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ABSTRACT Eliminating the undesirable features is crucial to computer vision applications since undesirable
features degrade the visibility of images. For that purpose, denoising, dehazing and deraining have been
actively studied in both traditional model-based approaches and modern deep learning methods. However,
elimination of hair in dermoscopic images has not received sufficient attention despite its significance and
potential. Meanwhile, hair removal algorithms remain within the classical morphological methodologies,
while only a few attempts apply the latest data-driven techniques. Hair is desired to be removed in
dermoscopy applications because it causes undesired effects such as occlusions in lesion areas. However,
removing hair is challenging because of its inherent complex structure and variations. In this paper,
we propose a new unsupervised algorithm for hair removal and evaluate it on a real-world melanoma dataset.
The proposed method eliminates hair from dermoscopic images by inducing a reconstructed distribution of
images with hair to resemble a hairless distribution using generative adversarial learning. In the generative
adversarial learning framework, hair features are characterized with a coarse-grained label simply via a
binary classifier. At the same time, the important features of the lesions are preserved by minimizing L;-norm
reconstruction loss based on Laplace noise assumption. The qualitative evaluation of the hair-removed results
show that the proposed algorithm is robust to hair variations, and the quantitative results demonstrate that
applying our hair removal algorithm considerably improves the performance of melanoma classification,
outperforming the benchmarks.

INDEX TERMS Deep learning application, dermoscopy, generative adversarial networks, hair removal,

medical imaging, skin lesion classification, unsupervised learning.

I. INTRODUCTION

Undesirable features such as noise, haze and rain degrade the
performance of computer vision algorithms since they reduce
the visibility of images [1]. Feature elimination tasks aim
to remove the undesirable features from images to get clear
representations that are ideal for computer vision applica-
tions [2], [3]. Feature elimination applications like denoising,
dehazing, and deraining have been actively studied. Classi-
cal approaches mainly rely on characterizing the statistical
properties of undesirable features [4]—[22]. Progress in deep
learning has led to data-driven solutions where fine-grained
annotations are used as ground-truth [16], [23], [23]-[40].
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With the advent of a generative adversarial network (GAN)
[41] and CycleGAN [42], data-driven unsupervised tech-
niques where undesirable features are removed by imposing
the distribution of clean images to the reconstructed output
via adversarial loss have been developed [39], [43]-[46]. Hair
is an undesirable factor that makes visual degradations and
causes serious occlusions in dermoscopic images. However,
removing hair from dermoscopic images has not been suf-
ficiently investigated under the deep learning framework
despite its importance and potentials in medical imaging. For
example, the classification of melanoma, known as fatal skin
cancer, is challenging due to the destructive interruption by
hair on the skin. Hair disturbs the intrinsic intensities and
geometric properties of the lesion regions causing detrimental
effects on classification. This chronic problem raises the
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need for hair removal pre-processes on dermoscopic images.
Classical approaches often employ morphological methods to
remove hair by defining the problem as a hair region detection
and inpainting task [47]-[53]. They use pre-defined filters
to detect hair regions and change the intensity values of the
hair areas through interpolation. However, the conventional
methods have difficulties in characterizing hair regions and
finding suitable interpolation methods in images containing
hairs with complex structures and large variations. Recently,
the data-driven deep learning technique has been adopted to
solve the hair removal problem in a supervised way with
fine-grained hairless labels that are expensive to construct
and often unavailable [54]. Meanwhile, GAN has also been
applied to dermoscopic images. However, the application of
GAN in dermoscopic images is limited to synthetic image
generation for data augmentation [55]-[59] and segmenta-
tion improvement [60], [61]. In this paper, we introduce an
unsupervised undesirable feature elimination algorithm and
demonstrate it by applying it to hair removal. The proposed
algorithm eliminates undesirable features from input images
by imposing the distribution of the real clean images via
GAN [41] in unpaired dataset. Under the GAN framework,
the proposed algorithm characterizes the undesirable features
to be removed with a coarse-grained label via a simple binary
classifier, the discriminator of GAN. Simultaneously, prior
supervised methods require fine-grained labels that include
location, shape and other detailed properties of the feature.
The proposed method combines image reconstruction and
translation. The image reconstruction part is built upon the
Laplace noise assumption, and it promotes the preservation
of critical original properties of the images. The translation
part uses GAN to induce the obtained reconstructed images
to follow the distribution of clean images where the undesir-
able features are not observed. The two components of the
algorithm are simultaneously optimized under the proposed
integrated loss function for the undesirable feature elimina-
tion. The effectiveness of the proposed algorithm is tested
on dermoscopic images for melanoma diagnosis. To our best
knowledge, our method provides the first demonstration of
a data-driven unsupervised hair elimination technique in der-
moscopic imaging. In our proposed algorithm, hair, the unde-
sirable feature, is characterized by the discriminator of GAN,
which distinguishes between images with hair and without
hair. The reconstruction part preserves the important original
properties such as shape, location and color of the images’
lesions. The hairless translation based on GAN enforces the
distribution of the obtained reconstructed images to be similar
to that of the hairless images. The proposed algorithm shows
hair-removed results that are robust to variations of hair prop-
erties such as density, thickness and color as shown in Fig. 5,
and Fig. 6. Furthermore, the impact of hair removal by the
proposed method is evaluated on melanoma classification.
The hair elimination algorithm is trained beforehand and
employed to pre-process hair-containing images. We com-
pare the classification performance on the original images,
and the reconstructed images where the hair is removed by the
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benchmarks and our proposed technique. As demonstrated
by Tab. 2 and 3, the experimental results show that removing
hair from the input images by the proposed algorithm signifi-
cantly improves the performance of state-of-the-art deep neu-
ral networks for classification [62]—[64]. The contributions of
this paper are listed as follows:

« We present a new unsupervised data-driven approach for
undesirable feature elimination.

« We propose an algorithm to characterize features with a
coarse-grained label via a simple binary classifier.

« We propose a new image reconstruction algorithm incor-
porating the feature manipulation in the framework of
generative adversarial networks.

o We present the first demonstration of an unsupervised
deep learning approach for hair removal from dermo-
scopic images.

« We improve an image representation that can enhance
the accuracy in the classification of melanoma lesions
in skin images.

Il. RELATED WORK

In feature elimination, denoising, dehazing and deraining
problems have been the main research topics. The gen-
eral approaches used in conventional methods utilizes
characterizing statistical properties of the features to be
removed [4]-[22]. More recently, deep learning has been
employed for feature elimination tasks and fine-grained anno-
tations are used as ground-truth for supervised learning [16],
[23], [23]-[40]. Some supervised approaches combine GAN
for reducing artifacts [36], [40] and augmenting paired train-
ing data with undesirable features and ground-truth clean
images [37]-[39]. The development of CycleGAN [42],
which is originally proposed for unpaired translation between
two different image domains based on cycle-consistency loss,
has inspired unsupervised techniques in feature elimination
tasks [45], [46]. Unsupervised feature elimination based on
CycleGAN is further improved with a combination of per-
ceptual loss used to preserve the original contents of images
[44] for deraining. The most similar approach to our proposed
model is given by UNet+L2, the recent denoising method
for X-Ray CT images [43] where the Lj-norm is used for
reconstruction loss under the Gaussian noise assumption and
GAN is adopted to impose the clean image distribution. Our
proposed model is also based on the GAN framework but
we employ the Li-norm that is known to be more preferred
because of its anisotropic and sparse properties, assuming
that the additive noise in images follows Laplace distri-
bution. Moreover, we test our algorithm on the real-world
dermoscopic data while only a synthetic noise denoising
case is evaluated in [43]. Classical approaches have con-
sidered hair removal from images as a hair detection and
occlusion inpainting problem [47]-[49] and used filter-based
methods to solve it. They use morphological closing opera-
tions to obtain binary masks of hair and attempt to inpaint
hair regions by traditional interpolation methods [47], PDE
(partial differential equation) [48] or modified coherence
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FIGURE 1. Schematic illustration of the proposed neural network architecture. Neural networks for hair removal consist of the reconstructor R that
translates the input image with hair x to the hairless image y and the discriminator D that classifies the real hairless image y and the reconstructed
hairless image y. In classification, the image with hair x is pre-processed by the pre-trained hair removal reconstructor R and the reconstructed hairless
result y is passed to the melanoma classifier C, while the real hairless image y is directly fed to the C without pre-processing for hair elimination.

transport [49]. More recently, multi-scale curvilinear matched
filters are applied in grayscale images to detect hairs in
images and region growing algorithms, and the linear dis-
criminant analysis (LDA) are used to inpaint the detected hair
regions in [50]. An adaptive canny edge detector is leveraged
to detect hair regions, and the regions are inpainted using
a wavelet-based multi-resolution coherence transport [51].
Modified morphological closing approaches are applied for
hair detection and inpainting both in [53]. Modern data-driven
approaches for hair removal adopt deep neural network
auto-encoders and use supervised training with fine-grained
annotations that contain specific information of hair such
as location, shape and color [54]. The auto-encoder-based
method eliminates hair from dermoscopic images by min-
imizing the discrepancy between the auto-encoder’s result-
ing output and the fine-grained ground-truth [54]. How-
ever, the supervised hair removal approach requires pairs of
hair-containing images and their ground-truth hair-removed
images that are expensive to construct and often unavail-
able. On the contrary, our proposed method leverages the
deep neural auto-encoder network trained in an unsupervised
manner where the ground-truth hair-removed images are not
used, and the GAN framework is employed to learn the
distribution of hairless data. GAN is a modern deep learning
technique where a generative model generator and a dis-
criminative model discriminator are trained in an adversarial
way based on Jensen-Shannon divergence [41]. The generator
produces a similar distribution to the given real data from ran-
dom vectors while the discriminator distinguishes between
the real data and the generated fake data. GAN framework
can be integrated with various computer vision tasks like
image translation, domain adaptation, super-resolution and
image generation [42], [65]-[67]. GAN has been applied
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in medical domain vision problems generally for synthetic
data generation [68]-[70], domain adaptation [71], [72] and
segmentation [73], [74]. Particularly, dermoscopy application
has adopted GAN for the realistic synthetic image gener-
ation for data augmentation [55]-[59] and enhancing seg-
mentation performance [60], [61]. However, to the best of
our knowledge, using the GAN framework for undesirable
feature removal in dermoscopy is still an open question,
and we propose the first data-driven unsupervised approach
where the GAN framework is leveraged to eliminate hair from
dermoscopic images in an unsupervised way.

lll. METHOD

Our objective is to learn mapping function R from hair
domain X to hairless domain Y, R: X — Y, while preserving
other properties such as location and shape of lesions and
intensities given training samples x,-ﬁy: | Where x; € X and
yjj"i | Where y; € Y. The proposed hair removal process con-
sists of image reconstruction and hair-to-hairless translation.

A. RECONSTRUCTION

The problem of interest is to obtain an optimal reconstruc-
tion y given an observation x by maximizing the posterior
probability p(y | x) that is proportional to the product of the
likelihood probability p(x | y) and the prior probability p(R)
due to the Bayes rule as follows:

ply | x) o p(x | y)p(y). (D

The likelihood probability is designed to measure a dissimi-
larity between an observation x and its desired reconstruction
y following an additive image model as given by:

Yy =x+n, ()
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FIGURE 2. lllustration of the proposed network of the reconstruction model R. The blue arrows show the flow of activation. The yellow blocks
represent the output activation of convolutional layers with 3 x 3 convolutional kernels and the blue blocks stand for the results of nearest upsampling.

real/fake

FIGURE 3. Illlustration of the proposed network D of the discriminator. The
blue arrows show the flow of activation. The yellow blocks represent the
output activation of convolutional layers with 3 x 3 convolutional kernels.

where the noise process 7 is assumed to follow a Laplace
distribution L(0, b) with mean 0 and a diversity parameter
b > 0. Then, we have the likelihood probability density as
follows:

px | y) o exp(=lx —yl), 3)

where the L;-norm between the observation x and model
R is known to be effective in characterizing features of the
model in an anisotropic way due to the sparsity assumption.
The prior probability p(y) is designed to impose a constraint
penalizing the proximity to the hair features.

1) RECONSTRUCTION LOSS
The reconstruction y from an observation x is obtained by
minimizing the following loss function:

Lrecon(y, X, Y) = Ex~phair(x)[||y —x[I11, 4)

which is derived by taking the negative logarithm of the
likelihood probability in Eq. (3). The loss function Liecon
measures the discrepancy between the observation x and its
desired reconstruction y in terms of the mean absolute error
(MAE), thus the reconstruction is constrained to be similar to
the observation in appearance.

B. HAIR TO HAIRLESS TRANSLATION
The elimination of undesired features associated with hairs
can be achieved by the transformation of one domain X
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with hairs to the other Y without hairs. The domain trans-
formation is developed in the generative adversarial network
framework where the probability density function associated
with the domain X is transformed to the probability density
function associated with the domain Y, which is imposed
by the extended prior probability p(y, y) with an additional
random variable y representing an element in the domain
Y without hairs. The joint prior probability p(y, y) is given
by the product of the conditional probability p(y, y) and the
probability p(y) as follows:

ply,y) =ply | y) p(y). (5)

The conditional probability p(y | y) measures how likely the
reconstruction y is drawn from the distribution Y represent-
ing the hairlessness.

1) ADVERSARIAL LOSS

We assume that the conditional probability p(y | y) in Eq. (5)
is constructed based on Jensen-Shannon divergence JSD. The
Jensen-Shannon divergence JSD provides a discrepancy mea-
sure between the probability distribution of the reconstructed
results g(y) and the probability distribution of the hairless
images p(y) as the following:

—logp(y | y) o ISD(q(y) Il p(»)). (©)

Imposing the hairlessness to the resulting reconstructed
images is corresponding to translating the domain of the
hair images to the hairless domain. The translation from hair
to hairless can be obtained by minimizing Jensen-Shannon
divergence JSD in Eq. (6). Minimizing Jensen-Shannon
divergence JSD can be solved by GAN mechanism [41].
Under the GAN framework, the objective is formulated by
the minimax problem as follows:

H}?in mDaX GE,VNphairless(.)’) [IOgD(y)] +Ex'\’l7hair(x) [IOg(l - D(VX))]) ’

@)
where y, denotes a reconstruction associated with x ~ ppair,
D denote a discriminator to discriminate the real hairless
image y and the reconstructed fake hairless image y and
Y ~ Phairless(¥) and x ~ phair(x) stand for data distribution of

hair data and hairless data, respectively. Based on the GAN
objective in Eq. (7), we employ the non-saturating version of
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Algorithm 1 Hair Removal via GAN. Default Values: k = 10, A = 100

Require: Mini-batch size m, number of training iterations T

Require: Initial discriminator parameters wy, initial reconstructor parameters 6

1: fort=1,...,T do

2:  Sample mini-batch of hairless images {y(l), e, y(’")} ~ Phairless-

3:  Sample mini-batch of images with hair {x(l), R x(’")} ~ Phair-

4 Yy < R(x)

5 Luv(w; y, %) = 3 Yy [logDG) — logD(y,0) — §1VDOD)I3]

6:  w < w+ V,Lagy(w; y, x) # gradient ascent by maximizing L,gy for D,,
70 Laav(0;x) = % Y [ — logD(y0)]

8:

Lrecon(0; x) = % Z:n:l [”VxO’) _x(i)Hl%

9 0 <«0-—Vy (Ladv(e; X) 4 Lrecon(0; x)) # gradient descent by minimizing Lygy and Lyecon for Ry

10: end for

vanila GAN loss with a regularizer to penalize the gradients
of the discriminator D on the real hairless image y [75].

Lagv(iw, 05 Y, )
= Ly~Phairless ) UOgD()’)]

k
- Exwphair(x) [10gD(]/x )] - EEywphairless(}') [ ” VD(—Y) ” %] (8)

where w and 6 denote the trainable model parameters of the
discriminator D and the reconstructor R which outputs yx,
and k is a positive integer value to decide the degree of the
regularization.

2) FULL OBJECTIVE FOR HAIR REMOVAL

The reconstruction loss is simultaneously applied with the
adversarial loss. To control the level of imposition of hair-
lessness, we add XA as the pre-defined coefficient for the
adversarial loss Lyqgy.

Lhair_removal(V,D, X, Y)=Liecon(y, X, ¥Y)+ALagv(w,0; Y,y)
)

C. NEURAL NETWORK ARCHITECTURES

The proposed algorithm includes three separate neural net-
works; the reconstructor R, the discriminator D and the
melanoma classifier C. The full architecture of the proposed
method is trained in two sequential stages consisting of
optimization of the reconstructor R and the discriminator D
for removing hair, and optimization of the melanoma clas-
sifier C. The schematic illustration of the architectures is
shown in Fig. 1. In the first stage, the proposed hair removal
algorithm is optimized. The reconstructor R and the discrim-
inator D are simultaneously trained in an end-to-end way.
Let R(x; #) be an auto-encoder for the image reconstruction
with trainable model parameters 6. The Rg and Rp denote the
encoder part and the decoder part of the reconstruction auto-
encoder. The reconstructed image y is fed into the discrimi-
nator D with the hairless data y. The discriminator D classifies
the fake data y and the real data y while the reconstruction y
tries to generate realistic hairless image from the hair input
to fool the discriminator. This adversarial training scheme
promotes the reconstructed results y to follow the data dis-
tribution of real hairless data set Y, effectively removing
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hair from the input hair data x. The detailed neural network
architectures of the reconstructor R and the discriminator D
are shown in Fig. 2 and 3, respectively. In the second stage,
the classifier is trained for the melanoma classification using
the cross-entropy loss function and the parameters 6 of the
reconstructor R are frozen so that they are not affected by the
optimization of the melanoma classifier C. If the given image
is the hair image x € X, the given x is first passed to the
trained reconstructor R and the resulting reconstruction image
y is used as the input for the melanoma classifier C. On the
other hand, if the given image is the hairless image y € Y,
the given y is directly used as the input for the melanoma
classifier C and the trained reconstruction y is not employed
in this case.

While the adversarial loss induces the reconstruction out-
put y to follow the distribution of hairless data, the recon-
struction loss attempts to preserve original properties of x.
As a result of the simultaneous training with the reconstruc-
tion loss and the adversarial loss, we obtain hair-removed
outputs where the other original properties of hair inputs
remain. The training process for the proposed hair removal
algorithm is described in Algorithm 1.

IV. RESULTS

The proposed algorithm is evaluated on the real-world dermo-
scopic dataset, The ISIC 2020 Challenge Dataset [76]. Due to
the lack of prior data-driven unsupervised techniques that aim
to eliminate hair from dermoscopic images, CycleGAN [42]
which has been actively used for unsupervised feature elim-
ination for denosing [39], dehazing [45], [46] and deraining
[44], [77] as discussed in Sec. II and UNet+L2 [43] which is
the most similar approach to ours are used as benchmarks.
Although UNet+L2 is originally evaluated on denoising
X-ray CT images, it is applicable to hair removal since its fun-
damental target problem is eliminating undesirable features
from images in a data-driven unsupervised way. We compare
qualitative hair removal results of our proposed algorithm and
the benchmarks. Additionally, we quantitatively compare the
classification performances on the original images, bench-
mark hair-removed images and our hair-removed images.
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FIGURE 4. Examples of the skin lesion images without hair in the ISIC 2020 Challenge Dataset. The first four columns show examples of

benign and the last four columns show examples of malignant.

The proposed algorithm is implemented following the details
described in Fig. 2 and Fig. 3.

A. DATASET

The ISIC 2020 Challenge Dataset [76] that consists
of 33,126 pairs of dermoscopic images of skin lesions
obtained from over 2,000 patients and metadata is used in our
experiments for hair removal algorithm and melanoma clas-
sification. The metadata includes binary labels of melanoma
classification, but not whether each data contains hair or not.

B. HAIR REMOVAL

1) DATA

Since the GAN framework requires real data distribution that
the generator wishes to imitate and our proposed algorithm
needs hairless data to be used as the real data, we con-
structed hair labels for the ISIC 2020 Challenge Dataset.
We selected the first 7,996 data and qualitatively evaluated
whether each data has hair or not. Based on the evalua-
tion, we added hair labels to the metadata. The constructed
dataset with hair labels is composed of 5,007 hairless data
and 2,989 hair-containing data. Note that assigning hair
labels to the data is fundamentally different from building
ground-truth annotations of hair-removed images. Using hair-
less distribution based on the GAN framework corresponds to
imposing prior information to the generative model and train-
ing for hair removal is performed in the unsupervised manner
whereas employing ground-truth of hair-removed images is
a discriminative approach for hair removal with supervision
with fine-grained annotations. For the hair removal algo-
rithm, we trained the reconstructor R and the distriminator
D by the whole data of the constructed dataset with hair
labels. The hairless data samples of the constructed dataset
are shown in Fig. 4 and the samples of images with hairs are
given in Fig. 5 and Fig. 6. When we trained the reconstructor
R and the discriminator D, we used the entire data of the
constructed dataset with hair labels and resize its resolution
to 512 x 512.

2) EVALUATION

In this section, we provide a qualitative evaluation of the
proposed algorithm in the elimination of hairs presented in
the skin images. The algorithm aims to identify the features
characterizing hairs in the images, and subsequently get rid
of them in an unsupervised way. For experiments of hair
removal on the presented algorithm and the benchmarks,
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we use mini-batch sizes of 8 and train the reconstructor R and
the discriminator D with learning rate 1e-04 for 186,500 iter-
ations. We set k in Eq. (8) and A in Eq. (9) as 10 and
100, respectively. For experiments of CycleGAN, we adopted
the same structure of discriminator and reconstructor as our
shown in Fig. 3 and Fig. 3. When experiment UNet+L2,
we used UNet based autoencoder as presented in the paper
[43] and we adopted the same discriminator as ours shown
in Fig. 3 since the discriminator in the paper is designed for
training with patches of an image however hair removal task
requires training with a whole image. The examples of the
original images and the hair-removed results by the bench-
marks and our proposed algorithm are presented in Fig. 5
and Fig. 6 with benign and malignant lesions, respectively.
In Fig. 5 and Fig. 6, the first row shows the original images
that contain hair and the second and third rows present the
reconstruction results after the elimination of hairs by bench-
marks and our proposed algorithm, respectively. The qualita-
tive results demonstrate that our proposed model shows more
robust results on images with various types of hair than the
benchmarks. The proposed algorithm and the benchmarks are
compared on images of various hair densities. For example,
the original images with sparse, moderate and dense hairs and
their hair-removed results are presented in the first, second
and third columns of Fig. 5 and Fig. 6, respectively. It is
obvious that the occlusion that is desired to be recovered due
to the hairs is proportional to the density of hairs, and thus
it is considered to be more difficult to reconstruct images
with dense hairs. Despite the difficulty, our proposed algo-
rithm shows more robust results on images with different
hair densities than the benchmarks. The examples in the third
columns of Fig. 5 and Fig. 6 indicate that in images with
excessively dense hairs, using our proposed model better pre-
serves the original characteristics of the lesions whereas using
the benchmarks damages the original properties of lesions.
At the same time, images with various hair lengths are used
for evaluations of the hair removal algorithms. For example,
The forth columns of Fig. 5 and Fig. 6 present the origi-
nal images with short hairs and their hair-removed images
while the other columns display images with relatively longer
hairs. Additionally, the hair elimination algorithms are tested
on images with hairs of different thicknesses. For example,
the fifth and sixth columns of Fig. 5 and Fig. 6 show the
original images with thin hairs and thick hairs and their
hair-removed results, respectively. Furthermore, images with
different skin and lesion colors are used to evaluate the hair
removal algorithms. For example, the original images of red
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ours

FIGURE 5. Examples of the benign skin lesion images with hair in the ISIC 2020 Challenge Dataset. Samples of original images with hair,
hair-removed results by the benchmarks and hair-removed results by our proposed algorithm are shown from top to bottom row.

UNet+L2 CycleGAN

ours

FIGURE 6. Examples of the malignant skin lesion images with hair in the ISIC 2020 Challenge Dataset. Samples of original images with hair,
hair-removed results by the benchmarks and hair-removed results by our proposed algorithm are shown from top to bottom row.

and yellow skins and their hair-removed results are shown in
the seventh and eighth columns of Fig. 5 and Fig. 6. The com-
parisons of hair-removed results between the benchmarks and
our proposed algorithm show that our proposed algorithm is
more effective in the preservation of the original shape of
lesions and colors of skin and shows more robust hair elimi-
nation results on variations of hair than the benchmarks. More
specifically, CycleGAN results in more distorted colors and
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shape compared to UNet+L2 and ours. For example, images
in the sixth column of Fig. 5 and the seventh column of Fig. 6
show that CycleGAN converts yellow to red and significantly
deforms the original shape of a lesion, while UNet+L2 and
ours preserves the original intensity values and shapes. This
indicates that training a native GAN combined with a recon-
struction loss is better for preserving the original properties
than training GAN in a cyclic way with the cycle-consistency
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TABLE 1. Classification performances of EfficientNet-B4 on test set of the
entire dataset where the distribution of labels for melanoma is severely
imbalanced with only 1.7259% of malignant samples. The all column
shows the accuracy on all test data and the hair column shows the
accuracy only on test data with hair.

input all hair
original 0.9687  0.9565
CycleGAN | 0.9800  0.9891
UNet+L2 | 0.9738  0.9946
ours 0.9813  0.9946

loss. Meanwhile, our method is even better in preserving the
original properties than UNet+L2. For instance, the second
column of Fig. 5 and the seventh and eighth columns of Fig. 6
show that our method better preserves the original colors
and shapes of lesions. This implies that adopting a network
without skip-connection as a reconstructor and using Lj-norm
reconstruction loss is more suitable for retaining the original
properties in feature elimination task.

C. MELANOMA CLASSIFICATION

1) DATA

The ISIC 2020 Challenge Dataset has a severely imbal-
anced distribution of benign and malignant data where only
1.7630% of the training dataset is malignant. Our constructed
dataset with hair labels also has of only 1.7259% of malignant
samples. Therefore, the key factor in solving the classification
in this case comes down to handling the data imbalance prob-
lem. However, the objective of this paper is not to show how
to maximize the performance of classification, but to propose
the new unsupervised hair removal algorithm and clarify the
impact of the proposed hair removal algorithm on the clas-

TABLE 2. The average classification metric scores of the top 5 results on
test set of label-balanced partial dataset with different classification
models.

input metric | Res18 Resl52 RX101 EC-B3 EC-B4
acc | 0.7400 0.7667 0.7133 0.6467 0.6267
auc | 0.8186 0.7840 0.7556 0.6844 0.6951

fl  [0.7447 0.7683 0.7200 0.6503 0.6317

original 1 0 107400 0.7667 07133 0.6467 0.6267
rec | 0.7387 0.7663 0.7110 0.6447 0.6229
spec | 0.7467 0.8000 0.8000 0.6533 0.5733
acc | 0.8200 0.7333 0.7267 0.6600 0.7267
auc |0.8871 0.7884 0.7938 0.7191 0.7538
CyeleGaN | f1 [ 08231 07344 07285 0.6651 07369
pre | 0.8200 0.7333 0.7267 0.6600 0.7267
rec |0.8195 07329 0.7261 0.6590 0.7234
spec | 0.8667 0.7333 0.7067 0.7333 0.6800
acc | 0.7800 0.7600 0.7867 0.7467 0.7267
auc | 0.8107 0.8178 0.8284 0.7716 0.7840
UN fl 07849 07618 0.7886 0.7500 0.7296
et+L.2

pre |0.7800 0.7600 0.7867 0.7467 0.7267
rec |0.7791 0.7596 0.7863 0.7459 0.7257
spec | 0.7200 0.8000 0.8000 0.7600 0.6800
acc | 0.8267 0.7800 0.8133 0.7533 0.7444
auc | 0.9093 0.8196 0.8439 0.8124 0.8111
fl | 0.8288 0.7422 0.7327 0.7618 0.7489
pre |0.8267 0.7333 0.7267 0.7533 0.7444
rec | 0.8263 0.7305 0.7246 0.7517 0.7433
spec | 0.8000 0.8267 0.7733 0.7067 0.7111

ours
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TABLE 3. The average classification metric scores of the top 5 results
only on hair data of test set using trained models with label-balanced
partial dataset.

input metric | Res18 Resl52 RX101 EC-B3 EC-B4
acc [0.8222 0.8667 0.8222 0.6667 0.6889
auc | 0.9250 0.9000 0.8750 0.7750 0.8750
fl  [0.6875 0.7333 0.7000 0.6367 0.6367

original 1o 10,8125 09250 0.9000 0.8125 0.8250
rec |0.6946 0.7757 0.7271 0.5903 0.6053
spec | 07467 0.8000 0.8000 0.6533 0.5733
acc | 0.8444 0.8222 0.7333 0.6667 0.7556
auc | 0.6250 0.8500 0.9000 0.6500 0.9000

CyeleGAN | f1 | 0416 07000 06500 05190 0.7233
pre | 0.4750 0.9000 0.8500 0.5500 0.8625
rec 04574 07271 0.6410 0.4943 0.6957
spec | 0.8667 0.7333  0.7067 0.7333 0.6800
acc | 0.8667 09111 0.8667 0.7556 0.8000
auc | 0.9750 0.9750 0.9500 0.7250 0.8750
f1 07333 0.7875 0.7333 0.5899 0.5917

UNet+L2

pre |0.9250 0.8625 0.9250 0.6000 0.7125
rec | 0.7757 0.8075 0.7757 0.5746 0.6064
spec | 0.7200 0.8000 0.8000 0.7067 0.6800
acc | 0.8444 0.9333 0.8889 0.7778 0.8148
auc | 0.9250 0.9750 0.9750 0.8500 0.9167
f1 0.7167 0.8000 0.7333 0.6292 0.6687
pre [0.9125 0.9500 0.9250 0.7875 0.8229
rec | 0.7514 0.8400 0.7757 0.6359 0.6929
spec | 0.8000 0.8267 0.7733 0.7067 0.7111

ours

sification. For that purpose, we conducted experiments for
classification with two different dataset configurations. First,
we test classification performance on the entire constructed
dataset with hair labels where the melanoma labels are signif-
icantly imbalanced. Additionally, we evaluate classification
performance on a portion of the constructed dataset with hair
labels, where the portion consists of the same number of
samples of malignant and benign data. The entire dataset is
divided into 6,396 training, 800 validation and 800 testing
splits and the partial dataset is composed of 228 training,
18 validation and 30 testing splits. For the experiments using
the classification models of ResNet-18 [62] and EfficientNet-
B3 [64], we resized the input resolution to 300 x 300 and for
the cases where we used the other models, we used the input
whose resolution is resized to 380 x 380.

2) EVALUATION

We compare the classification performance on the original
images and the reconstructed images where hair is removed
by the benchmarks and our proposed method. For the clas-
sification, we use a variety of modern classification deep
neural networks including ResNet-18 [62], ResNet-152 [62],
ResNeXt-101 [63], EfficientNet-B3 [64] and EfficientNet-B4
[64]. In all of the experiments of classification, we used
mini-batch sizes of 8 and trained the melanoma classifier C
with a learning rate of 1e-05 for 24,000 iterations. For the
best model selection, we evaluated accuracy on validation
data every 24 iterations and selected the model with the
highest validation accuracy. For the experiments where the
reconstructed hair-removed images are used as inputs, if an
image is originally hairless, the original image y is used as an
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input and if the image initially contains hair x, the image is
pre-processed by the pre-trained hair removal reconstructor
R and the reconstructed hair-removed image y is used as the
input for the melanoma classification network C as described
in Sec. III-C. The results of the entire dataset is shown in
Tab. 1 where the all column shows the classification accuracy
of the all data and the hair column represents the classi-
fication accuracy only on data with hair. The results indi-
cate that eliminating hair features from dermoscopic images
increases classification accuracy and our proposed algorithm
is most effective among the hair removal models. However,
as explained in Sec. IV-C1, the distribution of the melanoma
labels is extremely imbalanced in the entire dataset. To clarify
the effectiveness of our proposed method, we additionally
conducted experiments for classification on the partial dataset
where the labels of benign and malignant are equally dis-
tributed. We conducted 10 experiments for each classifica-
tion model with each input, selected the 5 results with the
highest test accuracy, and computed the average scores of the
results. We evaluate the performance on the label-balanced
partial dataset with 5 different classification metrics: accu-
racy, AUC, F1 score, precision, recall and specificity. The
metric scores on the partial dataset are given in Tab. 2 and
Tab. 2 where the metric column, acc, auc, f1, pre, rec, and
spec denote accuracy, AUC, F1 score, precision, recall and
specificity; the original row presents results on the original
images where hair removal process is not employed; the
CycleGAN, UNet+L2 and ours rows present results on the
images where hair is removed by CycleGAN, UNet+L2 and
ours; and Res, RX and EC stand for ResNet [62], ResNeXt
[63] and EfficientNet [64], respectively. The results show
that using an image where hair is removed by our method
provides the best scores in most cases as shown in Tab. 2.
The results on images with hair demonstrate that removing
hair considerably improves the classification performance on
hair-containing images and the proposed algorithm is most
effective in removing hair features for melanoma classifica-
tion on images with hair as shown in c. The results verify
that applying the proposed hair elimination algorithm signif-
icantly enhances the performance of the melanoma classifi-
cation, outperforming the benchmarks.

V. CONCLUSION

Prior focus on undesirable feature elimination algorithms
in computer vision was mainly on denoising, dehazing and
deraining. Classical approaches characterize statistical prop-
erties of undesirable features and succeeding supervised
data-driven methods require fine-grained labels to be used as
ground-truth. Recent unsupervised techniques for denoising,
dehazing and deraining rely on CycleGAN. Meanwhile, hair
is an undesirable feature that causes serious performance
degradation in dermoscopy applications but studies on hair
removal algorithms employing modern deep learning tech-
niques have not been sufficiently provided. In these regards,
we have proposed a new unsupervised algorithm for the
removal of undesirable features and demonstrated it by the
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application to dermoscopic images of melanoma where hair
results in detrimental impacts. The proposed method char-
acterizes hair simply by a binary classifier, a discriminator
of GAN, in a coarse-grained level and imposes the distri-
bution of hairless images to the reconstructed images via
GAN. At the same time, the important features of the original
input remain in the reconstructed images by minimizing the
Li-norm reconstruction loss function that is built upon the
assumption that the additive noise of the original images
follows Laplace distribution. We have qualitatively demon-
strated that the proposed algorithm is robust to variations
of density, thickness, length of hair and colors of skin and
lesion. The quantitative evaluations on melanoma classifica-
tion show that removing hair using the proposed algorithm
significantly improves the classification performance and
outperforms the benchmarks, indicating its effectiveness and
applicability to diagnosis based on dermoscopy.
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