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Abstract: A thermally conductive phase change material (PCM) was fabricated using polyethylene
glycol (PEG) and boron nitride (BN). However, the interfacial adhesion between the BN and the PEG
was poor, hindering efficient heat conduction. Grafting polyvinyl alcohol (PVA) onto the surface of
BN and cross-linking due to hydrogen bonding between the hydroxyl groups in PVA and oxygen
atoms in PEG improved the wettability of fillers. By employing this strategy, we achieved a thermal
conductivity value of 0.89 W/mK, a 286% improvement compared to the thermal conductivity of the
pristine PEG (0.23 W/mK). Although the latent heat of composites decreased due to the mobility of
the polymer chain, the value was still reasonable for PCM applications.

Keywords: PCM; boron nitride; thermal conductivity; polymer composite; in-situ polymerization

1. Introduction

Phase change materials (PCMs) are substances that preserve and release thermal
energy during the phase change process within a narrow temperature range. PCMs have
been used for thermal energy storage and management. PCMs have high-energy density
and nearly isothermal behavior [1]. High-energy density is a desirable property for energy
storage systems. Thus, PCMs have been used in various energy storage applications such
as solar panels, waste heat restoration, and other heat energy storage systems [2].

Among the many different PCMs, polyethylene glycol (PEG) is a widely used polymer
PCM due to its moderate phase change temperature, nontoxicity, and high latent heat [3].
However, PEG has a low thermal conductivity and weight leakage during phase transition
(0.2~0.3 W/mK) [4,5]. This low thermal conductivity is disadvantageous for energy storage
applications. To overcome this problem, many different studies have been conducted [6–8].
Various thermal conductive fillers have been applied to improve the thermal conductivity,
including carbon-based [9–11], ceramic [12,13], and metallic fillers [14,15]. Specifically,
boron nitride (BN) is a universal ceramic filler for thermally conductive composites [16–18]
because BN is highly thermally conductive and electrically insulated, which are desirable
properties for thermal interface materials [19,20].

However, BN is a nonpolar substance, resulting in poor interfacial adhesion with PEG,
which can cause crack formation and air voids in polymer composites. Phonon scattering
can be caused and hindered by creating thermal boundary resistance. This negatively
affects the conductive and mechanical properties of the polymer composites [21,22].

Polyvinyl alcohol (PVA) is a highly hydrophilic substance because it has many hy-
droxyl groups in its main chain. This polymer is produced through a polymerization and
conversion process. Vinyl acetate is polymerized to make polyvinyl acetate (PVAc) and
then converted into PVA [23].

In this study, BN, an excellent thermally conductive filler, was selected to increase
the thermal conductivity of PEG with low thermal conductivity. However, the poor
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compatibility between the BN and the PEG results in inefficient heat conduction. In this
work, we grafted PVA onto the surface of nonpolar BN to improve its compatibility with
PEG. In addition, hexamethylenediamine, which was used as a cross-linker, was added to
induce hydrogen bonding between PEG and PVA-grafted BN. In this paper, the composite
through all these processes is defined as P-c-BN/PEG. After surface modification and cross-
linking, the heat transfer efficiency was improved, enhancing the thermal conductivity.
At the 30 wt.%, the thermal conductivity of P-c-BN/PEG was 0.89 W/mK, which was
improved 286% higher compared to the neat PEG. The latent heat value, which is important
for PCMs, decreased by 22% because the free volume of the polymer chain decreased due
to improved interfacial adhesion and cross-linking. However, the value (137.5 J/g) was
still acceptable for PCM applications.

2. Experimental
2.1. Materials

Boron nitride was obtained from LG Innotek, Seoul, South Korea. Polyethylene gly-
col 4000, ethanol (99.5%), sulfuric acid, H2SO4 (≥99%), potassium permanganate, and
KMnO4 (≥99%, powder of crystals) were purchased from Daejung Chemicals [24]. Vinyltri-
ethoxysilane (97%), vinyl acetate (≥99%), potassium persulfate, K2S2O8 (≥99.0%, powder
of crystals), phosphorus pentoxide, P2O5 (99%, powder), acetic acid (≥99%), ammonium
hydroxide, hydrogen peroxide, and H2O2 (30 wt.% in H2O) were purchased from Sigma
Aldrich Korea.

2.2. Preparation of BN-OH

BN (10 g) was mixed with H2SO4 (40 mL), K2S2O8 (5 g), and P2O5 (5 g) at 80 ◦C for
4.5 h. The solution was cooled until the temperature reached 20 ◦C. Then, 1 L of distilled
water was poured into the solution and left overnight. Then, the solution was washed with
vacuum filtration to adjust to pH 7~8. The BN was obtained after drying in a convection
oven at 50 ◦C overnight. As-prepared BN (30 g) was mixed with H2SO4 (400 mL) and
KMnO4 (30 g) for additional oxidation. This solution was heated for 2 h at 35 ◦C. Then, 1 L
of distilled water was added and the solution was mixed for 2 h. Finally, 20 mL of 30 wt.%
H2O2 was poured into the solution. After this step, the solution became white in color.
This solution was washed with 10 wt.% HCl and distilled water until the pH was about
7~8. BN-OH was obtained after drying in a convection oven overnight.

2.3. Preparation for Grafting Vinyltriethoxysilane on BN (VTES-BN)

BN was functionalized with vinyltriethoxysilane (VTES) via the hydrolyzation and
condensation of VTES. Then, 10 g of BN-OH was dispersed in ethanol (350 mL) and
distilled water (150 mL). Then, VTES (5 mL) was added to distilled water (20 mL) and the
pH of the solution was adjusted to 4~5 using acetic acid at 50 ◦C for 30 min. Hydrolyzed
VTES was added to the BN-OH solution and ammonium hydroxide was added to adjust
the pH to 9~10 to condense the VTES and the hydroxyl group of BN-OH. After these steps,
the solution was washed with ethanol three times and dried in a convection oven at 50 ◦C
overnight.

2.4. PVA Grafting

PVAc was synthesized via the polymerization of vinyl acetate. Commercial soap
(0.025 g), potassium persulfate initiator (0.25 g), vinyl acetate (5 mL), and VTES-BN (10 g)
were mixed in distilled water (500 mL) at 80 ◦C for 1 h. To alcoholize PVAc, PVAc-BN (10 g)
and 1 M NaOH (80 mL) were dispersed in methanol (400 mL).

2.5. Fabrication of PEG Composites

PVA-BN, hexamethylenediamine, and PEG were mixed in ethanol at 80 ◦C until the
ethanol was evaporated. After evaporation, the mixture was poured into a Teflon mold
and dried at room temperature overnight.
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2.6. Characterization

Fourier-transform infrared (FTIR) spectra were collected on a Spectrum One spec-
trometer (PerkinElmer, Waltham, MA, USA). X-ray photoelectron spectroscopy (XPS) was
conducted to analyze the PSZ and silane coating on the A-BN composite using an ESCA
2000 XPS (VG Microtech, London, UK). The water contact angle was directly measured
using a contact angle goniometer (Rame-Hart, 100-00-(115/220)-S). The X-ray diffraction
(XRD, Karlsruhe, Germany) patterns were collected with a new D8-Advance (Bruker-AXS)
instrument at a scan rate of 1◦ s−1 with a 2θ range of 15◦–70◦ and Cu Kα1 radiation
(0.154056 nm). Composition of the samples was investigated by thermogravimetric anal-
ysis (TGA, TA Instruments, TGA-2050) at a heating rate of 10 ◦C min−1 in nitrogen flow.
A Sigma field emission scanning electron microscope (FE-SEM, Carl Zeiss, Oberkochen,
Germany) [25] was used to investigate cross sections of the composites and surface of
the filler. The thermal diffusivities of disk-shaped samples were measured via laser flash
analysis (LFA) at room temperature using a LFA 467 NanoFlash light flash apparatus
(Netzsch, Selb, Germany). With the specific heat capacity (Cp) at 20 ◦C, latent heat was
measured via differential scanning calorimetry (DSC) using a DSC-7 differential calorime-
ter (PerkinElmer, USA). The bulk densities of the composites were measured using the
water displacement method. The thermal conductivity of each sample was calculated by
multiplying its density and Cp by its thermal diffusivity.

3. Results and Discussion
3.1. Grafted Fillers’ Analysis
3.1.1. Water Contact Angle and FTIR

The water contact angle (WCA) was measured to investigate the hydrophilicity of
the fillers. The filler was fabricated into a pellet using a hot press. Then, water droplets
were dropped onto the surface of the filler pellet. The WCA of raw BN and PVA-BN was
about 74◦ and 57.2◦, respectively. Water permeated through the filler pellet easily after
PVA grafting, which decreased the WCA. This decrease was due to the hydroxyl groups in
the PVA.

FTIR curves of the samples are shown in Figure 1c. Raw BN had characteristic peaks
representing the out-of-plane B-N-B bending vibration at 820 cm−1 and the in-plane B-N
stretching vibration at 1360 cm−1. Peaks at 1728, 1380, and 1220 cm−1 were detected in
PVAc-BN, and were also in the raw PVAc curve. Characteristic peaks of O–H, C–OH, C–H
appeared in the PVA curve. These peaks were also present in the PVA-BN at 3400 (O–H),
2950, 1380 (C–H), 1090 cm−1 (C–OH).

3.1.2. XPS

XPS results are shown in Figure 2. The B-OH peak detected at 191.5 eV formed from
the oxidation process, which bridged the BN and VTES. In addition, four fitting peaks were
observed in the Si 2p deconvolution of VTES-BN. Peaks at 101.0 eV, 102.5 eV, 103.3 eV, and
104.4 eV corresponded to Si–C, Si–OH, Si–O–B, and Si–O–Si, respectively [26]. The presence
of Si-O-B confirmed bonding between the BN and VTES. The XPS results of PVAc-BN and
PVA-BN are also depicted in Figure 2c,d, which were similar because PVA and PVAc have
similar structures. Both spectra exhibited C–O (286.5 eV), C–Si (284.0 eV), and ester group
(289.0 eV) peaks [27]. However, the intensity of the C–O and ester group peaks changed
when PVA was converted into PVAc because PVA has many more C–O groups. This peak
change suggests the successful conversion of PVAc into PVA.
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3.1.3. TGA and Morphology

TGA was used to investigate the surface-modified BN quantitatively. Raw BN was
thermally stable such that it did not lose weight until the temperature reached 800 ◦C.
However, the weight of VTES-BN started to decrease after 270 ◦C. The decomposition of
VTES-BN caused the weight loss [28]. In addition, significant weight loss occurred in the
case of the PVAc-BN and the PVA-BN.

The morphology of fillers was investigated through FE-SEM. Raw BN had a smooth
surface, as shown in Figure 3b. However, the morphology of PVA-BN was different from
the image of raw BN. Polymerized PVA covered the surface of BN in the case of PVA-BN.
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Figure 3. (a) TGA graph of fillers and FE-SEM image of fillers. (b) Raw BN, (c) PVA-BN.

3.1.4. XRD

XRD was used to investigate possible changes in the crystal structures of BNs. As
shown in Figure 4a, characteristic peaks such as (002), (100), (101), (102), (004), (110), and
(112) were present. [29] PVAc-BN had no differences compared to h-BN because the raw
PVAc only showed a weak peak around 2θ = 22.5◦ and this peak did not appear in the XRD
graph of PVAc-BN. However, there was a different peak in the XRD graph of the PVA-BN.
Raw PVA had a sharp peak around 2θ = 19.5◦, which also appeared in the XRD graph of
the PVA-BN. This was because the PVA was partially crystalline on formation [30].

3.2. Properties of the PEG Composites
3.2.1. Morphology

The morphologies of PEG composites were investigated by cross-sectional FE-SEM
imaging. The neat PEG image exhibited a spotless and clean structure (Figure 5a). Figure 5b
shows the image of the BN/PEG composite. The affinity between the BN and the PEG was
investigated in these images. There were many voids and cracks because the raw BN had
poor compatibility with the polar PEG. After PVA grafting and cross-linker addition onto
the surface of the BN, the cross section of the PEG composite was dramatically changed.
Hexamethylenediamine bridged the PEG and PVA grafted onto the BN via hydrogen
bonding between the amine group and the hydroxyl group. This improved the interfacial
adhesion between the filler and the matrix, thus reducing voids and cracks (Figure 5e).
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Figure 5. FE-SEM cross-section image. (a) PEG, (b) BN/PEG, (c) P-c-BN/PEG, (d) magnified image of PEG, (e) magnified
image of BN/PEG, (f) magnified image of P-c-BN/PEG.

3.2.2. Thermal Properties
Thermal Stability

DSC was used to measure the thermal properties of the composites during heating.
Endothermic peaks were observed around 60 ◦C due to melting (Figure 6a). The melting
temperatures (Tm) of the PEG composites were obtained from the endothermic curves
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measured by DSC. The Tm of the pristine PEG was around 60 ◦C. The Tm of the BN/PEG
shifted approximately 2 ◦C higher. The incorporation of filler into the matrix increased the
Tm of composites. The filler hindered the mobility of the polymer chains. In the case of
P-c-BN/PEG, the hydrogen bonding between the hexamethylenediamine and the hydroxyl
group of the PEG degraded the chain mobility of the polymer matrix. Thus, the polymer
chain required extra heat for movement compared to samples without hydrogen bonding.
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As mentioned in previous literature, the melting enthalpy(∆Hm) is important for
PCMs such as PEG [31]. The ∆Hm of the pure PEG was 176.0 J/g and the ∆Hm value
decreased to 152.6 J/g and 137.5 J/g for BN/PEG and P-c-BN/PEG, respectively. This
decrease may have occurred due to steric effects, which changed the structure of the
polymer chains. At temperatures above Tm, the mobility and the free volume of the
polymer matrix increased, which led to the decrease of ∆Hm. This effect was related to
the reduced Tm of the PEG/BN. Additionally, in the case of P-c-BN/PEG, the interactions
between the filler and the matrix decreased the free volume of polymer chain. Significant
interactions between the filler and the matrix did not occur due to the apolarity of raw BN.
However, the increased polarity due to the PVA grafting onto the surface of BN generated
hydrogen bonding, which decreased the free volume of the polymer chain. This can reduce
∆Hm according to Equation (1):

∆Hm = β′ ∆v (1)

where β′ is a constant and ∆v is the variation in the free volume of the polymer [32].
Thermal stability is also important for PCMs. To investigate the thermal stability of

our samples, samples were heated on a hot plate (Figure 6b). Conspicuous shape changes
were not detected at temperatures below Tm (30 ◦C). However, raw PEG started melting at
80 ◦C and lost its shape. This phenomenon was more severe at low filler fractions. As the
filler fraction increased, the steric effect hindered the mobility of polymer. However, in the
case of P-c-BN/PEG, the composite maintained its shape well compared to other samples.
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Thermal Conductivity

The thermal diffusivity of samples was measured using LFA. The thermal conductivity
was obtained using the thermal diffusivity and Equation (1) [33].

K = α ρ Cp, (2)

where K represents the thermal conductivity of the composite, α represents the thermal
diffusivity of the composite, ρ is the density of the composite, and Cp is its specific heat
capacity.

Figure 7a shows the heat transferring performance of PEG composites. The thermal
conductivity of the composites monotonically increased as the filler fraction increased. The
thermal conductivity of PEG/BN composites at 10, 20, and 30 wt.% were 0.35, 0.46, and
0.61 W/mK, respectively. The thermal conductivity was improved 165% after addition
of 30 wt.% of raw BN. The addition of the BN into the PEG built bridges between the
polymer chains, and BN bridges improved the heat transfer in BN/PEG composites. This
phenomenon occurs more frequently at high filler fractions. However, the compatibility
between the BN and the PEG was poor. It can cause phonon scattering and decrease the
heat transfer efficiency. This fact was confirmed by the FE-SEM image of the BN/PEG
composite cross section, which showed the presence of cracks and air voids around the
interface between the BN and the PEG matrix. Because the thermal conductivity of air is
very low (thermal conductivity of air = 5 × 10−5) [34], voids and cracks can interrupt the
heat flow path.
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Figure 7. (a) Thermal conductivity of composites, (b) theoretically expected densities and experimental densities, (c) void
fraction of fabricated composites.

After PVA grafting and cross-linking, the voids and cracks were removed. The
presence of polar PVA and cross-linking due to hydrogen bonding improved the affinity
between the BN and the PEG. Thermal conductivity of the composites was 0.48, 0.62, and
0.89 W/mK at 10, 20, and 30 wt.% filler fraction, respectively. The thermal conductivity
enhancement (TCE) from PVA grafting and cross-linking was 34, 31, and 52% for the 10, 20,
and 30 wt.% filler fractions. At higher filler fractions, the amount of grafted PVA and the
number of cross-linked particles was higher. Thus, the TCE was the highest at the 30 wt.%
filler fraction.

Void fraction was calculated from the experimental density and theoretical density
according to following equations:

ρtheoretical = 1/[(Wfiller/ρfiller) + (Wmatrix/ρmatrix)], (3)

and void fraction = (ρtheoretical − ρexperimental)/ρtheoretical (4)
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where Wfiller and Wmatrix are the weight fractions of the filler and the epoxy matrix, respec-
tively, and ρfiller, and ρmatrix are the densities of the filler and the epoxy matrix, respectively.
The void fraction was decreased because of surface modification and cross-linking.

4. Conclusions

In this study, a thermal conductive PCM was fabricated using PEG and BN. However,
the interfacial adhesion between the BN and the PEG was poor, which hindered efficient
heat conduction. PVA grafting and cross-linking the surface-modified BN with PEG
improved the interfacial adhesion. As a result, the thermal conductivity of P-c-BN/PEG
was 0.89 W/mK, which improved 286% compared to the raw PEG. In addition, the latent
heat, which is an important property for PCMs, decreased after PVA grafting and cross-
linking due to the decrease in the free volume of the polymer chain. However, this value is
still suitable for PCM applications.
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