
Received December 27, 2020, accepted January 21, 2021, date of publication January 25, 2021, date of current version February 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054061

Learning Representation of Secondary Effects for
Fire-Flake Animation
MYUNGJIN CHOI 1, JEONG A WI 2, (Graduate Student Member, IEEE), TAEHYEONG KIM3,
YOUNGBIN KIM 2, (Member, IEEE), AND CHANG-HUN KIM 4
1Department of Computer and Radio Communications Engineering, Korea University, Seoul 02841, South Korea
2Graduate School of Advanced Imaging Science, Multimedia & Film, Chung-Ang University, Seoul 06974, South Korea
3CLO Virtual Fashion, Seoul 06039, South Korea
4Visual Information Processing-Dean of Department, Korea University, Seoul 02841, South Korea

Corresponding author: Chang-Hun Kim (chkim@korea.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government
[Ministry of Science and ICT (MSIT)] under Grant NRF-2019R1A2C1008244 and Grant NRF-2017R1A2B2005380.

ABSTRACT This paper proposes a new data-driven neural network-based fire-flake simulation model. Our
model trains a neural network using precomputed fire simulation data. The trained neural network model
generates fire flakes in appropriate locations and infers their velocity to make them appear natural to their
surroundings. The neural network model consists of a fire-flake generator and a velocity modifier. The fire-
flake generator uses the velocity, temperature, and density fields of the precomputed fire simulation as inputs
to determine the locations at which natural fire flakes would be generated. The velocity modifier takes the
velocity field of the precomputed fire simulation as input and infers the velocity of the generated fire flakes so
that they appear natural relative to the flame motions and surroundings. Our method adopts a neural network
to efficiently improve the fire-flake simulation, enhancing the performance while maintaining the visual
quality. Our model is approximately three times faster than the traditional fire-flake model. In particular, our
model is 30 times faster in the velocity modification step. Our method is also easier to implement than the
existing physically based fire-flake simulationmethod and can reduce the time spent by artists and developers
on their applications.

INDEX TERMS Fire-flake simulation, visual effect, visual simulation, machine learning, supervised
learning.

I. INTRODUCTION
Fire flakes are small lightweight carbon-based particles that
fall or float in the air during combustion of carbon-based
materials. They occur because of external physical impacts or
explosions caused by vapor or internal gas expansion. A real-
istic natural-looking representation of fire flakes requires
depicting the dynamic animated effects of fire. However,
fire-flake motion is complex and nearly unpredictable. Thus,
artists attempting to represent fire flakes in a natural way exert
a significant amount of time on trial and error.

Realizing an accurate simulation of fire flakes is chal-
lenging; however, their physical attributes can be inferred.
Kim et al. [1] proposed a method to generate fire flakes
that fit naturally in the surroundings. Abrupt changes in
physical components are analyzed to generate fire flakes in

The associate editor coordinating the review of this manuscript and

approving it for publication was Yunjie Yang .

appropriate locations, and the velocity field is analyzed to
give the fire flakes a natural-looking velocity. Although the
method proposed by Kim et al. can accelerate the work of
artists, it does not work in real time because the grid-based
simulation of the method requires an exponential increase in
input data to generate higher-resolution and higher-quality
fire flakes. Thus, the method has limited feasibility to obtain
faster results.

Hence, machine learning has been applied to secondary-
effect simulations, ranging from data-driven simulations
based on neural networks trained with data generated by the
existing simulation method to training on real-world physical
phenomena, which are difficult to illustrate with algorithmic
neural network modeling. Ultimately, these studies aimed to
obtain faster and more realistic results; however, they do not
entirely succeed.

Following recent research trends, we employed a neural
network model to overcome the limitations of traditional

17620 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0389-3911
https://orcid.org/0000-0001-6199-5222
https://orcid.org/0000-0002-2114-0120
https://orcid.org/0000-0002-9630-9031
https://orcid.org/0000-0002-5797-9753

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

fire-flake simulations [1]. Our method reduces the compu-
tational cost and maintains visual fidelity. Moreover, the pro-
posed network is easy to implement, enabling users to easily
employ their desired fire simulation model. Furthermore,
it combines the existing method’s multiple parameters into
one parameter for better usability.

Our method consists primarily of two neural network com-
ponents. First, the fire-flake generator analyzes the input
velocity, temperature, and density fields to determine the
locations at which fire flakes should be generated. This
module calculates the probability of fire-flake generation in
each simulation grid. Next, the velocity modifier analyzes the
input velocity field and uses polynomial regression to infer
the natural velocity of the generated fire flakes. Our neural
network model was optimized for the fire-flake simulation,
making it easy to implement, and it operates 2.4 times faster
than the existing method.

II. RELATED WORK
A. FLUID SIMULATION
Fluid simulation is an important field of study and has been
extensively investigated [2]–[4]. Stable fluids [5] are widely
used in computer graphics and form a part of grid-based fluid
simulation, which is a representative Eulerian method. The
material point method, which is often used with the grid-
based method, is used to depict complex fluid-like materials,
such as snowflakes [6]–[8]. Furthermore, smoothed-particle
hydrodynamics is used as a modified Lagrangian method [9],
and vortex filaments [10], [11] are widely used to portray vol-
umetric flows. Research efforts have been further extended to
methods of preserving kinetic energy [12], [13], accelerating
pressure projection [14], [15], and increasing advection accu-
racy [16]–[18]. In particular, VFX-related studies [19]–[21]
have been acknowledged by artists for their ease of use,
efficiency, and desirable results.

Accordingly, our study focused on increasing artists’ effi-
ciency by reducing the computational cost while maintaining
the quality of the existing method. This would allow artists to
quickly view the results of their designed scenes.

B. FIRE SIMULATION
Research regarding realistic fire simulation methods com-
menced in the mid-1990s [22]–[25]. Interactive fire sim-
ulations [24] have been created based on grid-based fluid
simulations [5]. Level-based fire simulation studies [26] have
successfully depicted realistic fire motion by modeling the
velocity and pressure at the interface of the fuel and burned
products. Subsequently, the detonation shock dynamics tech-
nique [27] was proposed to depict flame-wrinkled patterns.
In addition to the depiction of fire, techniques useful to artists
have been investigated, enabling the modeling of a burning
rigid body and surface with volumetric grids [28]–[30].

These studies have led to high-quality fire simulations;
however, the simulations require a significant amount of time.
Hence, a multi-GPU framework for parallelization of the

particle simulation was proposed to accelerate the existing
hybrid simulation [31]. Since then, the focus of fire sim-
ulation research has shifted from the depiction of fire to
increasing artists’ efficiency. A temperature control method
to simulate flames in the form of target shapes was pro-
posed [32]. Thereafter, a method to generate fire motion and
natural fire flakes as a secondary effect of fire simulation
was proposed [1]. Recently, a method to analyze actual input
videos and animated fire videos was proposed to create phys-
ical fields and fire flakes that appear as natural as those from
the input videos [33].

However, none of the aforementioned methods operate in
real time. They require a significant amount of time to obtain
andmodify the results. Hence, in this study, we adopted a neu-
ral network model to obtain the desired results more quickly
and to address the challenges of non-real-time methods.

C. MACHINE LEARNING-BASED MODEL FOR FLUID
SIMULATION
Fluid simulation involves multiple steps, including data
generation, equation solving, and rendering to create the
final outputs. In particular, the equation solver is important
for solving fluid mechanics with a range of approaches,
such as Lagrangian and Eulerian approaches based on the
Navier–Stokes equation for advection and projection.

Researchers have used machine learning to facilitate fluid
simulation. However, as several steps must be performed
to obtain the final outputs, machine learning may not com-
pletely replace the existing method. Some researchers have
proposed methods to partially replace each simulation step
with machine learning. In grid-based fluid simulation, the
projection step is replaced with a neural network [34] to
successfully accelerate the computation compared with the
traditional method. Furthermore, in Eulerian fluid simulation,
the pressure is determined using unsupervised learning and
a convolution neural network (CNN) [35], in which stable
results are obtainedmore quickly. A long short-termmemory-
based method [36] was proposed to predict the pressure
change in multiple subsequent time steps and significantly
improve the speed of the pressure solver.

Following the research on partially applying machine
learning to the simulation steps, a method was proposed
that used regression forests for approximation rather than
numerically solving the Navier–Stokes equation [37]. This
approximation method in the Lagrangian system success-
fully inferred the velocity and position of particles in
the next time step. Similarly, a neural network has been
used [38] to approximate the fluid particle behavior or
nonlinear dynamics of the existing method. A conditional
generative adversarial network-based method [39], [40] was
proposed to solve two-dimensional advection–diffusion prob-
lems. Furthermore, studies have been conducted on the
space-time deformation of interactive liquids [41]. A method
using CNN-based descriptors was proposed to obtain pre-
computed patches [42]. TempoGAN [43] was proposed
as a high-quality high-resolution simulation method that

VOLUME 9, 2021 17621

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

FIGURE 1. Generating fire-flake animation natural to flames and surroundings in appropriate locations with neural-network-based fire-flake simulation
model.

FIGURE 2. Structures of our neural networks.

synthesizes four-dimensional physics fields using neural net-
works. A novel generative model was also proposed to
synthesize fluid simulations from a set of reduced param-
eters [44]. The first transport-based neural style transfer
algorithm for volumetric smoke data was proposed to trans-
fer features from natural images to smoke simulations [45].
Subsequently, an end-to-end learning approach for the overall
simulation process was proposed [46]. Furthermore, various
features of the Lagrangian fluid simulation data were trained
via CNN.

III. NEURAL NETWORK-BASED FIRE-FLAKE MODEL
The proposed neural network-based fire-flake model com-
prises two neural network components and an integration
step [47]. The neural network components are a fire-flake
generator and a fire-flake velocity modifier. The structures
of the neural networks are illustrated in Fig. 2. The fire-
flake generator analyzes the input temperature, density, and
velocity fields to determine the appropriate locations for fire
flakes to be generated. Once the fire flakes are generated,
the velocity modifier analyzes the input velocity field and

temperature field to infer the velocity of each fire flake to
naturally suit the flames and surroundings.

The integration step uses the Euler method to integrate
the newly inferred fire-flake velocity and determine the next
position. Next, each fire flake either moves to the calculated
position or is removed if it crosses the simulation boundary
or if its velocity decreases below a user-defined threshold
thrandom. These operations repeat in each frame.

Section 3.1 describes the structure of the fire-flake genera-
tor. Section 3.2 describes the structure of the fire-flake veloc-
ity modifier. Section 3.3 presents the data required to train
the two neural network components. Section 3.4 describes the
optimization to control the intuitive fire-flake generation and
improve its performance.

A. FIRE-FLAKE GENERATOR
The fire-flake generator G performs neural network-based
classification to determine the locations at which fire flakes
will be generated from precomputed fire simulation data. The
training data for the generator contain, for each grid position

17622 VOLUME 9, 2021

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

p, the indicator value, which indicates whether the fire flake
was generated l ∈ {1, 0}, and the input feature vector x,
comprising the fire velocity vfire, temperature t , and density
ρ. The generator G is trained on the input feature vector
X = {x1, x2, · · · , xp} and its target values (indicator l). After
training, the fire-flake generator receives the input vector X
to infer the probability of fire-flake generation Ps in each
simulation grid position p as follows:

Ps(li|xi) ∼ P(li|ys(xi|ws)) (1)

ys(xi|ws) refers to the target probability distribution denoted
by the weight ws and i is the grid index. Ultimately, this
can be deduced from the likelihood function in line with
L = {l1, l2, · · · , lN } as follows:

L(L|X) =
N∏
i=1

P(li|ys(xi|ws)) (2)

To maximize the likelihood, we determine the probability of
fire-flake generation using Softmax. The fire-flake generator
G outputs the probability vector pertaining to the generation
or non-generation of flakes from the feature vector x in the
grid position p. Subsequently, the loss is calculated using the
binary cross-entropy function based on the generator outputs
and the target value (indicator value l).

Thus, after being trained on the training data for fire-flake
generation distribution, the generator G infers the generation
of fire-flakes based on the generation probabilities in specific
grid positions.

B. VELOCITY MODIFIER
The velocity of a fire flake can be modeled as a summation
of its external forces. According to the existing method [32],
the external forces are the fire velocity, lift force, vorticity,
and buoyancy, which can be represented as follows:

Ftotal = Fflow + Fdrag + Flift + Fbouy (3)

F(v, t)total = cflowv+ cdrag|v′|
2v′dir

+clift tv× ωflow + cbouytvup, (4)

where cflow is the flow coefficient, cdrag is the drag force
coefficient, clift is the lift force coefficient, and cbouy is the
buoyancy coefficient. v is the velocity of the fire flake, t is the
temperature of the fire flake, and |v′| is the relative velocity
between the fire-flake velocity and vflow. vflow is the velocity
of the fire simulation andωflow = ∇×vflow, whereas vup is the
upward normal vector. Therefore, Ftotal can be represented
as a vector function. Hence, unlike the previous work [47]
based on a normal distribution, our neural network is based
on polynomial regression.

To calculate Ftotal using Equation (4) in grid position p, the
physical quantities of the grid position p and its neighbors are
required. Hence, the fire velocity values of the grid position
p and its six neighbors were used for training (see Fig. 3).
The proposed velocity modifierM does not instantly infer

the fire-flake velocity in the current frame. Instead, it infers

FIGURE 3. When calculating Ftotal , we use the velocity data of seven grid
positions, as shown by deleting all edge position cubes (red) in (a). The
results appears as in (b).

the change 1v in fire-flake velocity between the preced-
ing and current frames. Hence, the training data contain
the per-particle velocity differences between the fire flakes
1vflake = vt+1flake − vtflake for the target value and the input
feature vector x′ consisting of the per-grid fire velocities
Vt
fire = {v

t
fire,p1, v

t
fire,p2, · · · , v

t
fire,p7} and per-particle fire-

flake velocities vtflake at time step t . The modifierM is trained
with the input feature vector X′ = {x′1, x′2, · · · , x′N } and
its target values (1vflake). Thereafter, once the feature vector
X′ enters the velocity modifier as an input, the output is not
the absolute value of the advected velocity but the change in
velocity, 1V = {1v1,1v2, · · · ,1vN }. As the data inputs
may have different velocity distributions, inferring the change
instead of the absolute value allows the velocity modifier to
be applied more generally.

Subsequently, to minimize the gap between the inferred
velocity difference and the target value, the following least-
square error is used:

Error =
N∑
i=1

|1vi −M (x ′i)|
2 (5)

M (x ′i) is the inferred velocity difference, and |1vi| is the
target value. Subsequently, the inferred value is used to update
the velocity and position of a flake as follows:

vt+1flake = vtflake +1vt (6)

pt+1 = pt + vt+1flake ·1t (7)

where 1vt is the velocity difference from modifier M. If a
fire flake is positioned outside the simulation domain in this
step, it is eliminated.

C. TRAINING DATA
We arranged the training data based on the traditional fire
and fire-flake simulation framework [1]. The training data
included six fire scenes inwhich themesh-shaped fuel was set
alight and some meshes were in motion, as shown in Fig. 4.
All scenes, including the boundaries, had a grid resolution of
65 × 130 × 130. Furthermore, 300 frames were used for the

VOLUME 9, 2021 17623

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

attack and down scenes, whereas 100 frames were used for
the other scenes (see Table 1).

As inputs to the fire-flake generator, the velocity, temper-
ature, and density fields of the precomputed fire simulation
data were inserted into the feature vector. Therefore, the input
feature vector had five components. The target values for
the generation or non-generation of fire flakes formed the
indicator value l. We set the target values to 1 for fire flakes
generated from the traditional fire-flake simulation across all
frames and grids, and we set the target value to 0 when no
fire flakes were generated. We saved the grid index values
and binary data. We also generated binary data for all frames
in each simulation and saved the feature vector data for the
corresponding grid indices. Next, we performed 1:1 sampling
using generated and non-generated fire-flake data, adjusted
the ratio equally, and finalized the training data.

Unlike the fire-flake generator, the only input for the
velocity modifier was the velocity value. The input fea-
ture vector consisted of the flake velocities when flakes
were present in the grid and the fire velocities for the grid.
The fire velocities included the velocity of the reference
grid and those of the six neighboring grids3. Therefore,
the input feature vector had 24 components. The fire-flake
velocity change between the preceding and current frames
before and after their advection was used as the target.
In addition to the advection of the initially generated flakes,
we backtracked continuous advection steps between frames
to maximize the training data for the velocity modifier.
Subsequently, by analyzing the velocity distribution across
the six scenes, we performed sampling to place each distri-
bution in the training data as regularly as possible and final-
ized the training dataset. In developing the training data, the
1:1 sampling and velocity difference returned encouraging
results.

As different forms of feature vectors were used for the
fire-flake generator and velocity modifier, we collected and
saved the relevant data separately. There were 2,507,070 fire-
flake samples and 1,757,892 velocity modifier samples in the
training data, of which 501,411 and 351,578 were used for
the validation datasets, respectively.

D. OPTIMIZATION
In the traditional fire-flake simulation [1], there are three user
parameters to control fire-flake generation. The parameters
consist of random variables, the difference of fire energy and
temperature for controlling the number of fire flakes to be
generated. The user can set these variables manually to obtain
different results. However, it is difficult to predict the results
that result from a given combination of variables. Our method
addresses this issue by combining the three parameters into
a single parameter. Accordingly, the training data were gen-
erated from a scene with a large number of fire flakes, and
a random variable r was assigned to a new fire-flake. After
the generatorG is trained with this data, it generates new fire
flakes and we eliminate the fire flakes that fail to satisfy the

user control parameter thrandom as follows:

fire-flake =

{
not eliminated, if r ≤ thrandom
eliminated, if r > thrandom

(8)

In this step, although we could enable the fire-flake generator
to view the entire grid in our model, we only allow it to deter-
mine whether to generate fire flakes in the grids where the
fire density is non-zero. This optimization method provides
faster overall performance.

IV. RESULTS
A. IMPLEMENTATION DETAILS
In this study, all processes were executed using an Intel
i7-8700 3.20 GHz CPU, NVIDIA GeForce GTX 1080 Ti
GPU, and 32 GB RAM. The animated fire-flake results were
rendered using Autodesk Maya 2016. We used the Tensor-
Flow deep-learning framework to build and train the fire-
flake generator and velocity modifier.

The details of each network structure are as follows. The
fire-flake generator contained three fully connected layers,
whereas the velocity modifier contained four. Each layer L
contained the learnable parameters weight wL and bias bL .
The layers were connected to the activation function σ and
can be represented as yL = σ (wLyL−1 + bL). The three
layers in the fire-flake generator contained 15, 5, and 2 nodes,
whereas the four layers in the velocity modifier contained 30,
24, 12, and 3 nodes. Both networks used ReLU as the acti-
vation function with a weight decay applied and ADAM as
the optimizer. The two networks were trained independently.
The learning rate of the generator was 10−5 and that of the
modifier was 10−4. Each was provided with 50,000 batches.
Furthermore, 10,000 and 300,000 training steps were used for
the generator and modifier, respectively.

B. LOCATIONS OF FIRE-FLAKES GENERATED IN FLAME
In a fire-flake simulation, fire flakes must be generated in
appropriate locations. Fire flakes are small particles created
during combustion, caused by internal and external impacts,
and they are generated both on the surface of and inside the
burning materials. Fig. 4 shows fire flakes generated in six
fire simulations with different inputs. As can be seen, all fire
flakes were generated appropriately on the surface and inside
the fire. In particular, excluding scenes #3 and #4 in Fig. 4, all
other scenes show that the fire location varied in each frame
because the fire was in motion. Fig. 1 presents the results of
scene #6 in Fig. 4 at an interval of 30 frames. Our model
generated fire flakes in appropriate locations without errors
despite the fire being in motion.

C. MOTION OF FIRE-FLAKES SYNCHRONIZED WITH
FLAMES
Once fire flakes are generated in accurate locations, the next
step is to generate harmonious motion of the fire flakes
in the velocity field. In Fig. 4, the fire flakes are moving
upward and are affected primarily by buoyancy in the absence

17624 VOLUME 9, 2021

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

FIGURE 4. Scenes #1 to #6, which are called attack, down, fireball, hellfire, rotating fireball, and running, respectively. The images show the fire-flake
simulation results from our model in time lapse.

of any external force. In contrast, in Fig. 5, the fire flakes
exhibit natural motion, which was inferred from the external
force. Fig. 5(c) shows the velocity field corresponding to the
images in the top rows. The proposed neural network model
inferred the natural motion from the external force from the
surroundings, although the external force was not considered
in the training.

As discussed in the Results section, the fire flakes gen-
erated in our model were visually natural. In this section,
we quantitatively evaluate whether our model is well-trained.

1) FIRE-FLAKE GENERATOR
The fire-flake generator received fire data inputs and returned
locations of the fire flakes to be generated in each frame.
To evaluate whether the number of newly generated fire
flakes was appropriate, we compared the number of new fire
flakes generated using our model with those generated using
the existing method, as shown in Fig. 6. To adjust the results

for a fair comparison, we set the value of thrandom so that
the numbers of flakes in the final frames were comparable.
The numbers of flakes generated in the running, fireball, and
attack scenes were comparable to those generated using the
existing method. Similarly comparable trends were obtained
for the other scenes.

Fig. 7 illustrates the total number of fire flakes generated in
the scene and rendered in each frame. Because the number of
fire flakes generated in a scene and visualized in each frame
were comparable between ourmodel and the existingmethod,
it can be concluded that our model successfully approximated
the trend of the training data. We measured the numbers
of flakes across the six scenes and set thrandom such that
the numbers of flakes in the final frames were comparable.
We found that our model performed well as it yielded results
that were comparable to those in the synchronized fire-flake
simulation.

In the hellfire, fireball, and rotating fireball scenes, the
numbers of flakes generated by the existing solver in the

VOLUME 9, 2021 17625

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

FIGURE 5. Illustration of fire flakes in motion affected by external force, a magnified view, and the velocity field.

FIGURE 6. Number of flakes newly generated in each frame with Kim et al. vs. our method.

FIGURE 7. Number of flakes to be rendered in each frame with Kim et al. vs. our method.

initial frames were greater than those in other frames. This
can be attributed to the fire simulation when the fuel source’s
velocity abruptly changes from the initial velocity of 0 to a
non-zero velocity in the next frame. Such sections were cor-
rected in the advection step of the existing solver. Nonethe-
less, in our model, the number of flakes increased seamlessly
following the first frame, and the generator successfully gen-
erated the initial flakes without any correction in the advec-
tion step.

2) VELOCITY MODIFIER
The velocity modifier infers the natural velocity of the previ-
ously and newly generated fire flakes in each frame. Subse-
quently, the integration step proceeds with advection from the
first to last frames. Hence, the velocity subjected to advection
in the preceding frame affects the fire-flake position in the

following frame. If errors in all the frames accumulate, the
obtained result in the final frame is highly likely to deviate
from the desired result. Thus, the velocity modifier is crucial
across the entire animation. A substantial gap between the
velocity of the fire in motion and that of the fire flakes makes
the scene appear unrealistic. Hence, the velocity of the fire
flakes must be comparable to the velocity of the fire to create
a natural scene.

For the evaluation, we calculated the average magnitude of
the velocity of the fire flakes to be rendered in each frame and
compared the results with those generated using the existing
method. If the magnitude of the fire-flake velocity changed
naturally across all frames, we set thrandom to a value compa-
rable to the result from the existing method per scene instead
of using a fixed value. As shown in Fig. 8, in all scenes,
the magnitude of the fire-flake velocity changed similarly to

17626 VOLUME 9, 2021

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

FIGURE 8. Average velocity of flakes to be rendered in each frame with Kim et al. vs. our method.

TABLE 1. Training data statistics and inference performance of synchronized fire-flake simulation vs. our method.

FIGURE 9. Accuracy and loss comparison among sampling methods used
in the fire-flake generator.

the average magnitude of the velocity in the existing solver,
which validates our method’s velocity inference.

3) PERFORMANCE
Table 1 shows a comparison of our model’s performance
metrics with those of the existing fire-flake simulation. The
average time required to determine the locations at which
to generate fire flakes and to update the flake generation
information is denoted by Avg. Born in the table. In our
model, Avg. Born represents the performance of the fire-flake
generator and the thrandom used for adjusting the fire-flake
count and updating the generation information.

Avg. Advection is the average time required to update the
changes in velocity and position of the fire flakes affected
by external forces. In our model, Avg. Advection represents
the performance of the velocity modifier and the velocity
and position updates of the fire flakes. The Avg Advection
values show our method was approximately 24 times faster
on average than the existing method. In previous studies,
the drag force, vorticity, and other external forces had to be
numerically calculated to obtain the advected velocity and
position; however, our method uses the velocity modifier
network to calculate them simultaneously.

FIGURE 10. Locations for generating fire-flakes in velocity modifier in
line with ground-truth settings. Ours: Difference represents the result
when the ground truth of the velocity modifier is the velocity difference,
and Ours: Absolute represents the result when the ground truth is the
absolute velocity value.

FIGURE 11. Average velocity in velocity modifier in line with ground-truth
settings.

In the previous study, simulation results were generated
for 12 frames per second on average, whereas our model gen-
erated approximately 30 frames per second on average. This
means that our model is an average of 2.4 times faster than
the previous model and enables near-real-time simulations.

V. DISCUSSION AND LIMITATIONS
In this study, we found that the composition of training data
of the fire-flake generator affects the results. In all frames,
the fire-flake indicator value l is far more often 0 rather than
1. This could be explained by the fact that the area the fire

VOLUME 9, 2021 17627

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

FIGURE 12. The first row is the fire flakes generated using our method, whereas the second is the fire flakes generated using the method of Kim et al.

occupies is narrower than the simulation space. In this case,
when l is randomly sampled, the area where fire flakes are
not generated dominates the training data. Furthermore, the
area where fire flakes are not generated is likely to have no or
extremely low velocity, temperature, and density and consist
of overlapping or similar data. This complicates training the
generator under accurate conditions for generating fire flakes.
We created the training data by adjusting the areas where fire
flakes were or were not generated with 1:1 sampling instead
of a simple random sampling of l. Fig. 9 shows the training
accuracy and training loss of the sampling methods (i.e.,
random sampling vs. 1:1 sampling) used to create the training
data for the generator. As shown in Fig. 9, the 1:1 sampling
was more accurate and performed fire-flake generation more
appropriately than random sampling. In the case of random
sampling, the accuracy increased rapidly near the last step,
which means that it was considerably overfitted to data where
a large number of fire flakes were not generated; therefore,
nearly all labels were output as zero.

In the velocity modifier, we found that the label composi-
tion of the training data affects the training results. Fig. 10
shows the locations where fire flakes were generated in line
with the ground-truth settings. When the velocity difference
is set to the ground truth, each fire flake is generated at an
appropriate location, and the number of fire flakes is similar
to that in the previous study. Fig. 11 demonstrates the average
velocity used in the comparison. When the absolute velocity
value is the ground truth, the average velocity does not change
over time and is approximately constant. These results indi-
cate that rather than learning by setting the absolute velocity
value as the ground truth for training the velocity modifier,
learning by setting the velocity difference between the pre-
ceding and current frames as the ground truth generates a
more natural fire-flake velocity. This is because inferring the
quantitative change based on the velocity of the preceding
frame is less prone to errors than inferring a new fire-flake
velocity.

Fig. 12 shows that our results and those of the Kim et al.
model have a similar distribution of generating fire flakes.
The results are not exactly the same; our model was faster
than those in previous studies and maintained visual fidelity.

However, it has limitations hindering its comparison with
physically strict simulations. This is because fire flakes
are small carbon-based materials that are not completely
free from interactions with the surroundings. This limitation
should be addressed for a more accurate simulation. A fire-
flakemodel that interacts with the surroundings can be imple-
mented if additional methods are employed to calculate the
effects of the surrounding velocity fields on fire flakes when
creating the training data.

VI. CONCLUSION
This is the first study using neural networks for fire-flake
simulation that adopts neural networks to replace most of the
operations necessary in the existing method. The fire-flake
generator determines the appropriate locations for generating
fire flakes. The velocity modifier infers the fire-flake velocity
based on polynomial regression to make them fit naturally in
their surroundings. Both steps maintain the visual plausibility
of the existing simulation while improving the performance.
Furthermore, we improved on existing fire-flake simulation
by combining multiple variables into a single intuitive vari-
able. These results will improve the efficiency of artists. In
future work, we will adopt deep learning in fire simulations to
obtain faster simulation results. A pipeline will be developed
to integrate deep learning with our neural network-based fire-
flake model, which will accelerate the entire process, thereby
ensuring more natural results.

REFERENCES
[1] T. Kim, E. Hong, J. Im, D. Yang, Y. Kim, and C.-H. Kim, ‘‘Visual

simulation of fire-flakes synchronized with flame,’’ Vis. Comput., vol. 33,
nos. 6–8, pp. 1029–1038, Jun. 2017. [Online]. Available: https://link.
springer.com/article/10.1007/s00371-017-1374-9

[2] C. Cummins, M. Seale, A. Macente, D. Certini, E. Mastropaolo,
I. M. Viola, andN. Nakayama, ‘‘A separated vortex ring underlies the flight
of the dandelion,’’ Nature, vol. 562, no. 7727, pp. 414–418, Oct. 2018.

[3] R. Bridson, Fluid Simulation for Computer Graphics. Boca Raton, FL,
USA: CRC Press, 2015.

[4] F. H. Harlow and J. E. Welch, ‘‘Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface,’’ The Phys. Fluids,
vol. 8, no. 12, pp. 2182–2189, 1965.

[5] J. Stam, ‘‘Stable fluids,’’ Proc. 26th Annu. Conf. Comput. Graph. Interact.
Techn., 1999, pp. 121–128, doi: 10.1145/311535.311548.

[6] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle, ‘‘Thematerial
point method for simulating continuum materials,’’ in Proc. ACM SIG-
GRAPH Courses, Jul. 2016, pp. 1–52.

17628 VOLUME 9, 2021

http://dx.doi.org/10.1145/311535.311548

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

[7] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, ‘‘A material
point method for snow simulation,’’ ACM Trans. Graph., vol. 32, no. 4,
pp. 1–10, Jul. 2013.

[8] A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and
K. Museth, ‘‘Multi-species simulation of porous sand andwater mixtures,’’
ACM Trans. Graph., vol. 36, no. 4, pp. 1–11, Jul. 2017.

[9] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
‘‘SPH Fluids in Computer Graphics,’’ in Eurographics, S. Lefebvre and
M. Spagnuolo, Eds. Genoa, Italy: The Eurographics Association, 2014.

[10] A. Angelidis, F. Neyret, K. Singh, and D. Nowrouzezahrai, ‘‘A control-
lable, fast and stable basis for vortex based smoke simulation,’’ in Proc.
ACM SIGGRAPH/Eurograph. Symp. Comput. Animation. Genoa, Italy:
Eurographics Association, 2006, pp. 25–32.

[11] S.Weißmann andU. Pinkall, ‘‘Filament-based smokewith vortex shedding
and variational reconnection,’’ in Proc. ACM SIGGRAPH Papers, 2010,
pp. 1–12.

[12] R. Fedkiw, J. Stam, and H. W. Jensen, ‘‘Visual simulation of smoke,’’ in
Proc. 28th Annu. Conf. Comput. Graph. Interact. Techn., 2001, pp. 15–22.

[13] A. Selle, N. Rasmussen, and R. Fedkiw, ‘‘A vortex particle method for
smoke, water and explosions,’’ in Proc. ACM SIGGRAPH Papers, 2005,
pp. 910–914.

[14] A. McAdams, E. Sifakis, and J. Teran, ‘‘A parallel multigrid Poisson
solver for fluids simulation on large grids,’’ in Proc. 2010 ACM SIG-
GRAPH/Eurograph. Symp. Comput. Animation. Genoa, Italy: Eurograph-
ics Association, 2010, pp. 65–74.

[15] R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis, ‘‘SPGrid: A sparse
paged grid structure applied to adaptive smoke simulation,’’ ACM Trans.
Graph., vol. 33, no. 6, pp. 1–12, Nov. 2014.

[16] B. Kim, Y. Liu, I. Llamas, and J. R. Rossignac, ‘‘Flowfixer: Using
BFECC for fluid simulation,’’ Georgia Inst. Technol., Atlanta, GA, USA,
Tech. Rep. GIT-GVU-05-24, 2005.

[17] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, ‘‘An uncondi-
tionally stable MacCormack method,’’ J. Sci. Comput., vol. 35, nos. 2–3,
pp. 350–371, Jun. 2008.

[18] J. Zehnder, R. Narain, and B. Thomaszewski, ‘‘An advection-reflection
solver for detail-preserving fluid simulation,’’ ACM Trans. Graph., vol. 37,
no. 4, pp. 1–8, Aug. 2018.

[19] M. B. Nielsen, B. B. Christensen, N. B. Zafar, D. Roble, and K. Museth,
‘‘Guiding of smoke animations through variational coupling of simulations
at different resolutions,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Animation, 2009, pp. 217–226.

[20] Z. Pan and D.Manocha, ‘‘Efficient solver for spacetime control of smoke,’’
ACM Trans. Graph., vol. 36, no. 4, p. 1, Jul. 2017.

[21] L. Shi and Y. Yu, ‘‘Taming liquids for rapidly changing targets,’’ in
Proc. ACM SIGGRAPH/Eurograph. Symp. Comput. Animation, 2005,
pp. 229–236.

[22] J. Stam and E. Fiume, ‘‘Depicting fire and other gaseous phenom-
ena using diffusion processes,’’ in Proc. 22nd Annu. Conf. Comput.
Graph. Interact. Techn., New York, NY, USA, 1995, pp. 129–136, doi:
10.1145/218380.218430.

[23] P. Beaudoin, S. Paquet, and P. Poulin, ‘‘Realistic and controllable
fire simulation,’’ in Proc. Graph. Interface, 2001, pp. 159–166.
[Online]. Available: https://dl.acm.org/doi/10.5555/780986.781006,
doi: 10.5555/780986.781006.

[24] Z. Melek and J. Keyser, ‘‘Interactive simulation of fire,’’ in Proc.
10th Pacific Conf. Comput. Graph. Appl., 2002, pp. 431–432. [Online].
Available: https://ieeexplore.ieee.org/document/1167889

[25] A. Lamorlette and N. Foster, ‘‘Structural modeling of flames for a pro-
duction environment,’’ ACM Trans. Graph., vol. 21, no. 3, pp. 729–735,
Jul. 2002, doi: 10.1145/566654.566644.

[26] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, ‘‘Physically based modeling
and animation of fire,’’ ACM Trans. Graph., vol. 21, no. 3, pp. 721–728,
Jul. 2002, doi: 10.1145/566654.566643.

[27] J.-M. Hong, T. Shinar, and R. Fedkiw, ‘‘Wrinkled flames and cellular
patterns,’’ ACM Trans. Graph., vol. 26, no. 3, p. 47, Jul. 2007, doi:
10.1145/1276377.1276436.

[28] S. Liu, T. An, Z. Gong, and I. Hagiwara, ‘‘Physically based simulation of
solid objects’ burning,’’ in Transactions on Edutainment VII. New York,
NY, USA: Springer, 2012, pp. 110–120.

[29] Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin, ‘‘Voxels on fire
[computer animation],’’ in Proc. IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, 2003, pp. 271–278.

[30] N. Chiba, K. Muraoka, H. Takahashi, and M. Miura, ‘‘Two-dimensional
visual simulation of flames, smoke and the spread of fire,’’ J. Vis. Com-
put. Animation, vol. 5, no. 1, pp. 37–53, Jan. 1994. [Online]. Available:
https://link.springer.com/article/10.1007/s00371-016-1267-3

[31] C. Horvath and W. Geiger, ‘‘Directable, high-resolution simulation of fire
on the GPU,’’ ACM Trans. Graph., vol. 28, no. 3, pp. 1–8, Jul. 2009, doi:
10.1145/1531326.1531347.

[32] T. Kim, J. Lee, and C.-H. Kim, ‘‘Physics-inspired controllable flame ani-
mation,’’ Vis. Comput., vol. 32, nos. 6–8, pp. 871–880, Jun. 2016. [Online].
Available: https://link.springer.com/article/10.1007/s00371-016-1267-3

[33] J.-H. Kim and J. Lee, ‘‘Fire sprite animation using fire-flake texture and
artificial motion blur,’’ IEEE Access, vol. 7, pp. 110002–110011, 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8793066

[34] C. Yang, X. Yang, and X. Xiao, ‘‘Data-driven projection method in
fluid simulation,’’ Comput. Animation Virtual Worlds, vol. 27, nos. 3–4,
pp. 415–424, May 2016.

[35] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, ‘‘Accelerating
eulerian fluid simulation with convolutional networks,’’ in Proc. 34th Int.
Conf. Mach. Learn., 2017, pp. 3424–3433.

[36] S. Wiewel, M. Becher, and N. Thuerey, ‘‘Latent space physics: Towards
learning the temporal evolution of fluid flow,’’ in Computer Graphics
Forum, vol. 38, no. 2. Hoboken, NJ, USA: Wiley, 2019, pp. 71–82.

[37] L. Ladický, S. Jeong, B. Solenthaler, M. Pollefeys, and M. Gross, ‘‘Data-
driven fluid simulations using regression forests,’’ ACM Trans. Graph.,
vol. 34, no. 6, pp. 1–9, Nov. 2015.

[38] M. Raissi, ‘‘Deep hidden physics models: Deep learning of nonlinear
partial differential equations,’’ The J. Mach. Learn. Res., vol. 19, no. 1,
pp. 932–955, 2018.

[39] A. Barati Farimani, J. Gomes, and V. S. Pande, ‘‘Deep learning the physics
of transport phenomena,’’ 2017, arXiv:1709.02432. [Online]. Available:
http://arxiv.org/abs/1709.02432

[40] Z. Long, Y. Lu, X. Ma, and B. Dong, ‘‘PDE-net: Learning PDEs from
data,’’ in Proc. 35th Int. Conf. Mach. Learn., vol. 80, J. Dy and A. Krause,
Eds. Stockholm Sweden: PMLR, Jul. 2018, pp. 3208–3216. [Online].
Available: http://proceedings.mlr.press/v80/long18a.html

[41] L. Prantl, B. Bonev, and N. Thuerey, ‘‘Generating liquid simulations with
deformation-aware neural networks,’’ 2017, arXiv:1704.07854. [Online].
Available: http://arxiv.org/abs/1704.07854

[42] M. Chu andN. Thuerey, ‘‘Data-driven synthesis of smoke flowswith CNN-
based feature descriptors,’’ ACM Trans. Graph., vol. 36, no. 4, pp. 1–14,
Jul. 2017.

[43] Y. Xie, E. Franz, M. Chu, and N. Thuerey, ‘‘TempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow,’’ ACM Trans.
Graph., vol. 37, no. 4, pp. 1–15, Aug. 2018.

[44] B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler,
‘‘Deep fluids: A generative network for parameterized fluid simulations,’’
in Computer Graphics Forum, vol. 38, no. 2. Hoboken, NJ, USA: Wiley,
2019, pp. 59–70.

[45] B. Kim, V. C. Azevedo, M. Gross, and B. Solenthaler, ‘‘Transport-based
neural style transfer for smoke simulations,’’ ACM Trans. Graph., vol. 38,
no. 6, pp. 1–11, Nov. 2019, doi: 10.1145/3355089.3356560.

[46] Y. Zhang, X. Ban, F. Du, and W. Di, ‘‘FluidsNet: End-to-end learning
for lagrangian fluid simulation,’’ Expert Syst. Appl., vol. 152, Aug. 2020,
Art. no. 113410.

[47] K. Um, X. Hu, and N. Thuerey, ‘‘Liquid splash modeling with neural
networks,’’ Computer Graphics Forum, vol. 37, no. 8, pp. 171–182,
2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/
10.1111/cgf.13522

MYUNGJIN CHOI received the B.A. degree from
the Department of Computer and Radio Commu-
nications Engineering, Korea University, in 2013.
His current research interests include fluid simula-
tion and scientific visualization and deep learning.

VOLUME 9, 2021 17629

http://dx.doi.org/10.1145/218380.218430
http://dx.doi.org/10.5555/780986.781006
http://dx.doi.org/10.1145/566654.566644
http://dx.doi.org/10.1145/566654.566643
http://dx.doi.org/10.1145/1276377.1276436
http://dx.doi.org/10.1145/1531326.1531347
http://dx.doi.org/10.1145/3355089.3356560

M. Choi et al.: Learning Representation of Secondary Effects for Fire-Flake Animation

JEONG A WI (Graduate Student Member,
IEEE) received the B.S. degree in physics
from Chung-Ang University, Seoul, South Korea,
in 2019, where she is currently pursuing the M.S.
degree in imaging engineering with the Graduate
School of Advanced Imaging Science, Multimedia
& Film. Her current research interests include deep
learning and computer graphics.

TAEHYEONG KIM received the M.S. and Ph.D.
degrees from Korea University, in 2011 and
2017, respectively. His current research interests
include physically-based simulation, fluid anima-
tion, web-based real-time rendering, and deep
learning.

YOUNGBIN KIM (Member, IEEE) received the
B.S. and M.S. degrees in computer science and
the Ph.D. degree in visual information process-
ing from Korea University, in 2010, 2012, and
2017, respectively. From August 2017 to February
2018, he worked as a Principal Research Engi-
neer with Linewalks. He is currently an Assistant
Professor with the Graduate School of Advanced
Imaging Science, Multimedia & Film, Chung-
Ang University. His current research interests

include data science and deep learning.

CHANG-HUN KIM is currently a Professor with
the Department of Computer Science and Engi-
neering, Korea University. His current research
interests include fluid animation and mesh pro-
cessing. He is also a member of the IEEE Com-
puter Society and ACM.

17630 VOLUME 9, 2021

