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Abstract: A quantized-feedback-based adaptive event-triggered tracking problem is investigated for
strict-feedback nonlinear systems with unknown nonlinearities and external disturbances. All state
variables are quantized through a uniform quantizer and the quantized states are only measurable
for the control design. An approximation-based adaptive event-triggered control strategy using
quantized states is presented. Compared with the existing recursive quantized feedback control
results, the primary contributions of the proposed strategy are (1) to derive a quantized-states-based
function approximation mechanism for compensating for unknown and unmatched nonlinearities
and (2) to design a quantized-states-based event triggering law for the intermittent update of the
control signal. A Lyapunov-based stability analysis is provided to conclude that closed-loop signals
are uniformly ultimately bounded and there exists a minimum inter-event time for excluding
Zeno behavior. In simulation results, it is shown that the proposed quantized-feedback-based
event-triggered control law can be implemented with less than 10% of the total sample data of the
existing quantized-feedback continuous control law.

Keywords: quantized feedback control; event-triggered; adaptive control; neural networks;
unmatched nonlinear uncertainties

1. Introduction

As networked control systems including digital communication channels have been successfully
utilized in various industrial applications, significant research efforts have been devoted to control
designs using input and state quantization [1–3]. Concurrently, nonlinear systems have been widely
studied and significant progress has been achieved in the analysis and the control of nonlinear systems.
On the other hand, recursive control techniques have attracted much attention as effective ways for
dealing with the unmatched nonlinearities of lower-triangular nonlinear systems [4–6]. Based on
these recursive control techniques, adaptive control strategies were presented for input-quantized
lower-triangular nonlinear systems with unknown parameters [7,8] and completely unknown
nonlinearities [9–12]. Fundamentally, the controllers designed in [9–12] assume that state variables are
continuously measurable. As opposed to the previous works [7–12] considering input quantization,
the control design problem of state-quantized nonlinear systems in a lower-triangular form has
received limited attention. In [13], an adaptive quantized feedback backstepping controller using
quantized state variables was presented under the assumption that the partial derivatives of recursive
virtual controllers were constants. Thus, the result [13] is only usable for systems with nonlinear
functions matched to a control input. In order to overcome this restriction, an adaptive quantized
feedback control design methodology adopting the command filtered backstepping technique for
lower-triangular nonlinear systems was recently presented in [14]. Despite this progress, two aspects
still need to be addressed to realize further improvement in the quantized feedback control design [14].
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(P1) In the existing work [14], unmatched nonlinearities should be known and satisfy the Lipchitz
condition with known Lipchitz constants. Thus, it is still necessary to determine a method to address
completely unknown and unmatched nonlinearities in the quantized feedback tracker design of
lower-triangular nonlinear systems.

(P2) The result [14] may be impractical for a network-based control implementation in limited
network resources because the control law designed in [14] should be updated continuously in time.
Thus, the event-triggered operation strategy of the quantized-feedback-based controller needs to
be studied.

Emerging event-triggered methodologies for network-based control have received increasing
attention in the control society because of limited communication bandwidths in networks [15,16].
Unlike the conventional time-triggered strategy, an event-triggered strategy can reduce the amount of
computation and communication resources required in networked control systems. Owing to these
advantages, some event-triggered control methods were presented for linear and nonlinear networked
control systems [17–20]. For lower-triangular nonlinear systems with parametric uncertainties,
Xing et al. [21] first suggested an adaptive recursive event-triggered control approach using three
types of thresholds. Thereafter, numerous event-triggered control issues have been addressed for
uncertain lower-triangular nonlinear systems [22,23]. In [24–28], adaptive fuzzy or neural network
event-triggered control methods were developed to compensate for non-parametric nonlinear
uncertainties. However, in the event-triggered control field, the quantized state-feedback information
of uncertain lower-triangular nonlinear systems has not been used to address the neural-network-based
adaptive tracking problem thus far.

The aim of this paper is to establish a quantized-feedback-based event-triggered control
methodology for the adaptive tracking of nonlinear strict-feedback systems with unknown nonlinearities
and external disturbances. An approximation-based recursive control design using quantized state
variables is developed to deal with unmatched and unknown nonlinearities and the time-varying
disturbances. In the proposed design, adaptive laws and a triggering law using an auxiliary filter are
derived by the quantized state variables. Furthermore, an adaptive tuning mechanism is provided to
compensate for the effects of quantization and triggering errors. The stability of the closed-loop system
and the prevention of Zeno behavior are analyzed in the Lyapunov sense.

Compared with existing related literature, the primary contributions of this paper are emphasized
as follows:

(C1) Different from the recursive quantized feedback tracking method [14] where unmatched
nonlinearities were known, the proposed tracking approach is capable of dealing with unmatched and
unknown nonlinearities. This is achieved by designing quantized-states-based adaptive approximators
and deriving three lemmas for the boundedness of the adaptation parameters and the quantization
error signals.

(C2) The existing adaptive event-triggered control schemes [18,21–26,28] for nonlinear systems in
a lower-triangular form did not consider the state quantization problem of nonlinear systems. In this
paper, we first present a quantized-feedback-based event-triggered control strategy with a triggering
law using quantized state variables. For this purpose, a triggering law using an auxiliary control input
filter is designed to ensure the existence of inter-event time.

2. Problem Formulation

Consider a class of uncertain nonlinear systems in a strict-feedback form described by

ẋi = xi+1 + fi(x̄i) + di,
ẋn = u + fn(x̄n) + dn,

(1)

where i = 1, . . . , n− 1, x̄j = [x1, . . . , xj] ∈ Rj, j = 1, . . . , n, are state variable vectors, dj are unknown
time-varying disturbances satisfying |dj| ≤ d∗j with unknown constants d∗j > 0, u ∈ R is the control
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input, and f j(·) : Rj 7→ R are unknown C1 nonlinear functions. In this paper, the control input u is an
intermittently updated signal in time by an event-triggering law to be designed later. In addition, u is
designed based on the quantized state variables obtained through the following uniform quantizer

q(xi) =


χl , χl − δ

2 ≤ xi < χl +
δ
2

0, − δ
2 ≤ xi <

δ
2

−χl , − χl − δ
2 ≤ xi < −χl +

δ
2

(2)

where i = 1, . . . , n, l ∈ Z+, δ is the length of the quantization interval, χ1 = δ, and χl+1 = χl + δ.
Note that q(xi) is in a countable set Q = {0,±χl} and the quantization error κx,i , xi − xq

i has the
property |κx,i| ≤ δ where xq

i , q(xi) [17].

Assumption 1. Ref. [13] The quantized states xq
i , i = 1, . . . , n, are available for feedback, instead of xi.

Assumption 2. Ref. [5] The reference signal r and its time derivatives ṙ and r̈ are bounded.

Lemma 1. Ref. [29] For any η > 0 and ν ∈ R, it is ensured that 0 ≤ |ν| − ν tanh(ν/η) ≤ 0.2785η.

Lemma 2. Ref. [30] When a matrix A ∈ Rn×n is Hurwitz, it is satisfied that ‖eAt‖ ≤ β1e−β2t with
β1 =

√
λmax(G)/λmin(G) and β2 = 1/λmax(G). Here, G is a symmetric positive definite matrix such

that A>G + GA = −2I where I is an identity matrix of order n. In addition, λmax(G) and λmin(G) are the
maximum and minimum eigenvalues of G, respectively.

Problem 1. Consider the uncertain strict-feedback nonlinear system (1) with unknown nonlinearities and state
quantizer (2). Our control problem is to provide a quantized-feedback-based event-triggered tracking law u so
that the state x1 follows the reference signal r while all the closed-loop signals remain bounded.

Remark 1. Several real-world applications such as robot manipulations, electrical power systems, and aircraft
systems can be modeled as system (1) [4,5]. Recent advances in the network technology enable the control of
these systems over a network with limited communication resources. Then, the proposed theoretical result can be
applied to these network-based practical control problems.

Remark 2. Compared with the existing control results reported in the related literature [13,14,21–26], this study
considers both the quantized state feedback and the event-triggered control problems in the recursive control
framework of nonlinear lower-triangular systems. Accordingly, Problem 1 cannot be resolved by using the
approaches presented in [13,14,21–26].

3. Quantized-Feedback-Based Adaptive Event-Triggered Tracking

3.1. Radial Basis Function Neural Networks

According to the universal approximation property of radial basis function neural networks
(RBFNNs) [31], if the number of neural nodes N is sufficiently large and the basis functions si,
i = 1, . . . , N, are appropriately chosen, there exists an ideal bounded weight vector W∗ ∈ RN ,
that satisfies ‖W∗‖ ≤ W̆ with a constant W̆, such that

f ($) = W∗>S($) + ε($), $ ∈ Ω, (3)

where f ($) : Ω 7→ R is an unknown function; Ω ⊂ RM is a compact set, $ = [$1, . . . , $M]> is an input
vector with M elements, ε represents an approximation reconstruction error satisfying |ε| ≤ ε∗ with a
constant ε∗ > 0, and S($) = [s1($), . . . , sN($)]

> ∈ RN is a basis function vector. In this study, si($) are
chosen as Gaussian functions si($) = e−‖$−ci‖2/ϕ2

where i = 1, . . . , N, ci = [ci1, . . . , ciM]> ∈ RM is the
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center of the receptive field and ϕ is the width of the Gaussian functions. Note that Gaussian basis
function vector is bounded as ‖S($)‖ ≤ S∗ where S∗ is a constant [32,33].

3.2. Quantized-Feedback-Based Event-Triggered Tracker Design

Based on the command filtered backstepping control technique [6], the proposed controller
design procedure is conducted recursively. In this recursive design procedure, we use the following
coordinate transformation

µ1 = x1 − r,
µj+1 = xj+1 − α̂j,1,
α̃j,1 = α̂j,1 − αj,

(4)

where j = 1, . . . , n− 1, µi, i = 1, . . . , n are error surfaces, α̃j,1 are filtering errors, and αj and α̂j,1 are
virtual control laws and their filtered signals, respectively. The signals α̂j,1 are calculated from the
following low-pass filters

˙̂αj,1 = α̂j,2,
˙̂αj,2 = −2ζ jωjα̂j,2 −ω2

j (α̂j,1 − αj),
(5)

with α̂j,1(0) = αj(0) and α̂j,2(0) = 0. ζ j > 0 and ωj > 0 are the damping factors and the natural
frequencies, respectively.

Step 1: Consider the first error surface µ1. From (1) and (4), we have µ̇1 = x2 + f1 + d1 − ṙ =

µ2 + α̃1,1 + α1 + f1 + d1 − ṙ. Define a Lyapunov function candidate V1 = (1/2)µ2
1. Then, employing

an RBFNN to estimate the unknown function f1, the time derivative of V1 is given by

V̇1 = µ1(µ2 + α̃1,1 + α1 + f1 + d1 − ṙ)

= µ1(µ2 + α̃1,1 + α1 + W∗>1 S1 + ε1 + d1 − ṙ), (6)

where W∗1 is an optimal weight, S1(x1) denotes a basis function vector, and ε1 is the reconstruction
error for estimating f1.

The virtual control law α1 is designed as

α1 = −k1µ1 − Ŵ>1 S1 − b̂1 tanh1 +ṙ, (7)

where k1 > 0 is a control gain, Ŵ1 is the estimate of W∗1 , b̂1 are the estimate of an unknown constant b∗1
to be defined later, and tanh1 = tanh(µ1/η1); η1 > 0 is a design parameter.

Applying (7) into (6), we have

V̇1 ≤ µ1(µ2 + α̃1,1)− k1µ2
1 − µ1W̃>1 S1 − µ1b̃1 tanh1

− µ1b∗1 tanh1 +µ1(ε1 + d1), (8)

where W̃1 = Ŵ1 −W∗1 and b̃1 = b̂1 − b∗1 are estimation errors.
Step j (j = 2, . . . , n− 1): From (5), we have ˙̂αj,1 = α̂j,2. Thus, the time derivative of Vj = (1/2)µ2

j
is obtained as

V̇j = µj(µj+1 + α̃j,1 + αj + f j + dj − α̂j−1,2)

= µj(µj+1 + α̃j,1 + αj + W∗>j Sj + ε j + dj − α̂j−1,2), (9)

where W∗j is an optimal weighting vector, Sj(x̄j) is a basis function vector, and ε j is the reconstruction
error for approximating f j.
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Now, we choose the virtual control law αj as follows:

αj = −k jµj − Ŵ>j Sj − b̂j tanhj +α̂j−1,2, (10)

where k j > 0 is a control gain and Ŵj is the estimate of W∗j , and b̂j is the estimate of b∗j to be defined
later, and tanhj = tanh(µj/ηj); ηj > 0 is a design parameter.

Substituting (10) into (9) yields that

V̇j ≤ µj(µj+1 + α̃j,1)− k jµ
2
j − µjW̃>j Sj − µj b̃j tanhj−µjb∗j tanhj +µj(ε j + dj) (11)

where W̃j = Ŵj −W∗j and b̃j = b̂j − b∗j are estimation errors.
Step n: Consider a Lyapunov function candidate Vn = (1/2)µ2

n. Similar to the previous steps,
the time derivative of Vn satisfies

V̇n ≤ µn(u + W∗>n Sn + εn + dn − α̂n−1,2), (12)

where W∗n is an optimal weight, Sn is a basis function vector, and εn is the reconstruction error.
In order to design an actual control law u based on the quantized states, quantized-states-based

error surfaces µ
q
i , virtual control laws α

q
j , and adaptation laws for Ŵj and b̂j are defined as follows:

µ
q
1 = xq

1 − r,
µ

q
j+1 = xq

j+1 − α̂
q
j,1,

(13)

α
q
j = −k jµ

q
j − Ŵ>j Sq

j − b̂j tanhq
j +α̂

q
j−1,2, (14)

˙̂Wj = γw,j(µ
q
j Sq

j − σw,j|µ
q
j |Ŵj), (15)

˙̂bj = γb,j(µ
q
j tanhq

j −σb,j|µ
q
j |b̂j), (16)

where i = 1, . . . , n, j = 1, . . . , n− 1, Sq
j = Sj(x̄q

j ); x̄q
j = [xq

1, . . . , xq
j ]
>, tanhq

j = tanh(µq
j /ηj), and α̂

q
0,2 = ṙ.

γw,j > 0 are tuning gain matrices, γb,j > 0 are tuning gain constants, σw,j and σb,j are positive constants
for σ−modification. The filtered signals α̂

q
j,1 and α̂

q
j,2 are obtained from the following filters

˙̂αq
j,1 = α̂

q
j,2,

˙̂αq
j,2 = −2ζ jωjα̂

q
j,2 −ω2

j (α̂
q
j,1 − α

q
j ),

(17)

with α̂
q
j,1(0) = α

q
j (0) and α̂

q
j,2(0) = 0.

Then, a quantized-feedback-based adaptive event-triggered actual control law u with a triggering
law is presented as

u(t) = α̂
q
n,1(tl), t ∈ [tl , tl+1), (18)

tl+1 = inf{t ≥ tl | |ue(t)| ≥ θ1|µ
q
n(t)|+ θ2}, (19)

α
q
n = −knµ

q
n − Ŵ>n Sq

n − b̂n tanhq
n +α̂

q
n−1,2, (20)

˙̂Wn = γw,n(µ
q
nSq

n − σw,n|µq
n|Ŵn), (21)

˙̂bn = γb,n(µ
q
n tanhq

n−σb,n|µ
q
n|b̂n), (22)

where ue(t) = u(t) − α̂
q
n,1(t), l ∈ Z+, t1 = 0, tl denotes the lth event time, θ1, θ2 > 0 are design

parameters for the triggering law (19), Ŵn is the estimate of W∗n , and b̂n is the estimate of unknown
constant b∗n to be defined later, tanhq

n = tanh(µq
n/ηn); ηn > 0 is a design constant, Sq

n = Sn(x̄q
n);
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x̄q
n = [xq

1, . . . , xq
n]
>, kn > 0 is a control gain, γw,n > 0 and γb,n > 0 are tuning gains, and σw,n > 0 and

σb,n > 0 are small constants for σ−modification. Here, α̂
q
n,1 in ue is a filtered signal of α

q
n given by

˙̂αq
n,1 = α̂

q
n,2,

˙̂αq
n,2 = −2ζnωnα̂

q
n,2 −ω2

n(α̂
q
n,1 − α

q
n),

(23)

where ωn and ζn are filter design parameters, α̂
q
n,1(0) = α

q
n(0), and α̂

q
n,2(0) = 0. Note that the actual

input u is fixed as a constant value α̂
q
n,1(tl) until the next event occurs at tl+1 and each event time is

determined by checking the condition in (19). The block diagram of the proposed control scheme
consisting of (14)–(23) is shown in Figure 1.

Figure 1. Block diagram of the proposed quantized-feedback-based event-triggered tracking system.

Define an ideal control signal αn as

αn = −knµn − Ŵ>n Sn − b̂n tanhn +α̂n−1,2 (24)

and its filtered signals α̂n,1 and α̂n,2 obtained from the following filter

˙̂αn,1 = α̂n,2,
˙̂αn,2 = −2ζnωnα̂n,2 −ω2

n(α̂n,1 − αn)
(25)

where α̂n,1(0) = αn(0) and α̂n,2(0) = 0.
Note that the following property holds.

u + αn − αn + α̂n,1 − α̂n,1 + α̂
q
n,1 − α̂

q
n,1 = ue + αn + α̃n,1 − κα̂,n,1, (26)

where α̃n,1 = α̂n,1 − αn and κα̂,n,1 = α̂n,1 − α̂
q
n,1.

By substituting (26) into (12) and using (24), we have

V̇n ≤ µn(αn + W∗>n Sn + εn + dn − α̂n−1,2) + µn(α̃n,1 − κα̂,n,1) + µnue
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= −knµ2
n − µnW̃>n Sn − µn b̃n tanhn +µn(α̃n,1 − κα̂,n,1) + µnue

− µnb∗n tanhn +µn(εn + dn) (27)

where W̃n = Ŵn −W∗n and b̃n = b̂n − b∗n are estimation errors.

Remark 3. In the proposed triggering law (19), the adaptive terms depend on the time-varying error surface
µ

q
n = xq

n − α̂
q
n−1,1. Note that α̂

q
n−1,1 is the filtered signal of α

q
n−1 from (14) and α

q
n−1 includes the adaptation

parameters Ŵn−1 and b̂n−1 and the error surface µ
q
n−2. A similar reasoning can apply the error surface µ

q
n−2

recursively. In addition, α
q
n obtained from (20) is employed in ue of (19). Therefore, it concludes that the

triggering law (19) depends on the information of all adaptation parameters Ŵi and b̂i where i = 1, . . . , n.

3.3. Stability Analysis

Let us define α̃i,2 = α̂i,2 and α̃i = [α̃i,1, α̃i,2]
>, ¯̈r = [r, ṙ, r̈]>, µ̄i = [µ1, . . . , µi]

>, ¯̃αi,1 = [α̃1,1, . . . , α̃i,1]
>,

¯̃αi,2 = [α̃1,2, . . . , α̃i,2]
>, ¯̂Wi = [Ŵ1, . . . , Ŵi]

>, ¯̂bi = [b̂1, . . . , b̂i]
>, and d̄i = [d1, . . . , di]

> for i = 1, . . . , n.
Then, the dynamics of α̃i along (5) and (25) is given by

˙̃αi = Aiα̃i + DΓi, (28)

where Ai =

[
0 1
−ω2

i −2ζiωi

]
, D = [1, 0]>, and

Γ1(µ̄2, α̃1,1, Ŵ1, b̂1, ¯̈r, d1) = k1µ̇1 +
˙̂W>1 S1 + Ŵ>1 Ṡ1 +

˙̂b1 tanh1 +b̂1sech2
(

µ1
η1

)
µ̇1
η1
− r̈,

Γj(µ̄j+1, ¯̃αj,1, ¯̃αj−1,2, ¯̂Wj,
¯̂bj, ¯̈r, d̄j) = kjµ̇j +

˙̂W>j Sj + Ŵ>j Ṡj +
˙̂bj tanhj +b̂jsech2

(
µj

ηj

)
µ̇j

ηj
− ˙̃αj−1,2,

Γn(µ̄n, ¯̃αn,1, ¯̃αn−1,2, ¯̂Wn, ¯̂bn, ¯̈r, d̄n, ue, κα̂,n,1) = knµ̇n + ˙̂W>n Sn + Ŵ>n Ṡn + ˙̂bn tanhn

+ b̂nsech2
(

µn

ηn

)
µ̇n

ηn
− ˙̃αn−1,2, (29)

for j = 2, . . . , n− 1.
Owing to ζi > 0 and ωi > 0, Ai are Hurwitz matrices. Then, for any matrix Mi > 0, A>i Pi + Pi Ai =

−Mi is satisfied where Pi > 0 is a symmetric matrix.
For the stability analysis of the closed-loop system, three lemmas (i.e., Lemmas 3–5) are presented.

Lemmas 3 and 4 give the boundedness of the estimation errors W̃i and b̃i, respectively, where i =
1, . . . , n. In Lemma 5, we show that the errors between the quantized signals µ

q
i , Sq

i , tanhq
i , α

q
i , α̂

q
i,1,

and α̂
q
i,2 and the unquantized signals µi, Si, tanhi, αi, α̂i,1, and α̂i,2 are bounded where i = 1, . . . , n.

Lemma 3. Consider the adaptation laws (15) and (21). Then, there exists a compact set Ωw,i = {W̃i| ‖W̃i‖ ≤
χw,i} such that W̃i(t) ∈ Ωw,i for all t ≥ 0 provided that W̃i(0) ∈ Ωw,i where χw,i is an unknown constant.

Proof. Let us consider a Lyapunov function candidate Vw,i = (1/2)W̃>i γ−1
w,iW̃i. Then, V̇w,i is given by

V̇w,i = W̃>i (µ
q
i Sq

i − σw,i|µ
q
i |Ŵi)

= W̃>i (µ
q
i Sq

i − σw,i|µ
q
i |(W

∗
i + W̃i)).

Here, each term can be represented by −σw,i|µ
q
i |W̃

>
i W̃i = −σw,i|µ

q
i |‖W̃i‖2, W̃>i µ

q
i Sq

i ≤
‖W̃i‖|µ

q
i |‖S

q
i ‖, and −W̃>i σw,i|µ

q
i |W

∗
i ≤ ‖W̃i‖|µ

q
i |σw,i‖W∗i ‖. Here, since the optimal weights W∗i and

the basis function vectors Si are bounded, there exist constants W̆i and S∗i satisfying ‖W∗i ‖ ≤ W̆i and
‖Sq

i ‖ ≤ S∗i , respectively. Based on these facts, V̇w,i satisfies

V̇w,i ≤ ‖W̃i‖|µ
q
i |(S

∗
i + σw,iW̆i − σw,i‖W̃i‖). (30)
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From this inequality, we have that V̇w,i ≤ 0 when ‖W̃i‖ ≥ χw,i with χw,i , (S∗i + σw,iW̆i)/σw,i.
Thus, Vw,i decreases when W̃i(t) /∈ Ωw,i and W̃i finally remains within Ωw,i. Consequently, if W̃i(0) ∈
Ωw,i, W̃i(t) ∈ Ωw,i for all t ≥ 0 which completes the proof.

Lemma 4. Consider the adaptation laws (16) and (22). Then, there exists a compact set Ωb,i = {b̃i| |b̃i| ≤ χb,i}
such that b̃i(t) ∈ Ωb,i for all t ≥ 0 provided that b̃i(0) ∈ Ωb,i where χb,i is an unknown constant.

Proof. Similar to the proof of Lemma 3, a Lyapunov function candidate Vb,i = (1/(2γb,i))b̃2
i is

considered. Then, we have

V̇b,i = b̃i(µ
q
i tanhq

i −σb,i|µ
q
i |b̂i)

= b̃i(µ
q
i tanhq

i −σb,i|µ
q
i |(b

∗
i + b̃i)).

Using b∗i > 0 and the inequality | tanhq
i | ≤ 1, it is obtained that b̃iµ

q
i tanhq

i ≤ |b̃i||µ
q
i |,

−b̃iσb,i|µ
q
i |b
∗
i ≤ |b̃i||µ

q
i |σb,ib∗i , and −b̃2

i σb,i|µ
q
i | = −|b̃i||µ

q
i |σb,i|b̃i|. Then, V̇b,i becomes

V̇b,i ≤ |b̃i||µ
q
i |(1 + σb,ib∗i − σb,i|b̃i|). (31)

Let χb,i , (1 + σb,ib∗i )/σb,i. Then, following an argument similar to that in the proof of Lemma 3,
it is ensured that if b̃i(0) ∈ Ωb,i, b̃i(t) ∈ Ωb,i for all t ≥ 0 which completes the proof.

Lemma 5. Consider the quantization errors of the closed-loop signals as

κµ,i = µi − µ
q
i , κS,i = Si − Sq

i ,
κth,i = tanhi − tanhq

i , κα,i = αi − α
q
i ,

κα̂,i,1 = α̂i,1 − α̂
q
i,1, κα̂,i,2 = α̂i,2 − α̂

q
i,2,

(32)

where i = 1, . . . , n. Then, there exist positive constants Kµ,i, KS,i, Kth,i, Kα,i, and Kα̂,i such that |κµ,i| ≤ Kµ,i,
‖κS,i‖ ≤ KS,i, |κth,i| ≤ Kth,i, |κα,i| ≤ Kα,i, and ‖κα̂,i‖ ≤ Kα̂,i, respectively, where κα̂,i = [κα̂,i,1, κα̂,i,2]

>.

Proof. (i) Based on the boundedness of Guassian basis functions and hyperbolic tangent functions,
we can easily obtain

‖κS,i‖ ≤ KS,i, |κth,i| ≤ Kth,i, (33)

where KS,i = 2S∗i and Kth,i = 2. Using the property |κx,i| ≤ δ of the uniform quantizer (2) and
κµ,1 = x1 − xq

1, κµ,1 satisfies

|κµ,1| = |κx,1| ≤ Kµ,1 (34)

where Kµ,1 = δ. From (7) and (14), we have

κα,1 = −k1κµ,1 − Ŵ>1 κS,1 − b̂1κth,1.

Then, it holds that

|κα,1| ≤ k1|κµ,1|+ ‖Ŵ1‖‖κS,1‖+ |b̂1||κth,1|. (35)

From Lemmas 3 and 4, we have ‖W̃i‖ ≤ χ∗w,i and |b̃i| ≤ χ∗b,i where χ∗w,i = max{‖W̃i(0)‖, χw,i}
and χ∗b,i = max{|b̃i(0)|, χb,i}. Then, using Ŵ1 = W̃1 + W∗1 and b̂1 = b̃1 + b∗1 , the bounding constant
Kα,1 is obtained as Kα,1 , k1Kµ,1 + (χ∗w,1 + W̆1)KS,1 + (χ∗b,1 + b∗1)Kth,1.
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The low-pass filters for α1 in (5) and for α
q
1 in (17) induce

κ̇α̂,1 = A1κα̂,1 + D̄1κα,1 (36)

where κα̂,1 = [κα̂,1,1, κα̂,1,2]
> and D̄1 = [0, ω2

1 ]. Solving this differential equation leads to

κα̂,1(t) = eA1tκα̂,1(0) +
∫ t

0
eA1(t−τ)D̄1κα,1(τ)dτ. (37)

Since A1 is invertible, the following inequality is satisfied.

‖κα̂,1(t)‖ ≤‖eA1t‖‖κα̂,1(0)‖+ Kα,1‖D̄1‖‖A−1
1 (I − eA1t)‖. (38)

From Lemma 2, the inequality ‖eA1t‖ ≤ β1,1e−β1,2t holds with positive constants β1,1 and β1,2.
Due to κα̂,1,1(0) = κα,1(0) and κα̂,1,2(0) = 0, we have ‖κα̂,1(0)‖ = |κα,1(0)|. Then, we have

‖κα̂,1(t)‖ ≤ β1,1|κα,1(0)|+ Kα,1‖D̄1‖‖A−1
1 ‖(1 + β1,1)

, Kα̂,1. (39)

Thus, it is guaranteed that |κα̂,1,1| ≤ Kα̂,1 and |κα̂,1,2| ≤ Kα̂,1.
(ii) From µ2 = x2 − α̂1,1 and µ

q
2 = xq

2 − α̂
q
1,1, it holds that

|κµ,2| ≤ |κx,2|+ |κα̂,1,1| ≤ Kµ,2 (40)

where Kµ,2 , Kx,2 + Kα̂,1; Kx,2 = δ owing to the property |κx,i| ≤ δ. From (10) and (14), we have
κα,2 = −k2κµ,2 − Ŵ>2 κS,2 − b̂2κth,2 + κα̂,1,2. Then, it holds that

|κα,2| ≤ k2|κµ,2|+ ‖Ŵ2‖‖κS,2‖+ |b̂1||κth,1|+ |κα̂,1,2| ≤ Kα,2 (41)

where Kα,2 , k2Kµ,2 + (χ∗w,2 + W̆2)KS,2 + (χ∗b,2 + b∗2)Kth,2 + Kα̂,1. Following a procedure similar to that
from (36)–(39), we can obtain the constant Kα̂,2 satisfying ‖κα̂,2‖ ≤ Kα̂,2.

(iii) According to the similar recursive derivation procedure, it holds that κµ,i, κα,i, and κα̂,i,
i = 3, . . . , n, are bounded as

|κµ,i| ≤ Kµ,i, |κα,i| ≤ Kα,i, ‖κα̂,i‖ ≤ Kα̂,i.

This completes the proof of Lemma 5.

Choose a Lyapunov function candidate V as

V =
n

∑
j=1

(
Vj + α̃>j Pjα̃j

)
. (42)

Theorem 1. Consider the uncertain strict-feedback nonlinear system (1) with the uniform state quantizer (2).
Then, for any initial conditions satisfying V(0) ≤ ς, the quantized-feedback-based adaptive event-triggered
tracker consisting of the command filters (17) and (23), the virtual control laws (14), the actual event-triggered
control law (18)–(20) with the adaptation laws (15), (16), (21) and (22) ensures that all the closed-loop signals
are uniformly ultimately bounded, the tracking error µ1 converges to an adjustable compact set around zero,
and the inter-event times tl+1 − tl are lower bounded by the minimum inter-event time tmin > 0 where l ∈ Z+.
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Proof. From (8), (11), (27) and (29), V̇ is given by

V̇ ≤ −
n

∑
j=1

k jµ
2
j −

n

∑
j=1

α̃>j Mjα̃j +
n−1

∑
j=1

µjµj+1 +
n

∑
j=1

µjα̃j,1 +
n

∑
j=1

2α̃>j PjDΓj

−
n

∑
j=1

µjb∗j tanhj +
n

∑
j=1

µj(ε j + dj − W̃>j Sj) + µnue − µnκα̂,n,1 −
n

∑
j=1

µj b̃j tanhj . (43)

From (19), the inequality

|µnue| ≤ |µn|(θ1|µ
q
n|+ θ2)

≤ θ1µ2
n + θ1|µn||µq

n − µn|+ θ2|µn| (44)

holds for all t ≥ 0. From (44) and κµ,n = µn − µ
q
n, we get

V̇ ≤ −
n−1

∑
j=1

k jµ
2
j − (kn − θ1)µ

2
n −

n

∑
j=1

α̃>j Mjα̃j +
n−1

∑
j=1

µjµj+1 +
n

∑
j=1

µjα̃j,1 +
n

∑
j=1

2α̃>j PjDΓj

−
n

∑
j=1

µjb∗j tanhj +
n

∑
j=1

µjbj −
n

∑
j=1

µj b̃j tanhj (45)

where bj = ε j + dj− W̃>j Sj, j = 1, . . . , n− 1, and bn = εn + dn− W̃>n Sn + θ1|κµ,n|sgn(µn)+ θ2sgn(µn)−
κα̂,n,1; sgn(µn) denotes the signum function of µn.

The reconstruction errors εi, basis function vectors Si, and time-varying disturbances di are
bounded signals where i = 1, . . . , n. In addition, ‖W̃i‖, i = 1, . . . , n, are bounded from Lemma 3 and
κµ,n and κα̂,n,1 are bounded from Lemma 5. Therefore, bj and bn are bounded as

|bj| ≤ ε∗j + d∗j + χ∗w,jS
∗
j , b∗j ,

|bn| ≤ ε∗n + d∗n + χ∗w,nS∗n + θ1Kµ,n + θ2 + Kα̂,n , b∗n.

Then, using the boundedness of bj, j = 1, . . . , n, and applying Lemma 1, it holds that

|µjbj| ≤ b∗j |µj| ≤ b∗j µj tanhj +0.2785b∗j ηj. (46)

Using (46) yields

V̇ ≤ −
n−1

∑
j=1

k jµ
2
j − (kn − θ1)µ

2
n −mj

n

∑
j=1
‖α̃j‖2 +

n−1

∑
j=1

µjµj+1 +
n

∑
j=1

µjα̃j,1 +
n

∑
j=1

2α̃>j PjDΓj

−
n

∑
j=1

µj b̃j tanhj +
n

∑
j=1

0.2785b∗j ηj

where mj = λmin(Mj).
From |κµ,n| ≤ Kµ,n, we get |ue| ≤ θ1|µ

q
n|+ θ2 ≤ θ1|µn|+ θ1Kµ,n + θ2. Then, since ‖W̃i‖ ≤ χ∗w,i,

|b̃i| ≤ χ∗b,i, |di| ≤ d∗i , and |κα̂,n,1| ≤ Kα̂,n are satisfied for i = 1, . . . , n, there exist positive bounding
functions Γ∗i such that

|Γ1(µ̄2, α̃1,1, Ŵ1, b̂1, ¯̈r, d1)| ≤ Γ∗1(µ̄2, α̃1,1, ¯̈r),

|Γj(µ̄j+1, ¯̃αj,1, ¯̃αj−1,2, ¯̂Wj,
¯̂bj, ¯̈r, d̄j)| ≤ Γ∗j (µ̄j+1, ¯̃αj,1, ¯̃αj−1,2, ¯̈r), (47)

|Γn(µ̄n, ¯̃αn,1, ¯̃αn−1,2, ¯̂Wn, ¯̂bn, ¯̈r, d̄n, ue, κα̂,n,1)| ≤ Γ∗n(µ̄n, ¯̃αn,1, ¯̃αn−1,2, ¯̈r),

where j = 2, . . . , n− 1.
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Let us define Ξj, j = 1, . . . , n − 1, Ξn, and Ξr as Ξj = {(µ1, . . . , µj+1, α̃1, . . . , α̃j) : ∑
j+1
ρ=1 µ2

ρ +

∑
j
ρ=1 2α̃>ρ Pρα̃ρ ≤ 2ς}, Ξn = {(µ1, . . . , µn, α̃1, . . . , α̃n) : ∑n

ρ=1 µ2
ρ + ∑n

ρ=1 2α̃>ρ Pρα̃ρ ≤ 2ς}, and Ξr =

{(r, ṙ, r̈) : r2 + ṙ2 + r̈2 ≤ ςr} where α̃ρ = [α̃ρ,1, α̃ρ,2]
> and ςr > 0 is a constant. Note that Ξj ∈ R3j+1,

Ξn ∈ R3n, and Ξr ∈ R3 are compact sets. Therefore, Ξj × Ξr ∈ R3j+4 and Ξn × Ξr ∈ R3n+3 are also
compact. From (47), it is ensured that there exist constants Γ̄j and Γ̄n such that |Γ∗j | ≤ Γ̄j on Ξj × Ξr

and |Γ∗n| ≤ Γ̄n on Ξn × Ξr. Then, using the following inequalities

µjµj+1 ≤
1
2

µ2
j +

1
2

µ2
j+1,

µjα̃j,1 ≤
1
2

µ2
j +

1
2
‖α̃j‖2,

2α̃>j PjDΓj ≤
(Γ∗j )

2‖Pj‖2‖α̃j‖2

ι
+ ι,

−µj b̃j tanhj ≤
1
2

µ2
j +

1
2
(χ∗b,j)

2,

with a constant ι > 0, and selecting k1 = 3/2 + k̄1, k j = 2 + k̄ j, kn = 3/2 + θ1 + k̄n, mj = 1/2 +

Γ̄2
j ‖Pj‖2/ι + m̄j with positive constants k̄1, k̄ j, k̄n, and m̄j, we get

V̇ ≤ −
n

∑
j=1

k̄ jµ
2
j −

n

∑
j=1

m̄j‖α̃j‖2 −
n

∑
j=1

(
1−

(Γ∗j )
2

Γ̄2
j

) Γ̄2
j ‖Pj‖2‖α̃j‖2

ι
+ C (48)

where C = ∑n
j=1 0.2785b∗j ηj + ∑n

j=1(χ
∗
b,j)

2 + nι. Since |Γ∗j | ≤ Γ̄j on V = ε, it is obtained that V̇ ≤
−kV + C where k = min[2k̄1, . . . , 2k̄n, m̄1/λmax(P1), . . . , m̄n/λmax(Pn)]. Here, when k > C/ς, V̇ < 0
on V = ς is ensured and thus the set V ≤ ς is an invariant set. Therefore, we can conclude that
the closed-loop signals µi and α̃i are bounded where i = 1, . . . , n. From the boundedness of µ1 and
r, x1 is bounded. Then, α1 in (7) is bounded using the boundedness of Ŵ1 and b̂1 from Lemmas 3
and 4. Based on the boundedness of α1, it is induced that α̂1,1 and α̂1,2 are bounded owing to the
stable filter (5). Thus, the boundedness of µ2 and α̂1,1 leads to the boundedness of x2. By the similar
reasoning, xi, αi, α̂i,1, and α̂i,2 are bounded for i = 1, . . . , n. Then, from Lemma 5, α

q
i , α̂

q
i,1, and α̂

q
i,2 are

also bounded. According to the triggering law (19) and the boundedness of α̂
q
n,1, we can conclude that

the implemented event-triggered control input u is bounded. In addition, the inequality (1/2)µ2
1(t) ≤

V(t) ≤ e−ktV(0) + (C/k)(1− e−kt) is obtained by solving V̇ ≤ −kV + C. Therefore, it is ensured that
the tracking error µ1 converges to a compact set Π = {µ1| |µ1| ≥

√
2C/k} whose size can be adjusted

by choosing appropriate design parameters (see Remark 5).
Now, to exclude Zeno behavior, we prove that there exists a minimum inter-event time tmin.

Since |ue| is differentiable except ue = 0 at each triggering instant, we obtain

d
dt
|ũe| =

d
dt
(ũe)

1
2 = sgn(ũe) ˙̃ue ≤ | ˙̂αq

n,1|. (49)

Note that ˙̂αq
n,1 = α̂

q
n,2, and the uniform boundedness of α̂

q
n,2 is ensured from the previous analysis.

Thus, there exists a positive constant α∗ such that | ˙̂αq
n,1| = |α̂

q
n,2| ≤ α∗. Consequently, according

to the proposed triggering law (19), integrating d
dt |ũe| ≤ α∗ during t ∈ [tl , tl+1) gives tl+1 − tl ≥

(θ1|µ
q
n(t)|+ θ2)/α∗ ≥ θ2/α∗ for all l ∈ Z+. That is, the minimum inter-event time can be defined as

tmin , θ2/α∗.
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3.4. Comparision with the Recent Work

In this section, the proposed control scheme is compared with the recent adaptive quantized
feedback control scheme in [14]. In the recent work [14], an adaptive quantized feedback recursive
controller was designed for nonlinear systems described by

ẋi = xi+1 + gi(x̄i),
ẋn = u + gn(x̄n) + ϑ>h(x̄n),

(50)

where i = 1, . . . , n − 1, gj, j = 1, . . . , n and h are known nonlinearities, and ϑ is an unknown
parameter vector. Here, the unmatched nonlinear functions gj should be known and satisfy the
Lipschitz conditions with known Lipschitz constants. On the contrary, the proposed controller
is designed for system (1) involving completely unknown unmatched nonlinear functions f j and
disturbances dj. Therefore, no information of the nonlinearities is necessary for designing the proposed
quantied feedback controller. To deal with these nonlinearities and disturbances in the quantized
feedback recursive control design, we present an adaptive function approximation technique using
quantized-states-based adaptation laws (see (14) and (15)) and prove the boundedness between αj
and α

q
j .

On the other hand, the quantized feedback controller in [14] was designed as follows:

αj = −k jµ
q
j − gq

j + α̂
q
j−1,2,

u = −knµ
q
n − gq

n − ϑ̂>hq + α̂
q
n−1,2,

˙̂ϑ = γϑ(µ
q
nhq − σϑϑ̂),

(51)

where j = 1, . . . , n − 1, k j, kn, γϑ, and σϑ, are design parameters, ϑ̂ is the estimate of ϑ, gq
i =

gi(xq
1, . . . , xq

i ), and hq = h(xq
1, . . . , xq

n) for i = 1, . . . , n. The definitions of µ
q
j and α̂

q
i−1,2 are same

as ours. It should be emphasized that u in (51) is continuously updated. Therefore, this control scheme
increases the load in communication through the controller-to-actuator channel which is unfavorable
in practical networked control systems with limited communcation resources. In order to reduce
this load, we developed our control scheme in an event-driven manner which means that u in (18) is
updated only when the triggering condition (19) is satisfied.

In summary, compared with [14], the proposed controller can handle uncertain nonlinear systems
with strict-feedback unknown nonlinearities while saving the communication resources by reducing
the update of the control input u.

Remark 4. In the existing event-triggered controller design, the existence of the minimum inter-event time is
necessary to avoid the Zeno behavior. To prove the existence of this minimum inter-event time, the triggering
error signals should generally be differentiable [21–26]. However, the quantized feedback control laws reported
in [13,14] were not differentiable because of the quantized state variables. To overcome this problem, we employ
the auxiliary first-order low-pass filter (23) for the quantized-feedback-based control law α

q
n in (20). Subsequently,

the differentiable signal α̂
q
n,1 is used in the event-triggered actual control law u in (18). Consequently,

the existence of the minimum inter-event time can be ensured by the analysis using (49). This design difficulty
comes from the simultaneous handling of the quantized-feedback-based control and event-triggered control.

Remark 5. In the proposed quantized-feedback-based event-triggered tracking scheme, the selection of the design
parameters is sufficient conditions. The guidelines for the selection of these parameters are based on the proof of
Theorem 1 as follows:

(i) As the level of the quantizer δ in (2) decreases with the performance of digital devices or the
communication environment, C can be reduced and thus the convergence bound

√
2C/k can be reduced.

(ii) As γw,i and γb,i, i = 1, . . . , n, increase while fixing σw,i and σb,i as small constants, the tuning speed
of the estimated parameters Ŵi and b̂i and k can be increased and thus the bound

√
2C/k can be reduced.
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(iii) The eigenvalues of Mi can be increased by adjusting the filter parameters ζi and ωi, i = 1, . . . , n,
and the control gains ki can be increased. Then, the bound

√
2C/k can be reduced by increasing the control

gains ki.
(iv) Reducing the design parameters ηi helps to reduce C, which subsequently reduces

√
2C/k.

(v) Adjusting the triggering parameters θ1 and θ2 manipulates the number of event times along the limited
network communication resources in transient and steady-state responses.

4. Simulation Results

In this section, a numerical example and a hydraulic servo system were simulated to validate the
proposed quantized-feedback-based adaptive event-triggered control result. For the two simulations,
the sampling time ts was set to ts = 2 ms. Thus, the quantized feedback triggering law (19) was
monitored every 2 ms. Furthermore, the tracking performance of the proposed quantized feedback
control scheme was compared with that of the previous adaptive quantized feedback control scheme
reported in [14]. We show that although the proposed event-triggered control scheme was designed in
the presence of unknown nonlinearities, its tracking performance was similar to the performance of
the previous continuous controller [14] designed in the presence of known nonlinear functions.

4.1. Example 1

The uncertain third-order strict-feedback systems are considered by

ẋi = xi+1 + fi(x̄i) + di,
ẋ3 = u + f3(x̄3) + d3,

(52)

where i = 1, 2, f1 = 0.5x1 + 0.7x2
1, f2 = x1x2 + 0.4 sin(x2), f3 = e−x2

3 x1 + x2x3, d1 = 0.2 sin(t),
d2 = 0.8 cos(t), and d3 = 0.7e−3t sin2(t). For the state quantization, the length of the quantization
interval δ was δ = 0.005 and the design parameters for the proposed controller were k1 = 5, k2 = 10,
k3 = 30, γw,1 = 10, γw,2 = 1, γw,3 = 1, σw,i = 0.0000001, γb,i = 1.5, σb,1 = σb,2 = 0.6, σb,3 = 0.9,
ηi = 0.3, ω1 = 20, ω2 = 30, ω3 = 200, ζi = 0.707, θ1 = 10, and θ2 = 0.5 where i = 1, 2, 3. The reference
signal is r = 0.2 cos(0.7t) + 0.6 cos(1.5t) and the initial conditions are x̄3(0) = [0.5, 0, 0]>, respectively.
For the comparison of the simulation results, the controller in [14] was implemented with the same
design parameters ki, ωj, and ζ j under the assumption that fi(x̄i) and di are known where i = 1, 2, 3
and j = 1, 2.

The tracking results and errors are compared in Figure 2a,b, respectively. In each figure, the upper
one is the result of the proposed quantized feedback controller and the lower one is the result of the
previous quantized feedback controller [14]. As shown in Figure 2, the quantized feedback tracking
performances of both controllers were similar, although the proposed quantized feedback approach
considers the unknown nonlinearities and the event-triggered inputs. In Figure 3, b̂i and Ŵi are
depicted where the adaptive parameters were bounded even though the quantized states were used to
update them. Figure 4a displays the control signal α̂

q
3,1 and its triggered signal u. Figure 4b depicts

the inter-event times where the maximum inter-event time was 0.3 s which is sixty times longer
than the sampling time. The triggering error ue and the triggering threshold θ1|µ

q
3|+ θ2 are shown

in Figure 5a and the cumulative number of triggering instants of ours is displayed in Figure 5b.
From Figures 4 and 5, it is shown that the control input u is updated when |ue| reaches θ1|µ

q
3|+ θ2 and

the total number of events is 974 which implies that 6.49% = 974
30 ts × 100 of the total sampled data of

α̂
q
3,1 are only transmitted through a communication channel during 30 s. Based on these figures, we can

conclude that the tracking of uncertain strict-feedback nonlinear systems can be achieved although the
quantized state variables xq

i , i = 1, 2, 3, were used, the control input was intermittently updated via the
triggering law (19), and the inherent nonlinearities and disturbances were completely unknown.
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Figure 2. Comparison of tracking results and errors for Example 1 (a) x1 and r (b) µ1.
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Figure 3. Estimation results of the proposed approach for Example 1 (a) b̂i (b) ‖Ŵi‖ for i = 1, 2, 3.
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Figure 4. Input triggering result and inter-event times of the proposed approach for Example 1 (a) α̂
q
3,1

and u (b) tl+1 − tl .
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Figure 5. Triggering threshold and the comparison of the cumulative number of events of the proposed
approach for Example 1 (a) |ue| and θ1|µ

q
3|+ θ2 (b) the cumulative number of events.

4.2. Example 2

Consider a servo system driven by a hydraulic actuator where an inertia load is held by a
spring-damper and a hydraulic actuator is placed in parallel to the spring-damper. The dynamic
model of hydraulic servo systems is described by [34]

msϑ̈ + bsϑ̇ + ksϑ = F + d,
Vt

4βe
ṖL + CtPL + Aϑ̇ = QL,

, (53)

where ϑ is the displacement of the inertia load, ms is the mass of the load, ks and bs are the spring
constant and the damping constant, respectively, F = APL is the driving force produced by the
hydraulic actuator; A is the ram area and PL is the pressure difference of the hydraulic actuator,
d denotes the friction inside the cylinder, Vt is the volume of the cylinder, βe is the effective bulk
modulus of oil, Ct is the total internal leakage factor, and QL is the supply input flow. For more
information about the dynamics of the hydraulic servo systems, see [34].

Let us define the state variables and the control input u as x1 = ϑ, x2 = ϑ̇, x3 = APL/ms,
and u = 4AβeQL/(msVt). Then, (53) can be rewritten by

ẋ1 = x2,
ẋ2 = x3 + f2(x̄2) + d2(t),
ẋ3 = u + f3(x̄3),

(54)

where f2 = −(bs/ms)x2 − (ks/ms)x1, d2 = (1/ms)d, and f3 = −4(βe/Vt)Ctx3 − 4(A2βe/(msVt))x2.
For the simulation, f2, f3, and d2 are assumed to be unknown and the system parameters are set to
ms = 300 kg, bs = 1500 N·s/m, ks = 9000 N/m, A = 1.2656× 10−4 m2, Vt = 6.5312× 10−3 m3, βe =

6.9861× 108 N/m2, and Ct = 4× 10−13 [34]. The friction term is set to d = sign(x2)(20+ 22e−100|x2|)N.
The reference signal r is given by r = 0.1 cos(t) and the initial conditions of the state variables are
x̄3(0) = [0.12, 0, 0]>. The design parameters are chosen as δ = 0.001, k1 = 5, k2 = 3, k3 = 20, γw,i = 30,
σw,i = 0.00001, γb,i = 20, σb,i = 0.001, ηi = 0.5, ω1 = 10, ω2 = 70, ω3 = 150, ζ1 = ζi = 0.707, θ1 = 10,
and θ2 = 0.1 where i = 2, 3. Similar to the previous example, the simulation results of the proposed
controller are compared with those of the controller in [14] with the same design parameters ki, ωj,
and ζ j with i = 1, 2, 3 and j = 1, 2 and the known information of f2, f3, and d2. In Figure 6, the tracking
results and errors are compared where the initial error under the proposed controller converges close to
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zero within a few seconds and the tracking performance of the proposed controller is similar to that of
the controller in [14]. These figures reveal that the function approximation using quantized states can
effectively compensate for the uncertainties f2, f3, and d2. In Figure 7, the estimation parameters ‖Ŵi‖
and b̂i, i = 2, 3 are shown. Figure 8a,b depict the input triggering results and the inter-event times,
respectively, under the proposed control scheme. The triggering error and the triggering threshold
are demonstrated in Figure 9a and the cumulative number of events is displayed in Figure 9b where
the total number of events of ours is 1388. Thus, only 9.25% = 1388

30 ts × 100 of the total sampled data
of α̂

q
3,1 during 30 s are released to the communication channel. As illustrated in these figures, we can

achieve a good tracking performance for uncertain hydraulic servo systems with state quantization
and unknown uncertainties.
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Figure 6. Comparison of tracking results and errors for Example 2 (a) x1 and r (b) µ1.
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Figure 7. Estimation results of the proposed approach for Example 2 (a) b̂i (b) ‖Ŵi‖ for i = 2, 3.
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Figure 8. Input triggering result and inter-event times of the proposed approach for Example 2 (a) α̂
q
3,1

and u (b) tl+1 − tl .
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Figure 9. Triggering threshold and the comparison of the cumulative number of events of the proposed
approach for Example 2 (a) |ue| and θ1|µ

q
3|+ θ2 (b) the cumulative number of events.

5. Conclusions

A quantized-feedback-based adaptive event-triggered tracking strategy has been provided for
state-quantized nonlinear systems in strict-feedback form with unknown nonlinearities. Different from
the existing control methods, an adaptive approximation-based controller has been designed by
deriving quantized-states-based adaptive laws and the event triggering issue has firstly been addressed
in the quantized feedback control field. The closed-loop stability of the quantized-feedback-based
event-triggered recursive control system has been analyzed with three lemmas. Further studies on the
quantized-feedback-based adaptive event-triggered tracking problem of robotic systems and nonlinear
multi-agent systems are recommended as future works.
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