D (29)

where Ψ = min[2γ1, 2γ2, 2ξ∗, σ1ςmin, σ2ι]; ςmin is the minimum eigenvalue of ς. Because of
‖Λ‖ ≤ Λ∗ on V = ∆, V̇ ≤ −ΨV + D is satisfied on V = ∆. Then, it is ensured that V̇ < 0
on V = ∆ when Ψ > D/∆ and thus V ≤ ∆ denotes an invariant set. It is proved that all
closed-loop signals are semi-global uniform ultimate bounded. This completes the proof of
Theorem 1—(i).

By integrating V̇ ≤ −ΨV + D with respect to time, we have V(t) ≤ e−ΨtV(0) +
(D/Ψ)[1− e−Ψt]. Using (1/2)‖Γ1‖2 ≤ V(t), it holds that limt→∞ ‖Γ1‖ ≤

√
2D/Ψ. That is,

Γ1 is bounded (i.e., Γ1,i ∈ L∞, i = 1, 2, 3). From Lemma 1, the predefined three-dimensional
tracking performance is ensured (i.e., −δ1,iµi(t) < si(t) < δ2,iµi(t), i = 1, 2, 3, ∀t ≥ 0). This
completes the proof of Theorem 1—(ii).

To show the exclusion of Zeno behavior of the proposed event-triggering scheme, we
prove that there exists a minimum value Tm of inter-event times such that |tj+1 − tj| ≥ Tm
for j ∈ Z+.
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For all t ∈ [tj, tj+1), we consider

d
dt
‖Sτ‖ =

d
dt
(S>τ Sτ)

1
2 =

S>τ Ṡτ

‖Sτ‖
≤
∥∥∥∥ d

dt
(τ̆)

∥∥∥∥ (30)

where d
dt (τ̆) = [ ˙̆τ1, 0, 0, ˙̆τ5, ˙̆τ6]

>; ˙̆τ1, ˙̆τ5, and ˙̆τ6 are given by

 ˙̆τ1
˙̆τ5
˙̆τ6

 =− γ̄2,1 ė +

 Ḃ1
Ḃ5
Ḃ6

−


˙̂W>1 Ω1 + Ŵ>1 Ω̇1
˙̂W>5 Ω5 + Ŵ>5 Ω̇5
˙̂W>6 Ω6 + Ŵ>6 Ω̇6

− ˙̂ε tanh
(

e
ϑ

)

− (ε̂ + κ2)

(
1− tanh2

(
e
ϑ

))
ė
ϑ
− κ1 ė− Ṅ>Γ1 − N>Γ̇1.

(31)

From the boundedness of all the closed-loop signals, there exists a constant d >
0 such that ‖ d

dt (τ̆)‖ ≤ d. Integrating d
dt‖Sτ‖ ≤ d during t ∈ [tj, tj+1) and using the

event-triggering condition (16) yield |tj+1 − tj| ≥ (κ1‖e(t)‖+ κ2)/d ≥ κ2/d. By defining
Tm = κ2/d, it holds that |tj+1 − tj| ≥ Tm. This completes the proof of Theorem 1—(iii).

4. Simulation Examples

The parameters of the UUV are borrowed from [35]. The reference signal is given
by ηd(t) = [30 cos(0.15t), 30 sin(0.15t), 2t]> and the initial position of the UUV is set to
η(0) = [45, 5, 5]. The control parameters of the UUV are chosen as γ1 = diag[1.0, 1.0, 1.0],
γ2 = diag[50, 30, 30, 30, 50, 50], ς f ,l = 30, ι = 30, σ1 = 0.05, σ2 = 0.05, ξ = 0.05, ϑ = 0.1, and
$ = −0.1 where f = 1, . . . , 6 and l = 1, . . . , n. The parameters for performance functions
are selected as δ1,1 = 0.75, δ2,1 = 1.0, δ1,2 = 0.7, δ2,2 = 0.7, δ1,3 = 0.7, δ2,3 = 0.7, g1 = 1.1,
g2 = 1.05, g3 = 1.0, µ1,0 = 30, µ1,∞ = 2, µ2,0 = 10, µ2,∞ = 1, µ3,0 = 10, and µ3,∞ = 1. For
the event-triggering condition, we set κ1 = 100 and κ2 = 1. The event-triggering condition
is checked every the sampling time 0.005 s.

The three-dimensional tracking result is shown in Figure 2. In Figure 2, the UUV
follows the desired trajectory with good performance. Figure 3 depicts the position tracking
errors. Figure 3 reveals that the time responses of the position errors si remain within the
predefined time-varying performance bounds −δ1,iµi and δ2,iµi for all t ≥ 0. The mean
square errors of the position errors si at the steady-state response are presented in Table 1
where the steady-state response is set to the position errors si(t) for t ≥ 10 s. The outputs of
the neural networks are displayed in Figure 4. The event-triggered underactuated control
inputs for the UUV are shown in Figure 5. Figure 6 shows the triggered time intervals and
the cumulative number of events of the proposed event-triggered control laws. The number
of total events of the proposed event-triggered tracker is 2164. Thus, the data required for
implementing the proposed tracker are only 18.03% of the total sampled data 12,000 during
60 s. This implies that the proposed event-triggered control scheme can save the signal
transmission burden. From these results, we can see that predefined three-dimensional
tracking performance under the underactuated property of the uncertain nonlinear 6-DOF
UUV can be achieved by the proposed adaptive event-triggered tracking methodology.

Table 1. Mean square errors of s1(t), s2(t), and s3(t) at the steady-state response.

s1 s2 s3

0.0177 0.0052 4.0268× 10−4
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Figure 2. Three-dimensional tracking result.
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Figure 3. Tracking errors and performance bounds (a) s1, −δ1,1µ1, and δ2,1µ1 (b) s2, −δ1,2µ2, and δ2,2µ2 (c) s3, −δ1,3µ3,
and δ2,3µ3.



Mathematics 2021, 9, 137 11 of 15

0 10 20 30 40 50 60

-10

0

10

20

30

40

50

(a)

0 10 20 30 40 50 60

-2

0

2

4

6

8

10

12

14

(b)

0 10 20 30 40 50 60

-2

0

2

4

6

8

10

12

14

(c)

0 10 20 30 40 50 60

-2

0

2

4

6

8

10

12

14

(d)

0 10 20 30 40 50 60

-50

-40

-30

-20

-10

0

10

20

(e)

0 10 20 30 40 50 60

-10

-5

0

5

10

15

20

25

(f)

Figure 4. Outputs of neural networks (a) W1Ω1 (b) W2Ω2 (c) W3Ω3 (d) W4Ω4 (e) W5Ω5 (f) W6Ω6.
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Figure 5. Event-triggered control laws (a) τX (b) τM (c) τN .
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Figure 6. Inter-event times and the cumulative number of events (a) inter-event times (b) the cumulative number of events.

5. Conclusions

We presented an adaptive event-triggered control method for ensuring predefined
three-dimensional tracking performance of uncertain nonlinear 6-DOF UUVs. The non-
linearly transformed error function and the auxiliary stabilizing signals were derived
for achieving predefined three-dimensional tracking performance while overcoming the
underactuated problem of the nonlinear 6-DOF dynamics. It was shown that the adap-
tive event-triggered tracker using neural networks achieves the practical stability and
predefined tracking performance of the closed-loop system. The main contribution of
this work to the event-triggered control of uncertain nonlinear 6-DOF UUVs is that the
predefined three-dimensional tracking performance under the underactuated dynamics
can be admitted than the conventional event-triggered techniques of underwater vehicles
in the two-dimensional space.
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Appendix A

The matrices M1 and M2, and the vectors G(ζ) and C(v, ω) of the dynamics (2) are
defined as [35]

M1 =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ixx 0 0

mzg 0 −mxg 0 Iyy 0
−myg mxg 0 0 0 Izz


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M2 =



−Xu̇ 0 0 0 0 0
0 −Yv̇ 0 0 0 −Yṙ
0 0 −Zẇ 0 −Zq̇ 0
0 0 0 −K ṗ 0 0
0 0 −Mẇ 0 −Mq̇ 0
0 −Nv̇ 0 0 0 −Nṙ



G(ζ) =



−(W − F)sθ

(W − F)cθsφ

(W − F)cθcφ

−(ygW − ybF)cθcφ − (zgW − zbF)cθsφ

−(zgW − zbF)sθ − (xgW − xbF)cθcφ

−(xgW − xbF)cθsφ − (ygW − ybF)sθ


C(υ, ω) =[C1, . . . , C6]

>

C1 =Xu|u|u|u|+ (Xwq −m)wq + (Xqq + mxg)q2

+ (Xvr + m)vr + (Xrr + mxg)r2 −myg pq−mzg pr

C2 =Yv|v|v|v|+ Yr|r|r|r|+ mygr2 + (Yur −m)ur + Yuvuv

+ (Ywp + m)wp + (Ypq −mxg)pq + myg p2 + mzgqr

C3 =Zw|w|w|w|+ Zq|q|q|q|+ (Zuq + m)uq + (Zvp −m)vp

+ (Zrp −mxg)rp + Zuwuw + mzg(p2 + q2)−mygrq

C4 =Kp|p|p|p| − (Izz − Iyy)qr + myg(uq− vp)

−mzg(wp− ur)

C5 =Mw|w|w|w|+ Mq|q|q|q|+ (Muq −mxg)uq

+ (Mvp + mxg)vp +
(

Mrp − (Ixx − Izz)
)
rp

+ mzg(vr− wq) + Muwuw

C6 =Nv|v|v|v|+ Nr|r|r|r|+ (Nur −mxg)ur

+ (Nwp + mxg)wp +
(

Npq − (Iyy − Ixx)
)

pq

−myg(vr− wq) + Nuvuv

where m is the mass of the UUV, xg, yg, and zg mean the center of gravity of the UUV, xb,
yb, and zb represent the center of buoyancy of the UUV, the vehicle weight and the vehicle
buoyancy of the UUV are defined as W and F, respectively, Ixx, Iyy, and Izz denote the
inertia tensors of the UUV, Xu̇, Yv̇, Yṙ, Zẇ, Zq̇, K ṗ, Mẇ, Mq̇, Nṙ, and Nv̇ are the added mass
parameters of the UUV, Xvr, Xwq, Xqq, Xrr, Yur, Ywp, Ypq, Yuv, Zuq, Zvp, Zrp, Zuw, Muq, Mvp,
Mrp, Muw, Nur, Nwp, Npq, and Nuv indicate the parameters of the added mass cross term of
the UUV, X|u|u is the axial drag parameter of the UUV, and the cross flow drag parameters
of the UUV are defined as Y|v|v, Y|r|r, Z|w|w, Z|q|q, K|p|p, M|w|w, M|q|q, N|v|v, and N|r|r.
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