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Abstract: Fault diagnosis is a top-priority task for the health management of manufacturing processes.
Deep learning-based methods are widely used to secure high fault diagnosis accuracy. Actually, it is
difficult and expensive to collect large-scale data in industrial fields. Several prerequisite problems
can be solved using transfer learning for fault diagnosis. Data from the source domain that are
different but related to the target domain are used to increase the diagnosis performance of the
target domain. However, a negative transfer occurs that degrades diagnosis performance due to
the transfer when the discrepancy between and within domains is large. A multi-objective instance
weighting-based transfer learning network is proposed to solve this problem and successfully applied
to fault diagnosis. The proposed method uses a newly devised multi-objective instance weight to
deal with practical situations where domain discrepancy is large. It adjusts the influence of the
domain data on model training through two theoretically different indicators. Knowledge transfer is
performed differentially by sorting instances similar to the target domain in terms of distribution with
useful information for the target task. This domain optimization process maximizes the performance
of transfer learning. A case study using an industrial robot and spot-welding testbed is conducted
to verify the effectiveness of the proposed technique. The performance and applicability of transfer
learning in the proposed method are observed in detail through the same case study as the actual
industrial field for comparison. The diagnostic accuracy and robustness are high, even when few
data are used. Thus, the proposed technique is a promising tool that can be used for successful
fault diagnosis.

Keywords: deep learning; fault diagnosis; industrial robot; prognostics and health management
(PHM); spot welding; transfer learning

1. Introduction

Fault diagnosis is one of the significant tasks covered by PHM (Prognostics and Health
Management). It includes the process of monitoring mechanical equipment to determine
the current health state and predict when and what failures occur. It enables decision-
making for the maintenance and efficient management of the production process. Various
techniques have been developed to increase the reliability of fault diagnosis. Among them,
fault diagnosis methods that use machine learning are primarily used. Intelligent fault
diagnosis refers to the use of machine learning to detect and diagnose faults, and to manage
health information in mechanical equipment [1]. Performing intelligent fault diagnosis
effectively is one of the foundations for smart manufacturing [2,3].

Traditional fault diagnosis using machine learning consists of three stages: data
acquisition, artificial feature extraction and selection, and fault classification.
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In the data acquisition step, sensor signal data are collected following the attachment
of various sensors to mechanical equipment to diagnose problems. In general, signals such
as acoustic, vibration, current, and thermal are collected for fault diagnosis. Each signal
has advantages and disadvantages and is chosen to be appropriate for the subject being
diagnosed. Acoustic emission data can detect incipient and hidden faults, and are used to
diagnose bearings [4], gears [5], and induction motors [6]. It is particularly useful for low
speed operation conditions or low-frequency noise environments. The thermal signal is
collected in several forms, and there is a possibility that it can be applied noninvasively
without contacting the driving part, such as a thermal image. These signals are difficult
to process and are used for fault diagnosis in induction motors [7,8] and electric impact
drills [9]. In the case of electric current signal, it can be easily collected from the current
transformer and has a great advantage in diagnosing electric-driven machines [10,11].
Among these signals, the vibration signal is a useful and effective tool widely used for
fault diagnosis of various kinds of machines. In order to remove the influence of external
interference and noise in the operating environments and to be used as a low noise level,
various signal processing is performed [12,13]. It is used to diagnose mechanical and
electrical failures of various equipment such as bearings [14], gearboxes [15], commutator
motors [16].

In the next step, various features, including the time domain, frequency domain,
and time-frequency domain, are artificially extracted from the collected signals through
signal processing methods. Then, specific feature selection methods are used to select
only important features with information about health states. Subsequently, health states,
such as failure, are predicted using the conventional machine learning. A number of
machine learning techniques were used for fault diagnosis such as artificial neural network
(ANN) [17], support vector machine (SVM) [18], and classification and regression trees
(CART) ensemble [19].

Traditional fault diagnosis has the following problems. First, the feature extraction
and selection processes are passive and inefficient. Feature extraction relies on the choice
of methods based on experience or knowledge. Each handcrafted feature tends to be
suitable only for fault diagnosis under certain circumstances, requiring the operator’s
judgment in many situations. Additionally, a specialized extraction method should be used
according to the shape and characteristics of the sensor signal. As the type of collected
sensor signal diversifies and the volume increases, it becomes impossible. As a result, the
process reliability reduces, and traditional techniques become inappropriate for the fault
diagnosis task. Second, these problems make it difficult to generalize and automate the
fault diagnosis procedure. Generalizing and automating the entire procedure for use in
diverse circumstances is necessary to increase the work efficiency and diagnosis accuracy.

Therefore, deep learning-based methods are used as an alternative. Deep learning-
based methods are used for various purposes in several fields and are constantly evolving.
In the PHM field, deep learning-based methods are also dominant in data-driven methods
for fault diagnosis and prediction. Vibration signal data are also widely used for fault
diagnosis using deep learning. After converting vibration signal into a spectrogram that
can visualize the frequency band and time change of original signal, diagnosis performance
can be dramatically improved by deep learning modeling such as convolutional neural
network (CNN), a deep neural network widely used for visual image analysis. CNN is
useful for time-frequency characteristic analysis because it extracts spatial information
using image-specialized convolution calculations. By extracting high-dimensional informa-
tion that cannot be distinguished by previous techniques through deep learning models,
different health conditions can be easily distinguished, and end-to-end feature learning and
classification are performed simultaneously. However, in the case of vibration signal data,
there is a disadvantage in that many sensors must be attached to acquire data according to
the characteristics of the object to be applied. In addition, problems such as optimization
of the number of sensors and installation location may occur. Therefore, there are some
studies that performed fault diagnosis and condition monitoring by building image-based
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deep learning models using thermal image data. The deep learning-based diagnosis model
varies in its structure. Based on this, it can predict the health state of mechanical equipment.
Ma et al. [20] used time-frequency analysis and a deep residual network to perform fault
diagnosis of a planetary gearbox under nonstationary running conditions. Zhang et al. [21]
conducted a fault diagnosis of rolling bearings using a deep residual network.

The accuracy of such deep learning-based diagnosis models is closely related to the
number of collected data. When sufficient training data are available, deep learning-based
diagnosis models with complex structures outperform other diagnosis models. However,
if a small number of valid training data are collected directly from the task to diagnose
faults, the reliability and accuracy of the diagnosis model inevitably decrease. In addition,
training data and test data used for deep learning-based diagnosis models must have the
same distribution. In actual industrial fields, the cost required to collect quality data is very
high. Therefore, few data are actually collected from machine equipment under the specific
work environment for diagnosis.

The application of transfer learning can solve these problems in deep learning-based
diagnosis models. Even if the labeled data are insufficient in the target domain to be
diagnosed, there are data collected under different operating conditions. These different
but related data can be used as the source domain for training a diagnosis model. The
feature learning ability can be obtained through the source domain with sufficient labeled
data and transfer learning. High diagnosis accuracy and stability are obtained by using
source domain data for the target task. Transfer learning is essential for comprehensive
fault diagnosis in industrial fields where identical process work is performed under various
operating conditions. In recent years, studies using transfer learning have been actively
conducted primarily for semi-supervised or unsupervised learning tasks, and few studies
have conducted supervised learning tasks. Shao et al. [22] transferred the structure and
parameters of the VGG16 network trained from the ImageNet dataset for image recognition
and used them for fault diagnosis of an induction motor, bearing, and planetary gearbox.
Yang et al. [23] used a CNN and transfer learning for fault diagnosis of rotating machinery
under different working conditions. In addition, Cao et al. [24] performed gear fault
diagnosis using a deep CNN and transfer learning.

The performance of transfer learning is determined by the size of the labeled target
data and the discrepancy between the source domain and target domain [25]. Therefore,
the process evaluating the attributes of the source domain instances that are useful for
target domain task and using them as additional resources for model training effectively
improves the performance of transfer learning. This is the main concept of instance-based
transfer learning.

Various optimization methods have been developed and used for conducting instance-
based transfer learning. Wang et al. [26] also conducted instance-based transfer learning
using the dropout algorithm by removing target instances that are not well classified by a
classifier. Dropout is a useful tool for reducing dissimilarity between domains when enough
labeled data are available for each source or target domain. Zhang et al. [27] carried out
the dropout of unsuitable source instances up to a certain number for a situation in which
the number of target domain data is much smaller than that of the source domain. The
combination of target dropout optimization, SAE-SVM, and ensemble learning resulted in
the successful fault diagnosis of the ball screw. Dropout is a domain optimization technique
suitable for situations where sufficient labeled data of the domain exist to drop out. If
dropout is used when insufficient labeled data exist in each domain, model performance
decreases due to a lack of data required for training model. Moreover, this is unsuitable
for dealing with situations in which the dissimilarity between domains is large because all
instances that are not removed have the same influence on model training.

The instance-weighting strategy can solve these problems. It is noted that the accuracy
of the method can be improved by focusing on the ensemble technique such as boosting.
For instance, Bustillo et al. [28] performed AdaBoost using a small size dataset collected
from various operating conditions to predict the quality of friction drilling and to find
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the optimum parameters. Especially, Dai et al. [29] proposed TrAdaBoost, which grafts
AdaBoost applying instance-weighting strategy on to the transfer learning concept. It
includes updating the weight vector due to the distribution difference between the source
domain and target domain. Yao et al. [30] expanded TrAdaBoost to deal with multi-source
cases. The key idea is that, among the diff-distribution training instances from different
domains, instances that are not well fitted to the target domain have low training weights
and become less influential in later training stages.

In this paper, we propose the multi-objective instance weighting-based deep transfer
learning network (MOTL). The proposed method is applicable not only for fault diagnosis
of general cases but also for fault diagnosis when data are collected under different operat-
ing conditions in a practical range. A significant distribution difference between source
and target domains exists, and only a small number of labeled data are collected from
each domain. In this method, source instance weights calculated using Kullback–Leibler
divergence (KLD) [31] and the maximum mean discrepancy (MMD) [32] (two indicators
evaluating the distribution difference between domains) and a large volume of source
domain data are used as auxiliary training resources to train a deep residual network.
Afterward, the structure and parameters of the pre-trained model are transferred, and
fine-tuning is conducted using a small number of labeled target data.

In addition, a spot-weld case study using an industrial robot is conducted to verify
the applicability to actual industrial fields, which is one of the significant advantages of
transfer learning. The main contributions of this paper are summarized as follows.

1. We present a fault diagnosis framework based on instance-based transfer learning us-
ing multi-objective instance weighting to diagnose faults when few labeled target data
are available in the target task. This framework helps achieve high diagnosis accuracy
and robustness in high dissimilarity situations between and within domains due to
distinct operating conditions. The proposed method uses instance weights obtained
from the two complementary dissimilarity indicators to minimize the dissimilarity
between domains that affect model training. The knowledge of source instances suit-
able for the target task can be transferred through the domain optimization process.
It results in improved performance of the target diagnosis model.

2. According to various instance optimization techniques used in instance-based transfer
learning, the diagnosis accuracy is compared in detail. Through this comparison, the
domain optimization process and effectiveness of the proposed method are confirmed.

3. The accuracy of the diagnosis model using the proposed method and transfer learning
is monitored in detail, changing the number of labeled target data. The case study is
also conducted through the testbed identical to the actual industrial field, verifying
the applicability of the proposed method for diagnosis when the target labeled data
are less available at the actual industrial field.

2. Proposed Method

Figure 1 illustrates the overall progress of the proposed MOTL method. First, signal
processing is performed to convert the collected vibration signals into an image represent-
ing a time-frequency distribution. An initial pre-trained model is obtained using the source
domain data and fine-tuned once with the target domain data. ResNet50 [33] is used as the
model structure for all model training. Then, the KLD and MMD are calculated from the
source domain data and the initial deep transfer model. Multi-objective instance weights
are computed from these two indicators. The instance-weight vector is used to train the
optimized pre-trained model as a training weight. The final target fault diagnosis model is
obtained by transferring the optimized pre-trained model and fine-tuning it. The two-stage
transfer process is performed to derive the optimal multi-objective instance weights and
effectively minimize the influence of domain discrepancy. A detailed flowchart of the
proposed method is presented in Figure 2.
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Figure 1. Detailed procedure of the proposed multi-objective instance weighting-based deep transfer learning network
(MOTL) method.

2.1. Data Preprocessing (Time-Frequency Domain Imaging)

First, an accelerometer is used to collect vibration signals as work progresses under
various circumstances with several different process conditions. The raw vibration signal
is converted into a time-frequency domain through various signal processing methods to
obtain useful information. The purpose is to extract the characteristics of the frequencies
in a specific time domain from time-series sensor data composed of signals from various
kinds of components, which are used for diagnosis. The short-time Fourier transformation
(STFT), wavelet packet decomposition (WPD), and WPD with spectral subtraction are used
to convert signals into the time-frequency domain [34]. The parameters are adjusted in
detail using a 50% overlap to increase the resolution of the time domain. Each of these
different spectrogram images extracted by the signal processing methods is treated as input
to the model.
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Figure 2. Flowchart of the proposed multi-objective instance weighting-based transfer learning
network (MOTL) method.

2.2. Deep Residual Learning Network

Residual network builds up the residual block based on the convolutional layer to
form a deep learning model. The residual block consists of the general forward channel
and shortcut connections that perform identity mapping. The forward channel has the
same output as the common stacked convolutional layer. The shortcut connection performs
residual mapping, which adds input features to the forward channel output to derive the
final residual block output. The degradation problem of the deep network model can be
solved without increasing the number of parameters or model complexity using these
residual blocks. A deep residual network is obtained by building these structural blocks.
The ResNet50 model used for training consists of a total of 34 parameter layers.

Table 1 describes the detailed structure of ResNet50, which has been used in various
areas, including PHM, and is more accurate than the CNN-based diagnosis model [1].
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Table 1. Detailed configuration of ResNet50 architecture.

Layer Type Data Dimension

Input #,224,224,3
Conv1 ConvolutionalLayer #,112,112,64

bn_conv1 BatchNormalizationLayer #,112,112,64
conv1_relu Ramp #,112,112,64
pool1_pad PaddingLayer #,113,113,64

pool1 PoolingLayer #,56,56,64
2a ResidualBlock2 (12 nodes) #,56,56,256
2b ResidualBlock2 (10 nodes) #,56,56,256
2c ResidualBlock2 (10 nodes) #,56,56,256
3a ResidualBlock3 (12 nodes) #,28,28,512
3b ResidualBlock3 (10 nodes) #,28,28,512
3c ResidualBlock3 (10 nodes) #,28,28,512
3d ResidualBlock3 (10 nodes) #,28,28,512
4a ResidualBlock4 (12 nodes) #,14,14,1024
4b ResidualBlock4 (10 nodes) #,14,14,1024
4c ResidualBlock4 (10 nodes) #,14,14,1024
4d ResidualBlock4 (10 nodes) #,14,14,1024
4e ResidualBlock4 (10 nodes) #,14,14,1024
4f ResidualBlock4 (10 nodes) #,14,14,1024
5a ResidualBlock5 (12 nodes) #,7,7,2048
5b ResidualBlock5 (10 nodes) #,7,7,2048
5c ResidualBlock5 (10 nodes) #,7,7,2048

pool5 PoolingLayer #,1,1,2048
flatten_0 FlattenLayer #,2048

Fc2 LinearLayer #,2
prob SoftmaxLayer #,2

Output class

2.3. Transfer Learning and Fine-Tuning Strategy

This section describes the notation and definitions about transfer leaning. The nec-
essary notation and definitions refer to S. J. Pan’s Survey of Transfer Learning [35]. First,
domain D and task T are defined. Domain D consists of the collected feature space X
and its marginal probability distribution P(X), where X = {x1, · · · , xn} ∈ X , and n is
the number of instances in each domain (D = {X , P(X)}. The symbol X denotes an in-
stance set, which is specific training sample, and xi is the ith instance in particular domain.
Task T consists of label space Y and prediction model f (·) (T = {Y , f (·)}). The symbol
Y = {y1, · · · , yn} ∈ Y denotes the label set corresponding to an instance set X, and yi is a
label corresponding to the instance xi. Prediction model f (·) is not observed and collected
but is trained using collected training data. In this paper, the trained prediction model
f (·) predicts the corresponding health state label f (x), of an input instance x. In terms of
probabilistic method, f (x) can be denoted as P(y|x).

In transfer learning, two types of domains exist: source domain and target domain.
The target domain is the domain to proceed with the diagnosis task, whereas the source
domain is a domain different but related to the target domain, which has useful information
for the target domain. Transfer learning can provide useful knowledge in DS and TS to
improve the performance of target prediction model fT(·), where DS 6= DT or TS 6= TT .
Thus, a relation that is visibly obvious or inherent must exist between the source and
target domains. When this condition is satisfied, the two domains are related. If the source
domain is not related to the target domain, the information held by the source domain does
not improve the performance of the target prediction model; instead, it causes a negative
transfer that reduces performance [26].

We denote source domain data as DS =
{(

xS1 , yS1

)
, . . . ,

(
xSnS

, ySnS

)}
, where xSi and

ySi are ith source instance and class label, respectively. nS is the number of instances in the
source domain. Source domain data DS are employed for training a pre-trained model. In
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the same manner, target domain data is denoted as DT =
{(

xT1 , yT1

)
, . . . ,

(
xTnT

, yTnT

)}
,

where xTi and yTi are ith target instance and heath state label in the target domain. nT is the
number of target domain instances. Target domain data DT is divided into target training
data Dtrain

T and target test data Dtest
T . Target training data Dtrain

T are employed in fine-tuning
the pre-trained model, whereas target test data Dtest

T are used only for validation. Both
DS and DT are sets of vectors composed of domain instances’ features and corresponding
true health state labels. A large labeled dataset is available in the source domain, whereas
only a small labeled dataset is available in the target domain (nS � nT). In addition, data
belonging to each domain follow different marginal probability distributions (PS(X) 6=
PT(X), where PS(X), and PT(X) are marginal probability distributions of source and target
domain, respectively).

A fine-tuning strategy is used to train the target diagnosis model. When the deep
model is trained with sufficient source domain data, a pre-trained model with feature
extraction and classification layers suitable for source domain is obtained. The structure
and parameters of the pre-trained model are transferred to target domain and fine-tuned
with the target domain data. After these steps, a deep transfer learning model suitable for
the task of the target domain is obtained. By using this strategy, incomplete training and
overfitting can be avoided, which occur when only few target data are used for training. In
addition, the performance of the fine-tuning strategy is determined by the dissimilarity
between the source and target domains. Therefore, if the source and target domains are
significantly similar, only the fully-connected layer can be fine-tuned, whereas the range
of the structure carrying out fine-tuning should increase when the dissimilarity between
source and target domain increase.

2.4. Instance-Based Transfer Learning

Instance-based transfer learning focuses on using proper parts of the source domain
data for training in the target domain by re-weighting. Instance-based transfer learning
approaches are mainly based on the instance weighting strategy. In transfer learning, the
source and target domains are used as training data consequently. Both domains have
the same conditional probability distributions but follow different marginal probability
distributions:

PS(X) 6= PT(X), PS(Y|X) = PT(Y|X). (1)

The performance of transfer learning depends on the relationship between the source
and target domain instances, which determines how much useful knowledge for diagnos-
ing the target domain can be transferred from the source to target domain. The amount
of transferred knowledge or distributional characteristics of the instances is crucial factor
in determining the transfer learning performance either. However, some instances of the
source domain data are not suitable for the target prediction model. Therefore, directly
transferring all the large source domain data may not be useful for the task of the target
domain. Thus, it is necessary to measure the dissimilarity and distribution difference
between the target and source domain instances and use it as a weight that influences
model training to improve the transfer learning performance. This is the main concept of
instance-based transfer learning using instance weighting. The main objective of instance
weighting strategy is to reduce dissimilarity between source and target domain instances.
Our instance weighting approach is based on the following equation [36,37]:

R[PT , `(x, y; f )] = E(x,y)∼PT
[`(x, y; f )] = E(x,y)∼PS

[
PT(x,y)
PS(x,y) `(x, y; f )

]
= E(x,y)∼PS

[
PT(x)
PS(x) `(x, y; f )

]
= E(x,y)∼PS

[β(x, y)`(x, y; f )],
(2)

whereR is the regularized risk and `(x, y; f ) is the loss function in the prediction model f
using x and y. E is the expected risk of the loss function, `, and β is instance weight for
source domain. The prediction model f is trained to minimize the expected risk E of the
loss function. From the above Equation (2), theoretically, the value of the instance weight
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β is the same as PT(x) /PS(x). However, the exact ratio of PT(x) to PS(x) is usually not
known [36].

Therefore, several methods to estimate the weight have been introduced. For example,
kernel mean matching (KMM) procedure [37], which is presented by Huang et al., deals
with weight estimation by matching the means between source domain and target domain
instances in a reproducing kernel Hilbert space (RKHS):

argmin
βi

‖ 1
nS

nS

∑
i=1

βiΦ
(
xSi

)
− 1

nT

nT

∑
j=1

Φ
(

xTj

)
‖

2

H
, (3)

where βi is a weighting parameter of ith instance, and Φ is the kernel mapping function.
We can obtain instance weight βi using KMM procedure and apply to model training
process. In addition, Sugiyama et al. [38] proposed an approach called the Kullback–
Leibler importance estimation procedure (KLIEP) to estimate the weight. It estimates the
importance, which means the weight, through a variant of likelihood CV (cross validation)
by minimizing the Kullback–Leibler divergence (KLD). These two methods were basically
devised to solve the dataset shift problem. It is one of the important assumptions in
machine learning that the training data and test data should be drawn from the same
distribution. A situation in which the joint distribution of inputs and outputs is different in
training and test data is referred to as a dataset shift. It appears when training and test data
are collected from different distributions. In the case of transfer learning, the source domain
is composed of several kinds of data collected from different situations. Essentially, similar
phenomena with dataset shift occur in transfer learning. Therefore, the above methods can
be extended and used to solve similar problems occurring in transfer learning.

Once instance weights are derived using specific methods, training proceeds using
weighted source domain instances. The objective function for training the pre-trained
model using the instance weight is as follows:

min
f

1
ns

ns

∑
i=1
Wi`

(
f
(
xSi

)
, ySi

)
, (4)

whereWi (i = 1, 2, · · · , nS) is the weighting parameter of the source domain instances.
Through this, training is conducted to minimize the weighted average of the loss function
values. Instances with a large weight have a significant influence on model training.

2.5. Multi-Objective Instance-Weighting Strategy

The main objective of the instance weighting strategy is to reduce distribution dissimi-
larity between the source and target domain instances. Therefore, it is important to decide
how to effectively evaluate the dissimilarity between instances from different domains.
Two indicators, KLD and MMD, measure the distribution dissimilarity between domain
instances using different theoretical methods. These two indicators are suitable to be used
to achieve the objective of instance weighting. However, instance weighting using a specific
indicator may not be consistently effective. Their performance varies according to the type
or number of domain data used for model training. Even if the data are collected in the
same environment, suitability of the indicator in the process varies inevitably depending
on the number of training data. Therefore, we use multi-objective instance weighting
to minimize the two metrics concurrently. Domain optimization using multi-objective
instance weights is conducted to achieve two objectives: (1) to make the target and source
domain instances have similar distributions and (2) to transfer useful information to the
target domain task.
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2.5.1. Kullback–Leibler Divergence

The KLD measures how different a particular probability distribution is from the
reference probability distribution based on information theory. Given two probability
distributions p and q, the KLD of p and q can be defined as follows:

KLD(p ‖ q) =
n

∑
j=1

p(j) log
(

p(j)
q(j)

)
, (5)

where n is the number of class label, p(j) refers to the true probability of class j, and q(j)
refers to the predicted class probability of class j. It is the expectation of the logarithmic
difference between the probabilities p(j) and q(j), where the expectation is taken using the
probability p(j). KLD has a nonnegative value. KLD(p|q) = 0 if and only if p = q. Because
KLD is a nonsymmetric measure, it does not directly indicate the distance between two
probability distributions.

In our case, we calculated the KLD for each source domain instance to be used as
weight for that instance. The KLD of ith source domain instance is formulated as follows:

KLD
(
ySi ‖ ŷSi

)
=

n

∑
j=1

Pr
(

j
∣∣ySi

)
log

(
Pr
(

j
∣∣ySi

)
Pr
(

j
∣∣ŷSi

)), (6)

where ŷSi denotes the expected probability distribution of ith source domain instance
predicted from the initially trained transfer learning network. The KLD measures the
amount of helpful information of each source domain instance for the classification task of
the target domain in terms of the classification model. Instances accurately predicted from
the target prediction model have small KLD values and are suitable for auxiliary training
data of the target diagnosis model.

2.5.2. Maximum Mean Discrepancy

The MMD is the distance between the two domain distributions calculated under
the RKHS. Note that the above-mentioned KMM procedure derives the instance weights
by minimizing the MMD between domains. The MMD is also used to measure domain
discrepancy in transfer learning and is formulated as follows:

MMD(XS, XT) =‖
1

nS

nS

∑
i=1

ψ
(
xSi

)
− 1

nT

nT

∑
j=1

ψ
(

xTj

)
‖

2

H
, (7)

where ψ is the kernel mapping function, which converts original feature space into RKHS.
We derive the MMD using the Gaussian radial basis function (RBF) kernel in the form of a
nonlinear kernel. Reference paper has confirmed that this kernel function is suitable for
the fault diagnosis, which is the goal of this research [39]. The MMD is used to measure
the dissimilarity between domain instances because it can obtain the distance between
two probability distributions in a nonparametric method without dimension constraints.
Intuitively, because it is the squared distance of the mean of domain instances, it has a
value close to 0 if the data are drawn from the same distribution. We derive the MMD of
each source instance with the entire target domain data in order to use it as the weight. The
MMD between ith source domain instance and entire target domain instance is calculated
as follows [40,41]:

MMDi
(
xSi , XT

)
=‖ ψ

(
xSi

)
− 1

nT

nT

∑
j=1

ψ
(

xTj

)
‖

2

H
(8)

Source domain instances which have a distribution similar to the target distribution
have low MMD values. The source domain instance with low MMD is suitable for an
auxiliary training sample for the target domain task.
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2.5.3. Multi-Objective Instance Weighting

Two indicators, KLD and MMD, measure the dissimilarity between a source domain
instance and target domain. The KLD measures how suitable the source domain is for the
target domain task, and MMD more intuitively measures the distance between the two
domain instances. Although both indicators measure domain discrepancy, they demon-
strate inconsistent results. Since two indicators exhibit a low positive correlation, those
indicators are combined as the multi-objective instance weight to play complementary
roles in transfer learning.

Both KLD and MMD of certain source instance have positive values. These two
indicators were standardized and converted to be used as weights WKLD

i and WMMD
i ,

respectively. Instances with a high value in a specific indicator should have a low weight
value calculated from that indicator. The two weights have a value between 0 and 1, and
the larger the indicator value, the smaller the weight value. In this process, the instance
weight derived from each indicator is set to be 0 if corresponding indicator of that instance
is larger than a standard deviation from domain mean value. Afterward, the final weight
of ith source domain instanceWi is derived by the weighted sum of the two weights:

Wi = w1 ∗WKLD
i + w2 ∗WMMD

i , (9)

where w1 and w2 are weights of the KLD and MMD-based weight. In this research, two
weights are equal at 0.5, because the importance of KLD and MMD are even.

The multi-objective instance weights are used as training weights for the source
domain in the training stage of the pre-trained model as shown in Equation (4). Through
this process, source instances that are not useful for the target task are assigned very
low training weights, so they are removed from the training stage, or their influence is
significantly reduced. As a result, the effect of the dissimilarity between the two domains
on model training is minimized so that transfer learning can proceed effectively.

2.6. Detailed Procedure of the Proposed Method

Step 1. The vibration signals are collected under various operating conditions for each
domain using an accelerometer. The target domain has fewer labeled data than the source
domain. There are labeled training and test data in the target domain. The labeled training
data is used to fine-tune the pre-trained model to obtain the target diagnosis model, and
the test data is not used for training but to evaluate the model performance.

Step 2. The acquired acceleration signals are converted into spectrogram images in
the time-frequency domain through signal processing methods. Spectrogram images are
used as input for a deep residual network. A pre-processed input image has the form of a
[224, 224, 3] three-channel RGB.

Step 3. A deep residual network (ResNet50) is trained using source domain data as an
initial pre-trained model. The last fully connected layer is initialized to be suitable for the
task class, and training starts with random initial weights. The initial pre-trained model has
feature extraction layers and parameters suitable for fault diagnosis in the source domain.

Step 4. The initial pre-trained model is transferred to target domain and fine-tuned
using a small number of labeled target domain data. The initial deep transfer residual
network is obtained. Detailed procedure of this step is presented in Figure 3.

Step 5. The MMD between the source domain instance and target domain are calcu-
lated. In addition, the KLD of the source domain instances are derived from the initial deep
transfer residual network. Multi-objective source instance weights are derived from the
calculated MMD and KLD.

Step 6. A final pre-trained model is trained using source domain data and multi-
objective instance weights. By assigning instance weights, each instance in the source
domain has different influence on the subsequent model training process. The learning rate
was fixed at 0.001, and the training process was controlled so that no overfit occurs. After
training a specific epoch, the structure of the trained model and all parameters are saved.
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Step 7. The optimized pre-trained model is fine-tuned using target domain training
data, which generates a final instance-based deep transfer learning network. Detailed
procedure of this step is presented in Figure 3. To fine-tune the pre-trained model, we
freeze beginning layers before residual blocks and train the parameters of the remainder
layers including the fully-connected layer. During the fine-tuning procedure, we use Adam
optimizer, and the batch size is set to be 32. The initial value of the learning rate is 0.001,
and it is gradually decreased by multiplying by 0.5 to find the optimal parameters when
the loss value over 50 epochs does not improve.

Step 8. The instance-based deep transfer learning network is applied to predict the
label of the target test data, which is used to validate the performance of the designed
model on the target fault diagnosis task.

Figure 3. Flowchart of the model transfer and the fine-tuning procedure.

3. Case Study: Experimental Verification and Comparison Results
3.1. Experimental Setup Description

A case study was completed to verify the effectiveness of the proposed method for the
fault diagnosis task and its applicability to actual industrial fields. Spot welding is one of
the joining methods broadly used in various manufacturing processes and is performed in
automotive body manufacturing processes. Welding faults are directly related to product
quality degradation. However, it is difficult to identify a defect in spot welding without
damaging the specimen. Several nondestructive tests exist, but it is impossible to do this
for all products. Therefore, as an alternative, we performed a defect diagnosis of welding
quality using only the accelerometer. The spot-welding process using the industrial robot
imitated in the case study is straightforward to automate. Therefore, transfer learning can
be particularly effective for diagnosing failures of different welding products in automated
welding processes.

A testbed that mimics the spot-welding process using an industrial six-axis articulated
robot used in the actual automotive body manufacturing process was installed. Machinery,
including manufacturing robots, was investigated, and similar components were selected
as much as possible. The HS-180 manufactured by Hyundai Robotics [42] was used as the
manufacturing robot. The robot’s payload is up to 180 kg, the maximum height is 2088
mm, and the maximum length is 3128 mm. A spot-welding servo gun made by Obara [43]
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was used for spot welding. An experimental jig and other facilities were also designed as
in the field.

As depicted in Figure 4, the accelerometer PCB 353B03 model was installed perpendic-
ular to the electrode at the bottom of the spot-welding gun frame. Vibration signals were
collected when welding was repeatedly performed. The experiment was conducted under
a sampling frequency of 12.8 kHz and a sampling time of 35 s using the NI9232 DAQ.

Figure 4. Experimental facility setup: (1) industrial robot, (2) spot-welding servo gun, (3) jig,
(4) electrode, and (5) accelerometer.

In this case study, the occurrence of a small nugget was selected as the major failure
state to observe. If the welding nugget is not stably formed, the joint does not proceed
correctly. This is a typical welding quality fault, which causes a defect in the finished
product. In terms of process variables, such a failure occurs when the weld current or the
weld time is low or when the electrode pressing force is excessive compared to the weld
current. In addition, small nugget often occurs when the dimension of the electrode tip
is large due to wear. It can be caused by problems with various detailed components of
the industrial robot, such as reducers, input gears, and motors. A cross-section test-based
quality inspection was performed on the welded specimen to identify the failure. Cross-
section test images are illustrated in Figure 5. Data were collected in three cases according
to the type of welding specimen: mild steel, galvanized (GI) steel, and galvannealed (GA)
steel. Primarily, the mechanical properties are different because the specimen materials are
different for each welding specimen. The three types of specimens used in the case study
have a common size of 300 mm in width, 100 mm in length, and 0.8 mm in thickness. The
chemical composition of the mild steel specimen is C: 0.018%, Si: 0.002%, Mn: 0.201%, P:
0.009%, and S: 0.005%. The zinc coating mass of the GI steel specimen is 18.3 g/mm2 and
17.8 g/mm2, and the chemical composition is C: 0.02%, P: 0.013%, S: 0.011%, Mn: 0.13%,
and Sol-Al: 0.03%. The GI steel specimen is zinc alloy steel with a zinc mass of 120 g/mm2,
and its chemical composition is C: 0.25%, P: 0.10%, S: 0.04%, and Mn: 1.35%. Therefore, the
welding conditions, such as the electrode pressing force and weld current, were also set
differently according to the properties of each specimen material. Table 2 lists the welding
conditions for each specimen material in detail.
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Figure 5. Cross-section test images of the welded specimen: (a) normal state, (b) small nugget.

Table 2. Weld conditions for each specimen.

Specimen
Material Electrode Force Weld Current Weld Time Hold Time Hold Time

Mild steel 250 kgF 5.0 kA 0.167 s 0.250 s 0.250 s
GA steel 385 kgF 5.5 kA 0.167 s 0.250 s 0.250 s
GI steel 360 kgF 6.0 kA 0.167 s 0.250 s 0.251 s

From the experiment, a total of 2160 data were collected. For each of the three
specimens, the angle between the welding specimen and ground had two different cases,
0◦ or 45◦. Welding was performed 180 times for each normal and fault state in each angle
case. In our comparison studies, the target domain data were defined as 360 data collected
from GA steel with the 0◦ welding angle in order to make the target domain as similar as
possible. The source domain data were defined as 1440 data collected from two different
specimen materials, mild steel and GI steel. In the source domain, unlike with the target
domain, all data from two materials were used regardless of the welding angle, because
the source domain is not significantly affected by the data identity.

3.2. Comparison Studies

To evaluate the proposed method, the data from GA steel were set as the target
domain, because it has the highest diagnosis difficulty. Among 360 target data collected
from the GA steel welding under the same conditions, the randomly selected 180 data of
90 normal and 90 fault were used as target test data. The remaining 180 data were used for
model training. For training the pre-trained model, 1440 data in the entire source domain
were used. All result comparisons were derived by repeating the same model training
process five times and calculating the arithmetic mean. In the following three comparison
studies, we observed the model performances (i.e., prediction accuracy) depending on the
employed (1) signal processing methods and learning algorithms, (2) the proposed method
and the non-transfer learning method, (3) the instance optimization methods.
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3.2.1. Comparison of Model Performance by Signal Processing Methods and the
Learning Algorithms

The accuracy of the proposed method was compared with that of using only a small
number of target domain data and using the source and target domain data simply together
without transfer learning. In addition, the comparison of accuracy when using different
signal processing methods is also presented in each case. We also used a fully-connected
neural network with 100-50-25 neurons. A total of 12 handcrafted features extracted
from each frequency band through wavelet decomposition were used to train the fully-
connected neural network: minimum, maximum, mean, absolute mean, root mean square
(RMS), peak-peak, peak to RMS, variance, kurtosis, skewness, entropy, and RMS error
of estimation.

The results are listed in Table 3. In most cases, the diagnosis accuracy was improved by
additionally using the source domain data compared to only using the target domain data.
By comparing the diagnosis accuracy of the models trained using same ResNet50 structure
and different training algorithms, it was verified that the accuracy can be increased through
proposed method. On average, when the source and target data were treated as a single
training dataset for model training, the average accuracy increases by 1.34% compared to
when only using target data. However, when the proposed method is used, the average
accuracy increases by 4.33% compared to when only using target data. From this result,
it is possible to confirm the excellent effectiveness of the transfer learning and the fine-
tuning strategy to use the knowledge of the source domain systematically. In addition,
the performance of the deep learning-based method is quite superior to the traditional
machine learning method using handcrafted features, and transfer learning can be a good
application method to develop deep learning-based methods.

Table 3. Comparison results of each method.

Input Shape Algorithm
Training Dataset Classification

Accuracy (%)Labeled Target Data Source Data

Handcrafted features DNN (fully-connected) O X 73.80
O O 50.10

STFT image
ResNet O X 92.67
ResNet O O 94.44

Proposed method O O 98.33

WPD image
ResNet O X 94.00
ResNet O O 95.00

Proposed method O O 97.22

WPD image
(spectral subtraction)

ResNet O X 92.56
Proposed method O O 96.67

The highest accuracy of 98.33% was derived using the proposed method and STFT,
which is 5.66% higher than 92.67% when only target data are used. The average accuracies
of the proposed method using WPD and WPD with spectral subtraction are 97.22% and
96.67% respectively, which decrease 1.11% and 1.67% compared with the STFT. It is inferred
that the time-frequency image created using STFT is the most suitable to be used in the
proposed method in this case study.

3.2.2. Comparison between the Proposed Method and Non-Transfer Learning Method

The advantage of the proposed method is that high diagnosis accuracy can be obtained
even when the labeled data of the target domain for diagnosis are few. To verify this
advantage, we observed the change in accuracy through a scenario in which the number
of target domain training data is reduced by 10. In addition, it was compared with the
accuracy when transfer learning was not used. The comparison of these results confirmed
how much the diagnosis accuracy improves by using the source domain and proposed
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method. Table 4 presents the average value calculated by repeating the same process five
times. Table 4 confirms that the accuracy improvement using the proposed method is more
prominent when the target training data are few. We observed the average accuracy by
dividing the entire range according to the number of training data into three ranges:

• S1 for 130 to 180 data ranges with an average accuracy of 90% or more;
• S2 for 70 to 120 ranges with an average accuracy of 80%;
• S3 for 20 to 60 ranges;
• S4 for the entire 20 to 180 range.

Table 4. Comparison results of the proposed and non-transfer learning methods.

Proposed Method ResNet50 (Non-Transfer Learning)

Number of Target
Training Data

Classification
Accuracy (%)

Max.Accuracy
Epoch

Classification
Accuracy (%)

Max.Accuacry
Epoch

180 98.33 148 92.67 497
170 98.89 212 93.78 382
160 96.44 96 91.78 253
150 97.78 138 91.11 200
140 97.33 237 91.78 218
130 96.22 173 88.67 403
120 96.00 277 89.22 232
110 95.56 211 90.00 237
100 95.44 230 86.22 218
90 91.89 169 87.11 181
80 91.11 282 84.67 193
70 93.11 121 82.33 309
60 88.56 191 79.44 319
50 85.11 295 78.11 235
40 83.22 186 74.22 353
30 75.56 62 61.67 431
20 75.00 90 61.00 484

In S1, with many training data, the average accuracy of the proposed method was
97.5%. The average accuracy increased by 5.87% compared with 91.63% when transfer
learning was not performed. In S2, the average accuracy increased by 7.26%, from 86.59%
to 93.85%. In S3, with few training data, the average accuracy was 81.49% and 70.89%,
respectively, and an increase of 10.6% was observed. A detailed difference of accuracy
between the proposed method and non-transfer learning method is presented in Figure 6.
The accuracy difference usually increases as the number of target training data decreases.
Especially in cases where the number of training data is 20, 30, and 40, it is possible to
observe an increase in accuracy of 14%, 13.89%, and 9%, respectively. When the transfer
learning was not used, the deep learning model was not adequately trained. It was
confirmed that the use of the proposed method increases the diagnosis accuracy regardless
of the number of training data. The efficiency also increases when the target domain data
are few.
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Figure 6. Accuracy difference between the proposed and non-transfer learning methods.

3.2.3. Comparison of Model Performance According to Domain Optimization Methods

The most critical part of instance-based transfer learning is the domain optimization
process using instance weighting to minimize dissimilarity between domain instances.
To demonstrate the effectiveness of the multi-objective instance weight of the proposed
method, we compared the results according to the five domain optimization methods by
performing transfer learning in the same process. In addition, each optimization method
has different characteristics and merits, and the performance is greatly affected by the
number of target domain data. Therefore, we compared the results through some scenarios
in which a number from 20 to 180 of the target training data were randomly removed. The
test set used to calculate the accuracy was fixed at the initial 180 to remove the randomness
and observe only the effect of the number of target training data.

In Table 5, in all cases, the diagnosis accuracy of instance-based transfer learning with
domain optimization was higher than that of the transfer learning without the domain
optimization process. If domain optimization is not performed, it was confirmed that
negative transfer occurs in some scenarios. The proposed method had the highest diagnosis
accuracy in all cases. The other three optimization methods have similar results over the
entire range but have different pros and cons.

These results are presented in Table 6. The highest diagnosis accuracy was obtained
using the proposed method like other accuracy comparisons. The proposed method
showed 97.5%, 93.85%, 81.49%, and 91.5% accuracies for S1, S2, S3, and S4, respectively.

The target dropout-based method demonstrated a low variance in the average accu-
racy with 94.95%, 89.39%, 78.84%, and 88.25% accuracy for S1, S2, S3, and S4, respectively.
The KLD weight-based method has 95.32%, 89.02%, 75.29%, and 87.2% accuracy, respec-
tively. The MMD weight-based method has 95.76%, 90.85%, 79.96%, and 89.38% accuracy,
respectively, showing higher diagnostic accuracy than the other two domain optimiza-
tion methods. A detailed comparison of accuracy over the entire range is presented in
Figure 7. The results confirmed that excellent domain optimization effect can be obtained
by complementarily using the advantages of the two indicators for weighting.
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Table 5. Accuracy comparison results of different domain optimization methods.

Scenario Number of
Training Data

No
Optimization

Target
Dropout

KLD
Instance
Weights

MMD
Instance
Weights

Multi-Objective
Instance Weights

(Ours)

S1

180 92.11 96.33 97.11 97.33 98.33
170 96.33 97.11 97.44 97.44 98.89
160 89.33 92.78 95.22 92.56 96.44
150 92.56 93 95.89 95.89 97.78
140 94.11 94.67 95.67 96.56 97.33
130 93.33 95.78 90.56 94.78 96.22

S2

120 88.89 92.11 93 91.78 96
110 92.33 93.44 94.56 92.78 95.56
100 90.44 92.67 90.67 93 95.44
90 86.67 86.22 86.78 90.45 91.89
80 88.22 85 83.89 87.11 91.11
70 89.22 86.89 85.22 90 93.11

S3

60 83.22 85.33 81.33 86.44 88.56
50 77.78 81.44 77.44 82.56 85.11
40 78.78 81.89 75.44 81.89 83.22
30 69 75.56 72.78 73.89 75.56
20 65.56 70 69.44 75 75

Table 6. Average accuracy according to the transfer scenario.

Transfer
Scenario

(Number of Training Data)

No
Optimization

Target
Dropout

KLD Instance
Weights

MMD Instance
Weights

Multi-Objective
Instance Weights

(Ours)

S1 (from 130 to 180) 92.96 94.95 95.32 95.76 97.5
S2 (from 70 to 120) 89.3 89.39 89.02 90.85 93.85
S3 (from 20 to 60) 74.87 78.84 75.29 79.96 81.49

S4 (from 20 to 180) 86.35 88.25 87.2 89.38 91.5

Figure 7. Comparison results between different domain optimization methods.
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4. Discussion

(1) The proposed method performs instance weighting using multi-objective instance
weights for effective transfer learning to minimize the discrepancy between the
target and source domain instances. Each source instance is assigned a weight that
evaluates the relation to the target domain to curtail the negative transfer effect
resulting from source instances with a large domain discrepancy. The MMD and KLD,
which are indicators measuring dissimilarity, are used to obtain these weights. This
method considers the discrepancy between the source and target domains and the
discrepancy within the source domain. It includes the process of finding the optimal
multi-objective instance weights and the final transfer learning process. The effect of
knowledge transfer between the source and target domains is maximized through
this method.

(2) It was confirmed that the target task performance increased using a different but
related source domain. However, some instances are not related to the source domain
and have a large discrepancy. Therefore, performance improvement varies greatly
depending on the technique of using the source domain. In this paper, we compared
the performance of the domain optimization techniques used for this purpose. Our
method of using two different indicators as instance weights causes a complementary
effect of combining the advantages of the two indicators.

(3) When performing intelligent fault diagnosis, a lack of labeled target data is a prevalent
situation. However, data from similar work environments are usually available. When
one has few labeled target data, the proposed method and transfer learning can be an
excellent alternative. From the comparison results, robust performance was found
even when few data exist. Through this, it was confirmed that the applicability in
actual industrial fields is promising.

5. Conclusions

Intelligent fault diagnosis for practical machine equipment is one of the most impor-
tant tasks in the industrial field. In this paper, a multi-objective instance weighting-based
transfer learning network is proposed for successful fault diagnosis. The proposed method
is based on the transfer learning and instance weighting strategy that complementarily
utilize two indicators, KLD and MMD, to minimize discrepancy between the two domains
used for the transfer learning model. Through this, the accuracy of target diagnosis is im-
proved by using data with different conditions under a general situation where only a small
number of data were collected from the target system condition. Following conclusions
were drawn according to the case study and comparison results.

(1) The proposed method outperforms the standard diagnosis models without transfer
learning method.

(2) It is verified that our multi-objective instance weighting strategy has higher per-
formance than other optimization strategies used in transfer learning. The multi-
objective instance weighting strategy can cope with deterioration of model perfor-
mance due to dissimilarity between and within domains inherent in transfer learn-
ing process.

(3) In particular, as the number of the training data in the target domain decreases, the
improvement of the diagnosis accuracy and stability due to use of the proposed
method increases.

(4) The experimental setup of industrial spot welding that is actually carried out in
automobile factories was used. Case study was conducted through the data collected
from one accelerometer, with the realistic experimental conditions, such as difference
in operating conditions and the number of data instances. It is confirmed that the
proposed method has remarkable applicability for fault diagnosis in industrial sites.

Because of the above advantages, the proposed method can apply to actual fault
diagnosis where the collected data is limited. This means that high diagnostic performance
can be achieved with low data collection cost. Furthermore, if the weight parameters for
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each indicator is not the equal value, but is given according to the characteristics of the
domain data to be applied, it can be widely used for other applications. In addition, through
the process of repeatedly updating the weight parameters like the ensemble method, there
is a possibility that it can be used for comprehensive failure diagnosis in industrial sites
where many units of similar facilities exist.
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