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Abstract: In this paper, we propose a novel visual tracking method for unmanned aerial vehicles
(UAVs) in aerial scenery. To track the UAVs robustly, we present a new object proposal method that
can accurately determine the object regions that are likely to exist. The proposed object proposal
method is robust to small objects and severe background clutter. For this, we vote on candidate
areas of the object and increase or decrease the weight of the area accordingly. Thus, the method can
accurately propose the object areas that can be used to track small-sized UAVs with the assumption
that their motion is smooth over time. Experimental results verify that UAVs are accurately tracked
even when they are very small and the background is complex. The proposed method qualitatively
and quantitatively delivers state-of-the-art performance in comparison with conventional object
proposal-based methods.

Keywords: unmanned aerial vehicles; object tracking; object proposal voting

1. Introduction

The objective of object tracking is to estimate the exact location and size of an object of
interest in an image over time, where the object can be more accurately tracked if only the
areas with a high probability of object existence are considered in the image. Subsequently,
conventional visual trackers have employed object proposal methods [1]. The goal of
object proposal was to determine if object regions exist given an image and, if they exist,
to estimate positions and scales of these object regions. To localize the object regions,
conventional object proposal methods [2] search for a set of bounding boxes of object
candidate regions instead of examining all positions in an image. However, these object
proposal methods are very sensitive to complex background clutter in the image and
cannot accurately propose areas of small-sized objects. Moreover, if the objects and their
background share similar appearances, conventional approaches frequently propose the
background as the object area. Consequently, the visual tracking accuracy reduces owing
to inaccurate object proposals.

To overcome this issue, we propose a visual tracking method that can track small
unmanned aerial vehicles (UAVs) [3–11] using a new object proposal algorithm. To make
object proposals robust to various factors that interfere with visual tracking, we conduct
object proposal voting (Figure 1b) where areas with high probabilities of objects being
presented have more votes, whereas areas where objects are unlikely to exist have fewer
votes. Based on these proposal results, a small UAV can be accurately tracked under
various challenging visual tracking environments. For example, as shown in Figure 1a,
the target object marked with a red circle is very small and its appearance is very similar to
that of its background. Thus, conventional methods easily propose background areas as
object areas, as shown in the green boxes of Figure 1c. In contrast, our method generates
the object proposal voting image in Figure 1b, where object regions have more votes, which
produce areas in the image that are brighter than the background regions. By thresholding
the object proposal voting image, our method proposes a single object area, as shown in
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the blue box in Figure 1d. Based on the estimated object region, our method can accurately
tack the target.

The contributions of our method are summarized as follows:

• We propose a novel object proposal algorithm called object proposal voting (OPV). As
a result that voting strategies are typically insensitive to noise, the proposed OPV is
robust to background clutter and can detect small-sized objects.

• We present a visual tracking system based on the proposed OPV to track small-sized
UAVs, such as drones in real-world environments.

The remainder of this paper is organized as follows. We relate conventional object
proposal methods with the proposed method in Section 2. Section 3 describes object
proposal baselines, while Section 4 proposes a novel OPV method. In Section 5, we present
a new visual tracking method based on the proposed OPV. Section 6 describes experimental
results and Section 7 concludes our paper.

(a) Input (b) Object proposal voting image

(c) Conventional result (d) Our result

Figure 1. Basic concept of the proposed method.

2. Related Work
2.1. Object Proposal Methods

To propose object-like areas, BING [2] assumed that objects could be represented by
closed boundaries. EdgeBox [12] extracted edge information in an image and attempted
to find closed edges. Rantalankila et al. [13] presented a method that generates object
segmentation proposals. Hosang et al. [14] summarized the advantages of several object
proposal methods. Kwon and Lee [1] presented a new boundary extraction method
for object proposals. Recently, deep learning-based object proposal approaches have
been actively studied [15]. For example, Pirinen and Sminchisescu [16] used a deep
reinforcement learning method to implement region proposal networks for object proposals.
In contrast to these methods, our method is robust to severe background clutter because the
method uses a voting scheme. In addition, the proposed voting algorithm can be integrated
into existing object proposal frameworks including the methods described earlier.

2.2. Object Proposal-Based Visual Trackers

Hua et al. [17] introduced a visual tracking method based on object proposals. How-
ever, no explicit mechanism for ignoring background clutter exists. Liang et al. [18] adopted
BING object proposal methods for visual tracking. Kwon and Lee [1] used EdgeField object
proposal algorithms for data association between consecutive frames. However, the perfor-
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mance of object proposals in these cases was very sensitive to the background clutter. In
contrast, our method overcomes this issue by using a novel object proposal algorithm.

2.3. Generic Visual Trackers

SCM [19] combined sparsity-based discriminative classifiers with sparsity-based gen-
erative models to cover appearance changes in target objects. Struck [20] presented a
visual tracking method based on a structured output support vector machine, which en-
ables to couple label prediction with object position estimation. TLD [21] transformed
visual tracking problems into a combination of tracking, learning, and detection problems.
Tracking aims to associate similar detection results across consecutive frames, whereas
detection determines target areas. Learning updates detectors to reduce errors. ASLA [22]
represented target appearances using a novel alignment-pooling method, in which par-
tial and spatial structures of target appearances are exploited to deal with occlusion and
geometric deformation. CXT [23] exploited distracters and supporters using sequential
randomized forests. Distracters make visual trackers to drift into background regions, thus
they should be avoided during visual tracking. Supporters help visual trackers to find
foreground regions, thus they can improve visual tracking accuracy. VTS [24] sampled
multiple visual trackers using Markov Chain Monte Carlo methods by proposing different
appearance, motion, state, and observation models, in which these trackers run interac-
tively to track target objects in real-world scenarios. VTD [25] decomposed conventional
visual tracking models into different combinations of basic appearance and motion models,
in which each combination deals with a particular appearance and motion changes in
target objects. CSK [26] employed circulant matrices for visual tracking, which enables
fast learning and detection. LSK [27] selected representative bases from a static sparse
dictionary for visual tracking, which is updated adaptively over time. LOT [28] proposed
a visual tracking method based on a probabilistic model to handle different variations
especially in deformable objects. SiamDW [29] used deeper and wider neural networks
for visual tracking, in which receptive fields and network strides are adaptively controlled
via residual modules. SiamRPN++ [30] adopted ResNet architectures with layer-wise and
depth-wise feature aggravation for multi-level feature fusion. SINTop [31] required no
appearance model updating for visual tracking and simply found the best patch, which
is mostly similar to the initial target patch, using a trained matching function. DAT [32]
presented attention-based visual trackers using a reciprocative learning algorithm, which
focus more on temporally representative features. TADT [33] introduced regression and
ranking losses with Siamese networks to generate target-aware and scale-sensitive features
for visual tracking. ECO-HC [34] reduced the number of network parameters and compu-
tational complexity in visual tracking by utilizing factorized convolution operators and
compact generative models. COT [35] developed continuous convolution filters defined
in in a continuous spatial domain, which can fuse multi-level deep features. In contrast,
our method uses a simple object proposal voting scheme without complex deep neural
architectures for visual tracking.

3. Object Proposal Baseline

The object is characterized by a closed boundary when its edge component is extracted.
Subsequently, if the closed curve can be accurately found in the image, candidate object
regions can be determined precisely. Therefore, it is necessary to find a closed curve more
accurately to propose an object region candidate group. Hence, in this study, EdgeField [1]
is adopted, which smoothens the energy distribution of the objective function by blurring
the image. This blurring process does not cause images to lose their details because we
change a single channel-based image (i.e., gray image) to multiple channel-based images
(i.e., thresholded binary images at multiple intensity levels), and each channel preserves its
own information even after blurring. To create multiple channels, we set the threshold of
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an image at the l-th intensity level at time t, Il
t , which yields multiple thresholded images,

as follows:

Il
t(·) =

{
255 if It(·) ≥ l
0 if otherwise

. (1)

Subsequently, we apply the Gaussian blurring to each thresholded image, as follows:

Il,t
b = Il

t ~ Gσ, (2)

where Gσ denotes a Gaussian kernel with variance σ and ~ is a convolution operation. Note
that blurring smoothens the energy landscape for edge extraction, which indicates a geomet-
ric shape of the objective function for edge extraction. As the last step, the closed boundaries
in Il,t

b are found by conventional contour detection functions Contour (e.g., [36]).

Ol,t =
{

Ol,t
j

}|Ol,t|
j=1

∼ Contour
(

Il,t
b

)
, (3)

where Ol,t denotes a set of object proposals obtained for an input image Il,t
b and |Ol,t|

denotes the number of object proposals. The contour detection functions Contour in (3)
produce binary images using border-following algorithms, in which connected pixels for
object regions (background regions or holes) have values of 1 (0). From this binary image,
the function extracts borders that split 1 and 0 regions, which yield border description im-
ages. Subsequently, each border in border description images are converted into bounding
boxes that compactly fit the corresponding borders.

4. Object Proposal Voting

The object proposal algorithm presented in the previous section has difficulty in
finding appropriate object regions, if severe background clutter exists. Moreover, small-
sized object regions are rarely proposed in this algorithm. To overcome these problems,
a new object proposal voting algorithm is proposed.

Voting for a new object proposal consists of three steps:

• Step 1: The object candidate area more voted by the object proposal baseline (OPB)
increases the weight. The weight is initialized to zero for all areas, and then, a value
of 10 is assigned to a specific area whenever that area receives one vote.

• Step 2: All the weights by voting are computed and are expressed in the form of an
image with values ranging from 0 to 255. In this case, if the weight exceeds 255, it is
expressed as 255. This is called the voting image. Figure 1b shows the voting image.

• Step 3: An object proposal using the OPB is performed on the voting image again,
as shown in Figure 1d. As a result that the area with many votes is bright and the
area with less votes is dark, as shown in Figure 1b, object areas can be proposed more
accurately and robustly against the background.

The procedure outlined earlier can be formulated as follows. The vote grids {gk}
|V|
k=1

are determined by dividing an input image into a regular grid, where each grid has the
5× 5 size of pixels in all the experiments. A vote histogram V has multiples bins {bk}

|V|
k=1,

in which each bin corresponds to each grid. Then, bk = [gk; wk] with gk ∈ R2 as the k-th
vote grid and wk ∈ R as the corresponding vote weight. If the center position of the object
candidate area, which is obtained by the OPB, belongs to a particular bin gk, we increase
the corresponding vote weight wk by an amount of a predefined value c.

wk ← max[255, wk + c], (4)

where c is set to 10 for all the experiments and all vote weights {wk}
|V|
k=1 are initialized to

zero. The voting image Iv is constructed by assigning each vote weight for each bin as a
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value of the corresponding image grid, in which the value cannot be larger than 255 due
to (4).

Iv ∼ I(gk) = wk, for k = 1, · · · , |V|, (5)

where I(gk) assigns the value of wk to grid gk of an image. As the last step, the closed
boundaries in Iv are found using Contour in (3):

Ov =
{

Oj
}|Ov |

j=1 ∼ Contour(Iv). (6)

5. Visual Tracking Based on Object Proposal Voting

Object tracking is performed for the object candidate areas proposed by the object
proposal voting method. It is formulated based on the assumption that the position of an
object in a frame changes minimally in the adjacent frame. Thus, if the object position in
the current frame is known, the area closest to the object position in the current frame is
selected from candidate areas for object proposal in the next frame. In addition to tracking
the object by the similarity of the object positions in adjacent frames, more accurate results
can be obtained by assessing the similarity of the object appearances in adjacent frames.
For this purpose, we adopt a Markov chain Monte Carlo data association algorithm [37]
that can be run in realtime. We associate similar object proposals in terms of positions and
appearances across consecutive frames:

p(Oi, Oj) = exp
(
−d(Oi, Oj)

)
, (7)

where Oi and Oj are the i-th and j-th object proposals in the current and next frames,
respectively. The dissimilarity function d is designed as follows:

d(Oi, Oj) =∣∣g(Oi)− g(Oj)
∣∣
2 +

∣∣a(Oi)− a(Oj)
∣∣
2 +

∣∣w(Oi)− w(Oj)
∣∣
2,

(8)

where the first and second terms measure the l2-norm distance between two object propos-
als in terms of their positions and appearances, respectively. In (8), g(·) returns (x, y)-center
positions of bounding boxes, which are obtained by the proposed object proposal voting
method. a(·) returns appearance feature vectors of image patches described by the afore-
mentioned bounding boxes. We obtain appearance feature vectors from the 14-th feature
map of the VGG-19 network [38], which is pre-trained using the ImageNet dataset [39].
Each layer contains different features with various sizes, in which early convolutional
layers typically extract local (low level) features and later layers exhibit global (high-level)
features. Based on this observation, we use the 14-th feature map of the VGG-19 net-
work, because it can contain both local and global properties. w(·) returns voting weights
computer by (4), in which voting weights have high values if we vote the corresponding
regions many times. As a result that identical objects have similar voting weights across
consecutive frames, we also measure the l2-norm distance between voting weights using
the third term in (8). For visual tracking, we choose the best pair of object proposals, which
maximizes p(Oi, Oj) in (7):

(Ôi, Ôj) = argmax
i,j

p(Oi, Oj). (9)

Algorithm 1 illustrates a whole pipeline of the proposed visual method based on our
OPV. Table 1 summarizes notations used in this paper.
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Algorithm 1 Visual Tracking Based on OPV.

Input: Ot−1
v

Output: Ot
v and (Ôi, Ôj)

1: Obtain Ot
v using (6) at a current frame t.

2: for i = 1 to |Ot−1
v | do

3: Sample Oi from Ot−1
v .

4: for j = 1 to |Ot
v| do

5: Sample Oj from Ot
v.

6: Compute d(Oi, Oj) using (8).

7: end for

8: end for

9: Find (Ôi, Ôj) using (9).

Table 1. Description on notations.

Notation Description

Il
t Thresholded image at the l-th intensity level at time t

Il,t
b Gaussian blurred image of Il

t
Ol,t

j The j-th closed boundary of Il,t
b

Ol,t A set of all closed boundaries in Il,t
b

gk The k-th vote grid
bk The k-th histogram bin
wk Vote weight in bk
V Vote histogram
|V| The number of histogram bins
Iv Voting image
Ov A set of all closed boundaries in Iv

6. Experiment

To evaluate the proposed method (OPV: object proposal voting), we used our six UAV
datasets and a standard benchmark dataset (OTB) [40]. We compared the OPV method with
state-of-the-art deep learning-based visual trackers, SiamDW [29], SiamRPN++ [30], SIN-
Top [31], DAT [32], TADT [33], ECO-HC [34], and COT [35]. In addition, we also compared
the OPV method with non-learning-based visual trackers, including SCM [19], Struck [20],
TLD [21], ASLA [22], CXT [23], VTS [24], VTD [25], CSK [26], LSK [27], and LOT [28].

We adopted three evaluation metrics, which are precision plot, success plot, and area
under the curve (AUC) [40]. To illustrate the precision plot, we first compute the distance
between center locations of predicted and ground truth bounding boxes. Subsequently,
we determine the number of frames, in which the distance is less than a specific threshold.
To obtain the success plot, we first compute the overlap ratio of the predicted and ground
truth bounding boxes. Subsequently, we determine the number of frames, in which the
overlap ratio is greater than a specific threshold. The AUC metric indicates the entire area
under the success plot.

6.1. Ablation Study

We verified the effectiveness of the proposed object proposal voting in performing
visual tracking. For this experiment, we adjust the parameter c in (4); a small value of c
causes the voting process to make a smaller contribution to the object proposal results.
Table 2 shows the AUC of the proposed OPV using the OTB dataset, which verifies
that the proposed voting process considerably enhances the object proposal accuracy,
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and thus improves the visual tracking. We also examined the contributions of the position,
appearance, and vote weight terms in (8) to visual tracking using the OTB dataset. For
this experiment, we used different combinations of position, appearance, and vote weight
terms. As shown in Table 3, using the voting weight to calculate the distance enhances the
visual tracking performance.

Table 2. Visual tracking performance of the proposed OPV according to values of c in (8).

1 5 10 15 20

AUC 0.631 0.645 0.706 0.707 0.706

Table 3. Visual tracking performance of the proposed object proposal voting (OPV) according
to different settings for the terms in (8). OPVg, OPVg+a, and OPVg+a+w denote the proposed
visual tracker using position, position+appearance, and position+appearance+vote weight terms,
respectively.

OPVg OPVg+a OPVg+a+w

AUC 0.674 0.683 0.706

6.2. Quantitative Comparisons

Figure 2 shows a quantitative comparison of the proposed OPV with state-of-the-art
non-deep learning-based visual trackers. Our visual tracker considerably outperforms
other methods, of which performance mainly comes from the effectiveness of the proposed
OPV. Figure 3 shows a quantitative comparison of the proposed OPV with state-of-the-art
deep learning-based visual trackers. Our visual tracker is comparable to other methods;
our method is simple owing to complex deep neural networks not being employed.

Table 4 compared the OPV with other visual trackers using our UAV datasets, which
verified that the OPV outperforms other trackers if either small targets or severe back-
grounds exist. Other trackers easily missed the targets.
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Figure 2. Quantitative comparison on non-deep learning-based methods using the OTB dataset. We
compared the proposed method (OPV) with Sparsity-based Collaborative Model (SCM), STRUCtured
output tracking with Kernels (Struck), Tracking-Learning-Detection (TLD), Adaptive Structural Local
sparse Appearance (ASLA), ConteXt Tracker (CXT), Visual Tracker Sampler (VTS), visual trackibg
decomposition (VTD), Circulant Structure of tracking-by-detection with Kernels (CSK), Local Sparse
appearance model and K-selection (LSK), and Locally Orderless Tracking (LOT).
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Figure 3. Quantitative comparison on deep learning-based methods using the OTB dataset. We com-
pared the proposed method (OPV) with SIAMese network Deeper and Wider (SiamDW), SIAMese
Region Proposal Network (SiamRPN++), Siamese INstance search Tracker (SINT), Deep Atten-
tive Tracking (DAT), Target-Aware Deep Tracking (TADT), Efficient Convolution Operators (ECO),
and Continuous Convolution Operator Tracker (C-COT).

Table 4. Quantitative comparison using our unmanned aerial vehicle (UAV) datasets. The best results
are indicated in bold type.

SiamRPN++ DAT SiamDW ECO OPV

AUC 0.638 0.651 0.649 0.657 0.693

Table 5 compared computational costs of several visual tracking methods in terms of
FPS. The proposed OPV shows real-time performance and is considerably faster than other
deep learning-based visual trackers. This property mainly stems from the simplicity of
the proposed visual tracker, in which our method does not require complex deep neural
network architectures.

Table 5. Computational costs of OPV in terms of frames per seconds (FPS).

ECI C-COT SINT OPV

FPS 7 1 5 87

6.3. Qualitative Comparisons

Figure 4 presents sample results of the proposed OPV using our UAV datasets, which
contain very small UAVs under various visual tracking environments (e.g., severe back-
ground clutter (UAV datasets 1, 2, 3, 4, and 5), large scale changes (UAV datasets 4 and 5),
and moving cameras (UAV datasets 1 and 2)). As shown in Figure 4, the proposed OPV
can accurately track small targets, even if the background regions contain many objects
that appear similar to those of the targets.

Figure 5 shows visual tracking results over time for several UAV datasets. Our method
accurately detected and tracked UAVs, in which these objects could disappear and appear
again due to UAVs’ and camera motions. As shown in Figure 6a,b, although UAVs change
their sizes, our method robustly tracker the targets. As shown in Figure 6c, although UAVs
have very irregular motions, our method successfully tracker the targets.
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(a) UAV dataset 1 (b) UAV dataset 2 (c) UAV dataset 3

(d) UAV dataset 4 (e) UAV dataset 5 (f) UAV dataset 6

Figure 4. Qualitative results 1 using our UAV datasets. Red boxes denote visual tracking results of
the proposed method.

(a) UAV dataset 1

(b) UAV dataset 2

(c) UAV dataset 3

Figure 5. Qualitative results 2 using our UAV datasets. Red boxes denote visual tracking results of
the proposed method.
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(a) UAV dataset 4

(b) UAV dataset 5

(c) UAV dataset 6

Figure 6. Qualitative results 3 using our UAV datasets. Red boxes denote visual tracking results of
the proposed method.

Figure 7 demonstrates that the proposed method can successfully track UAVs with
medium or large size, in which large objects are relatively insensitive to background clutters
and object proposal methods can accurately estimate object candidate regions.

Figure 7. Qualitative results of UAVs with relatively medium or large size. Red boxes denote visual
tracking results of the proposed method.

7. Conclusions

In this paper, we presented a novel object proposal method called OPV for visual
tracking. OPV can enable the proposed visual tracker to track a small object regardless of
severe background clutter. Experimental results verify that our method outperforms other
conventional methods.
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