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Abstract—This article presents an image deblurring method us-
ing �0-norm-based deblurring and �2-norm-based texture-aware
image fusion for remote sensing images. To restore the details
of blurred texture, the proposed method first performs texture
restoration by fusing the restored results using Richardson–Lucy
deconvolution and unsharp masking. Next, we analyzed the inten-
sity and dark channel properties of remote sensing images and
perform the �0-norm-based deblurring using the intensity and
dark channel priors. Although the �0-norm-based deblurring can
provide a significantly restored result, it cannot overcome the loss of
the texture region. On the other hand, the proposed �2-norm-based
image fusion method can preserve both sharp edges and texture de-
tails. In the experiments, we demonstrate that the proposed method
can provide better restored results than existing state-of-the-art
deblurring methods without oversmoothing and undesired artifact.

Index Terms—Deblur, remote sensing, image restoration.

I. INTRODUCTION

V ERY high-resolution remote sensing images are widely
used in many fields such as earth observation, land mon-

itoring, and topography observation [1]–[11]. However, the
acquired raw image is severely degraded by various factors
including atmospheric turbulence, cloud, and defocusing, to
name a few [12]. The point spread function (PSF) also takes
into consideration other degradation factors such as atmospheric
turbulence, defocusing, and blurring. In addition, we further
considered aliasing artifacts due to frequency folding when
subsampling during the image acquisition process. Since the
image degradation artifact generates geometric distortion, an
accurate location of important objects depends on computer
vision algorithms such as object detection. To solve this problem,
many types of research have been proposed to estimate PSF
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and restore the blurred image. The image restoration problem is
formulated as follows.

Given an N ×N latent image that is an ideal, undegraded
version, the observed image is obtained by convolving the latent
image with a PSF of the imaging system and additive noise. The
matrix-vector representation of the image degradation model is
given as

g = SHf + η (1)

where g, f , and η are N2 × 1 vectors representing the observed,
latent, and additive Gaussian noise images, respectively, and H
the N2 ×N2 block-circulant matrix generated from a PSF. S is
an N ×Nblock diagonal matrix that performs the subsampling
operation. When the PSF and noise variance are given, the
problem in (1) is a simple deconvolution whereas it becomes
a blind deconvolution problem if the PSF and noise variance are
unknown. H represents PSF that depends on the remote sensing
system in (1). More specifically, the PSF of remote sensing im-
ages is a linear combination of Gaussian functions [13], [14]. For
that reason, our PSF is assumed to be a single Gaussian function,
and as a result, the corresponding objective assessments used a
Gaussian low-pass filter.

In the blind deconvolution problem of the remote sensing, a
straightforward way to estimate the PSF is to use a specified
edge target acquired by artificial installation on the ground.
Another approach is to locate a sharp edge, which is considered
as a blurred version of the ideal step edge, in the observed
image. Shen et al. proposed an edge detection method to locate
and estimate the PSF [15]. More specifically, they detected
knife-edges using the alternating minimization framework and
then estimated parameters of the PSF. Azadbakht et al. proposed
sparsity-constrained regularization method and used L-curve to
determine the optimal regularization parameters for efficient
target extraction [16].

Since blind deconvolution is an ill-posed problem, vari-
ous regularization approaches have been proposed in the lit-
erature including Wiener filter and Richardson–Lucy algo-
rithm [17], [18]. Although these methods provide the restored
results at low computational cost, it cannot overcome the inher-
ent restoration artifact such as amplified ringing around strong
edges when the PSF is inaccurately estimated. Shan et al. used
a camera model parameters to eliminate camera induced degra-
dation [19], and Fergus et al. estimated PSF using the Bayesian
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Fig. 1. Block diagram of the proposed deblurring algorithm.

formula [20]. Yuan et al. solved the blind deconvolution
problem using the edge sharpness information with Tikhonov
regularization [21].

Another approach is to use the constraint in the optimization
problem. Xu et al. minimized �0-norm using the half-quadratic
splitting method and effectively restored a blurred image [22].
Krishnan et al. presented the �1 and �2 constraint terms to impose
the scale-invariant sparsity to the high-frequency band in the
blur kernel estimation step. More specifically, they estimated
the blur kernel estimation by minimizing an energy functional
including �1 and �2 constraint terms using iterative shrinkage-
thresholding algorithm [23]. An alternative approach is to use
the Huber–Markov prior model, which combines the advantages
of the total variation and Tikhonov regularization [24]. Perrone
et al. proposed total variation-based PSF estimation in the iter-
ative manner and restored a blurred image using the projected
alternating minimization algorithm [25]. Zhu et al. used multiple
frames to improve the quality of a video, which was acquired
by a ground-based telescope. They aligned a set of frames us-
ing nonrigid registration and performed near-diffraction-limited
restoration and blind deconvolution [12].

Various deblurring methods have been developed and pro-
vided well-restored remote sensing images to some extent.
However, the restored remote sensing images lose important
texture information and have undesired ringing artifact near
edges. To solve this problem, this article presents an image
fusion-based restoration method for the remote sensing images.
The proposed method consists of three steps: 1) initial deblurring
using adaptive image fusion, 2) �0-norm-based deblurring, and
3) �2-norm-based image fusion. Since the proposed method
combines the results of the initially deblurred image and its
refined version based on the �0-norm, the resulting image can
preserve both texture and edge regions. Experimental results
show that the proposed method well-preserved texture regions
without ringing artifacts. Fig. 1 shows the block diagram of the
proposed deblurring method.

The rest of this article is organized as follows. Section II
describes the proposed deblurring method including three func-
tional modules. Experimental results are shown in Section III,
and Section IV concludes this article.

II. PROPOSED METHOD

A. Texture Restoration Using Adaptive Fusion

To generate a texture-restored image, the proposed method
adaptively combines the results of Richardson–Lucy and un-
sharp masking methods [18], [26]. The Richardson–Lucy al-
gorithm iteratively restores the blurred input image based on
Bayes’ theorem, but it cannot solve the tradeoff problem between
noise amplification and ringing artifacts near edges. To solve
this problem, the proposed method adds the result of unsharp
masking in the manner of adaptive image fusion [27], where the
activity map represents the ratio which is inversely proportional
to the local variance as

w(x) =
1

1 + κv(x)
(2)

where x = [x, y]T represent the pixel coordinates, w(x) is the
activity map, v(x) the local variance, and κ the tuning parameter
to make w(x) distributed as evenly as possible.

As shown in Figs. 2 and 3, the effect of unsharp masking is
reduced by adaptive fusion. However, if there is zero-intensity
in the original image, the unsharp masking result will have
negative intensity, which results in undesired artifacts such as
dark halo near edges. For that reason, a 2-D derivative filter
for unsharp masking was empirically selected using MATLAB
“fspecial function” with “unsharp” and α = 0.1.

Fig. 2 shows the estimated activity map using the result
of unsharp masking. Since the activity value is low in the
edge region with high local variance, the activity map can effi-
ciently attenuate the ringing artifact caused by Richardson–Lucy
restoration while preserving the edge region of unsharp masking.
In addition, it can also preserve the texture region of the result
of Richardson–Lucy algorithm. The result of texture restoration,
denoted as g1 is obtained using the estimated activity map as

g1(x) = (1− w(x))gRL(x) + w(x)gu(x) (3)

where gRL and gu, respectively, represent the result of
Richardson–Lucy deconvolution and unsharp masking. Fig. 3
shows the step-by-step results of texture restoration. As shown in
Fig. 3(c), the result of Richardson–Lucy deconvolution exhibits
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Fig. 2. Estimated activity map using the result of unsharp masking: (a) unsharp
masking and (b) activity map.

Fig. 3. Step by step results of texture restoration: (a) an input image, (b) result
of unsharp masking, (c) result of Richardson–Lucy deconvolution, and (d) result
of texture restoration.

undesired ringing artifact and noise amplification, whereas it can
better preserve the texture region than that of unsharp masking as
shown in Fig. 3(b). On the other hand, Fig. 3(d) shows the better
restored result without undesired ringing artifacts in the edge
region while preserving texture details using the adaptive image
fusion with the activity map. In addition, it can suppress noise
amplification using the adaptive image fusion with the result of
unsharp masking.

B. �0-Norm-Based Deblurring Using Intensity and Dark
Channel Priors

In this section, we present a novel deblurring method that
combines the intensity and dark channel priors (DCP). The DCP
is based on a statistical assumption that at least one intensity
value among R, G, and B pixels is close to zero in the natural
scene [28]. Pan et al. demonstrated that a sharp image shows
more dark channel pixels than a blurred image, which means
that the dark channel pixels on the latent sharp image show
more sparsity than a blurred image. They performed an image
deblurring using the DCP as a prior knowledge to a latent sharp
image [29]. Fig. 4 shows the comparison of the dark channel
maps of sharp and blurred images. As shown in the figure, the
sharp image has more dark channel pixels than the blurred one.

Pan et al. proposed a text image deblurring algorithm using
the intensity prior, which assumes that the histogram of a sharp
image has a larger number of bins at the highest intensity
level than that of a blurred image [30]. We analyzed the inten-
sity distribution property of 230 PAN-band remote-sensing im-
ages, which were acquired by Korea Multi-Purpose Satellite-3A
(KOMPSAT-3A) earth observation satellite. The blurred version

was generated using a Gaussian low-pass filter of size 65× 65
with a standard deviation σ = 7. Fig. 4(c) and (f) shows the
intensity histogram of Fig. 4(a) and (d).

As shown in the figure, the intensity histogram of the sharp
image has a larger number of bins at the lower intensity levels
than the blurred image. In [29], Pan et al. demonstrated that a
clean image has fewer bright intensity pixels than its blurred
version. This property can be expressed as

B(x) =
∑

z∈ΩH

H(z)f

(
x+

[
s

2

]
− z

)

≥ H(z′)f

(
x+

[
s

2

]
− z′

)
> 0 (4)

where H(z) ≥ 0,
∑

H(z) = 1, ΩH is the domain of the blur
kernel, s the size of blur kernel, and [·] the rounding operator. It
means that zero intensity pixels are removed by the convolution
with blur kernel for a pixelz′ ∈ ΩH , which satisfies the condition

of H(z′) �= 0 and f(x+ [
s

2
]− z′) �= 0 [29]. This property does

not consider the trivial case that the sharp image only has zero
intensity pixels in the large area. For that reason, it also satisfies
‖g‖0 > ‖f‖0.

We incorporate both intensity and dark channel priors in the
form of regularization terms, which enforce the sparsity of the
latent image. The proposed energy functional is expressed as

min
f

‖Hf − g‖22 + α‖∇f‖0 + β‖f‖0 + λ‖D(f)‖0 (5)

where∇ is theN2 ×N2 block-circulant matrix representing the
2-D derivative operator, D(·) an operator to estimate the dark
channel map, and α, β, and λ are penalty parameters for the
gradient, intensity prior, and dark channel prior, respectively.

In (5), the regularization terms ‖f‖0 and ‖D(f)‖0 commonly
make pixel intensity values converge to zero. This property is
based on the property that a blurred image tends to include more
bright intensity than its sharper version, and vice versa. This
property is inferred from dark channel prior, which has been
proved in the field of image dehazing research. Although remote
sensing images have more complex histograms than a consumer
photography or text image, histograms of blurred remote sensing
images also have a higher intensity than sharp images. In this
context, minimization of ‖f‖0 in (5) helps make the solution
image look sharper. Along the same lines, dark channel prior
assures that a sharp image has more dark pixels than blurred
images, and minimization of �0-norm of the dark channel map,
that is, ‖D(f)‖0 in (5), makes the solution image have more dark
pixels. The proposed method incorporates the dark channel and
intensity priors in the form of �0-regularization terms to deblur
remote sensing images.

The proposed energy functional is nonconvex and nondif-
ferentiable due to a �0-regularization terms and nonlinearity of
D(·). To minimize the proposed objective function, we employ
the half-quadratic splitting �0-minimization method [31]. Since
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Fig. 4. Illustration of blurring effect to dark channel and histograms: (a) a sharp image, (b) dark channel of (a), (c) intensity histogram of (a), (d) a blurred image,
(e) dark channel of (d), and (e) intensity histogram of (d).

(5) has three �0 terms, its splitting version needs the correspond-
ing auxiliary variables as

min
f,d,u,p

‖Hf − g‖22 + α‖∇f − d‖22 + β‖f − u‖22

+ λ‖D(f)− p‖22 + μ‖d‖0 + ω‖u‖0 + γ‖p‖0 (6)

where μ, ω, and γ are the regularization parameters. Equation
(6) can be solved using alternative minimization of splitted
subproblems with respect to f , d, u, and p.

1) f -Related Subproblem: The subproblem related to f with
d, u, and p fixed is simplified as

min
f

‖Hf − g‖22 + α‖∇f − d‖22

+ β‖f − u‖22 + λ‖D(f)− p‖22 (7)

where

D(f) = min
y∈Ω(x)

(
min

c∈(r,g,b)
f c(y)

)
(8)

where Ω(x) is an image patch centered at x.
Although the subproblem in (7) is a quadratic function, its

optimality condition cannot be represented as a linear equation
because D(·) is a nonlinear function. To solve this problem, Pan
et al. approximated the nonlinear function using a linear operator

M as [29]

M(x, z) =

{
1, z = argminz∈Ω(x) f(z)

0, otherwise
(9)

which is computed by comparing the location of dark channel
pixels of the previous intermediate latent image at each iteration.
Fast minimization of (7) is possible using the diagonalization
property of the fast Fourier transform (FFT) [29], [32], [33].

2) d, p, u-Related Subproblem: The subproblems related to
d, p, and u with f fixed are respectively defined as

min
d

α‖∇f − d‖22 + μ‖d‖0 (10)

min
p

λ‖D(f)− p‖22 + γ‖p‖0 (11)

and

min
u

β‖f − u‖22 + ω‖u‖0. (12)

According to [31], the subproblems (10)–(12) have become
their own closed-form solution that can be computed using
elementwise minimization as

d =

{
∇f, |∇f |2 ≤ μ/α

0, otherwise
(13)
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Fig. 5. Comparison of resulting images: (a) an input image, (b) Pan’s
method [29], (c) Pan’s method [30], and (d) the proposed method.

p =

{
D(f), |D(f)|2 ≤ γ/λ

0, otherwise
(14)

and

u =

{
f, |f |2 ≤ ω/β

0, otherwise .
(15)

Fig. 5 shows the comparison of the restored results using
existing state-of-the-art and proposed methods based on �0-norm
minimization. More specifically, Fig. 5(b) shows the result of
Pan’s method using only dark channel prior [29], where we can
observe blurring artifacts near edges. Fig. 5(c) shows the result
of Pan’s deblurring method using only intensity prior [30], which
results in undesired artifact near edges. On the other hand, the
proposed method can provide better-restored result with sharp
edges than existing methods as shown in Fig. 5(d).

C. Image Fusion by Minimizing �2 Loss

Although the �0-norm-based deblurring can significantly im-
prove the restoration performance while preserving the strong
edges, it loses texture details by oversmoothing. To preserve both
strong edge and texture details, we adaptively fuse the texture
restored and �0-norm-based deblurred results. Specifically, we
minimize the following �2-norm-based loss function

min
f

‖f − g2‖22 + τ‖f − g1‖22 (16)

where f is the latent image to be restored, g2 the resulting
image of �0-norm-based deblurring, and g1 the result of texture
restoration. τ represents a nonnegative parameter to control the
balance between the results g1 and g2. Minimizing the first
term in (16) makes the restored result f preserve the strong
edges, while minimizing the second term makes the restored
result consistent with the texture restored result. Since (16) is
a quadratic minimization problem, we can obtain the solution
using FFT as

f = F−1

(F(g2) + τF(g1)

1 + τ

)
(17)

whereF andF−1 represent the FFT and inverse FFT operations,
respectively.

In addition, Fig. 6 shows the restored results with different
values of τ . As shown in the figure, a small τ tends to preserve
strong edges at the cost of losing texture details, and vice versa.
Based on visual observation, τ ∈ [0, 4.0] is the experimentally
best choice.

Fig. 6. Comparative results using different values of parameter τ : (a) an input
image, (b) τ = 1 (c) τ = 3, and (d) τ = 10.

Fig. 7. Deblurring results in PSNR values using estimated Gaussian PSF
versus parameter ρ.

D. PSF Estimation

In this article, we used an �1-norm minimization method to
estimate the PSF, and the energy functional is defined as

min
H

‖Hf − g‖22 + ρ‖H‖1, subject to Hi ≥ 0,
∑

i

Hi = 1

(18)
where ρ is a nonnegative regularization parameter. The energy
functional of (18) is convex, but it is not differentiable because
of the �1-norm. To solve this problem, we used an interior-point
method proposed by Kim et al. [34]. More specifically, we used
Figs. 8(a)–(h) to find the suitable ρ and to estimate the best
Gaussian low-pass filter that approximates the reference PSF.
As a result, the range of ρ is [1.0, 50.0], Gaussian low-pass filter
is of size 7× 7 with a standard deviation σ = 1. Fig. 7 shows
the estimated PSNR values of PSF for ρ values, with the highest
value at ρ = 29. Based on these experiments, we set the ρ value.

III. EXPERIMENTAL RESULTS

This section demonstrates the image deblurring performance
of the proposed method by comparing with existing state-of-
the-art methods including Krishnan’s method [23], Perrone’s
method [25], Pan’s method in 2016 [29], and another Pan’s
method in 2017 [30]. The experiments were performed using
a personal computer with a CPU speed of 3.70 GHz and a
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Fig. 8. Set of PAN, RGB, and NGB band images acquired by WorldView-2 and WorldView-4 earth observation satellite. (a)–(h) were used in the objective
assessments of the proposed method and summarized in Table I.

Fig. 9. Set of PAN, RGB, and NGB band images acquired by KOMPSAT-3A earth observation satellite. (a)–(h) were used in the objective assessments of the
proposed method and summarized in Table II.

64GByte RAM. In addition, we empirically set the regulariza-
tion parameters to compute (13)–(15) to α = 105, β = 8, and
λ = 8, respectively. The proposed PSF estimation method uses
the method described in Section II-D. On the other hand, other
PSF estimation methods use their own method. In experiments
for deblurring of multispectral band, we assumed that the input
multispectral band images were blurred by the same PSF.

A. Simulated Data

We performed the objective assessment using peak signal-
to-noise ratio (PSNR) and structural similarity index measure
(SSIM) [35]. We used a set of test remote sensing images
acquired by WorldView-2 and WorldView-4 earth observation
satellite [36]. Specifically, we used panchromatic (PAN) band

images of size 16 384× 16 384, and cropped them to 850× 850
as shown in Fig. 8. In addition, red, green, blue, and near-
infrared band images of size 2048× 2048 were cropped down
to 450× 450 as shown in Fig. 8. The second and third rows
of Fig. 8 respectively show red, green, and blue (RGB), and
near-infrared, green, and blue (NGB) band images. To evalu-
ate the objective performance of deblurring, we synthetically
generated blurred images using a Gaussian low-pass filter of
size 7× 7 with a standard deviation σ = 1. The downsampled,
deblurred results are resampled to the resolution of the original
image. Figs. 10 and 11 show the comparative deblurring results
on the blurred images, which were synthesized using Fig. 8(d),
(e), and (f). Krishnan’s and Perrone’s methods provided the
deblurring results that preserve the texture details but cannot
restore the strong edge regions as shown in Figs. 10(c)–11(c).
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Fig. 10. Comparative results on the synthesized blurred image using PAN band: (a) an original image, (b) a blurred image by Gaussian low-pass filter, (c) Krishnan’s
method [23], (d) Perrone’s method [25], (e) Pan’s method [29], (f) Pan’s method [30], and (g) the proposed method (μ = 10−5, ω = 10−6, γ = 9.61× 10−4,
and τ = 3.1). The results are better viewed in zoomed mode.

Fig. 11. Comparative results on the synthesized blurred image using RGB and NGB bands: (a) an original image, (b) a blurred image by Gaussian low-pass
filter, (c) Krishnan’s method [23], (d) Perrone’s method [25], (e) Pan’s method [29], (f) Pan’s method [30], and (g) the proposed method (μ = 10−5, ω = 10−6,
γ = 10−6, and τ = 2.1). The results are better viewed in zoomed mode.
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TABLE I
OBJECTIVE EVALUATION OF THE DEBLURRING PERFORMANCE USING PSNR AND SSIM [35]

Although Pan’s method using only the dark channel prior shows
better deblurred result than Krishnan’s and Perrone’s methods at
the strong edge regions, it cannot preserve the texture details of
the diagonal patterns existing in the original image as shown in
Figs. 10(a)–11(a). In the same manner, Pan’s method based on
the intensity prior cannot preserve the texture details as shown
in Figs. 10(f)–11(f). On the other hand, the proposed method
shows almost the best deblurred results, which is consistent to
the texture details of the diagonal pattern in the original image
and at the same time preserves the strong edges as shown in
Figs. 10(g)–11(g).

Table I shows the objective evaluation using PSNR and SSIM.
As summarized in Table I, since the proposed method adaptively
fuses the texture details using �2-norm minimization preserving
the restored strong edges, the averaged PSNR and SSIM values
are higher than existing deblurring methods [12].

B. Real Data

In this section, we perform the evaluation of the deblurring
performance using the PAN band remote sensing images

acquired by KOMPSAT-3A. We cropped each PAN band image
of size 24 000× 24 600 to 850× 850 as shown in Fig. 9. The
RGB and NGB band images of size 3020× 3000 were cropped
to 450× 450 as shown in the second and third rows of Fig. 9,
respectively.

Fig. 12 compare deblurring results using Fig. 9(a), (e), and
(g). Krishnan’s and Perrone’s methods provided better restored
texture regions than those of Pan’s methods, but they still show
weak restoration performance at the strong edges. Although
Pan’s methods using both intensity and dark channel priors
successfully restore the sharp edges, they cannot overcome the
oversmoothing problem as shown in Fig. 12(d)– (e)–13(d)–(e).
On the other hand, the proposed method shows improved restora-
tion performance in terms of preserving the texture details with
the sharp edges than existing deblurring methods as shown in
Figs. 12(f)–13(f).

In addition, the deblurring performance was evaluated using
Q metric [37], which quantifies the amount of image contents
based on the singular value decomposition of local gradients. As
summarized in Table II, the proposed method provided higher Q
metric value than existing methods, which means that the result
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Fig. 12. Comparative results on the real PAN band images: (a) an input image, (b) Krishnan’s method [23], (c) Perrone’s method [25], (d) Pan’s method [29],
(e) Pan’s method [30], and (f) the proposed method (μ = 10−5, ω = 10−6, γ = 1.61× 10−4, and τ = 3.1). The results are better viewed in zoomed mode.

Fig. 13. Comparative results on the real RGB and NGB bands images: (a) an input image, (b) Krishnan’s method [23], (c) Perrone’s method [25], (d) Pan’s
method [29], (e) Pan’s method [30], and (f) the proposed method (μ = 10−5, ω = 10−6, γ = 1.61× 10−4, and τ = 3.5). The results are better viewed in zoomed
mode.
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TABLE II
PERFORMANCE EVALUATION USING Q METRIC [37]

of the proposed method contains more texture details since the
singular value of a local gradient of the texture regions is higher
than the flat regions [37], [38].

In terms of the processing time for a given test image of size
850× 850, Krishnan’s and Perrone’s methods took about 13.813
s and 3540.400 s, respectively. Pan’s methods respectively based
on the intensity and dark channel priors took about 142.164
s and 775.227 s. On the other hand, the proposed method
took only 1.256, 156.067, and 0.055 s for texture restoration,
�0-norm-based deblurring, and image fusion method, respec-
tively. The computational complexity in the texture restoration in
Section II-A is O(N logN) in the Richardson–Lucy algorithm
step, where N is the number of pixels in the image. Activity
map estimation and unsharp masking processes requireO(Nm)
because they use a convolution filter of size m. �0-norm-based
deblurring step in Section II-B requires O(N2) due to the
regularization term consisting of the dark channel and intensity
priors. �2-norm-based fusion method in Section II-C require
O(N logN) because quadratic minimization is solved using
FFT.

IV. DISCUSSION

A. Comparison of Different Initial Deblurring Methods

Fig. 14 shows the comparative results of the proposed de-
blurring method using different initial deblurring methods. In

Fig. 14. Comparative results using different initial deblurring methods:
(a) an input image, (b) result using the unsharp masking, (c) result using the
Richardson–Lucy algorithm, and (d) result using proposed initial deblurring
method.

Fig. 15. Comparison of fusion-based deblurring methods on the synthesized
blurred image in the PAN band: (a) Krishnan’s method [23] (PSNR: 33.6488),
(b) Perrone’s method [25] (PSNR: 33.88091), (c) Pan’s method [29] (PSNR:
32.1519), and (d) Pan’s method [30] (PSNR: 33.7803). The results are better
viewed in zoomed mode.

Section II-C, the proposed image fusion method minimizes the
sum of two �2-norms: one is the difference between the initially
deblurred image and the latent image, and the other is the
difference between the �0-norm-based deblurred result and the
latent image. Ringing artifacts in the initially deblurred image
can be suppressed by minimizing the second �2-norm in (16).
For that reason, the proposed method adaptively synthesizes
the edge region of the result of unsharp masking and texture
region of the result of Richardson–Lucy algorithm to reduce the
ringing artifact. As a result, the resulting image can avoid the
ringing artifact near edges and oversmoothing by �0-norm-based
deblurring preserving the texture region as shown in Fig. 14. In
addition, we evaluated the performance of the proposed texture
restoration method. Fig. 15 shows the comparative results using
the deblurred results of existing methods in the third row of
Fig. 10. In this experiment, we fused the deblurred results of
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Fig. 16. Comparative results on the �0-based deblurring image: (a) an input image (Q metric: 11.6722), (b) using only the dark channel prior term
(Q metric: 12.7780), (c) using only the intensity prior term (Q metric: 13.8589), and (d) proposed method (Q metric: 12.8755). The regularization parameters μ,
γ, and ω were set to 10−4, 10−3, and 10−5, respectively.

Fig. 17. Comparative results on the �0-based deblurring image: (a) an input image (Q metric: 12.6730), (b) using only the dark channel prior term
(Q metric: 15.1595), (c) using only the intensity prior term (Q metric: 13.4831), and (d) proposed method (Q metric: 13.7258). The regularization parameters μ,
γ, and ω were set to 10−4, 10−5, and 10−3, respectively.

existing methods with that of the proposed texture restoration
method using (17). As shown in Fig. 15, the proposed method
can significantly improve the quality of the deblurred result pre-
serving the texture details in the sense of objective assessment.

B. Comparison of Deblurring Performance Using Different
Regularization Terms

In this section, we analyzed the deblurring performance
on different regularization terms. In the experiment, we used
the test images of size 850× 850, which were cropped from
PAN band images acquired from KOMPSAT-3A earth ob-
servation satellite. To evaluate the performance of the inten-
sity prior, we respectively set β = 0 for intensity prior, and
λ = 8 for dark channel prior in (6). In terms of dark chan-
nel prior, we respectively set β = 8 for intensity prior and
λ = 0 for dark channel prior. The regularization parameters
μ, γ, and ω for the auxiliary variables d, u, and p were set
to provide the best deblurring result for each regularization
term.

As shown in Figs. 16 and 17, the intensity and dark channel
priors cannot preserve the weak texture details and edges with
oversmoothing. As described in Section II-B, the intensity prior

term helps us to remove the blur of the image because the
intensity of the blurred image is higher than that of the clear
image for the satellite images as shown in Fig. 4. Since the
blurred image is locally constant, the deblurred image using only
the intensity prior term cannot preserve the weak edge region
with low-intensity value.

In terms of using only the dark channel prior, when the size
of the minimum filter is sufficiently large, the dark channel
prior can provide better deblurring performance because more
dark pixels in large size minimum filter makes the latent image
has less bright pixels, which impose more sparsity to the latent
image. In conclusion, when the intensity and dark channel priors
are combined as the regularization terms, the deblurring can be
improved than using individually the intensity and dark channel
priors.

Figs. 16(c) and 17(b) provided higher Q metric values, but
the resulting images were oversmoothed compared with the
proposed method. On the other hand, Figs. 16(d)–17(d) show
that the proposed method can provide better-restored result
preserving the weak edges in the sense of evaluation.

In addition, we tested deblurring with additive noise to
compare the performance in the noisy case. The noisy image
in Fig. 18 was obtained by adding white Gaussian noise of
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Fig. 18. Comparison of the deblurring performance in the noisy case: (a) blurred image (PSNR: 31.6291 dB), (b) blurred image with additive noise (PSNR:
27.6763 dB), (c) deblurred result using Pan’s method (PSNR: 18.6039 dB) [29], (d) deblurred result using another Pan’s method (PSNR: 15.9555 dB) [30],
(e) deblurred result using the proposed method (PSNR: 25.0927 dB), (f) Gaussian PSF used in the noisy case, (g) estimated PSF using Pan’s method (PSNR:
34.8631 dB) [29], (h) estimated PSF using Pan’s method (PSNR: 36.3697 dB) [30], and (i) estimated PSF by (18) (PSNR: 20.1395 dB).

Fig. 19. Sensitivity analysis of the main regularization parameters, ω and γ, used in the proposed method: (a)–(b) PSNR and SSIM values of resulting images
using the PAN band shown in Fig. 8, (c) Q metric values of resulting images using the PAN band shown in Fig. 9, (d)–(e) PSNR and SSIM values of resulting
images using RGB and NGB bands shown in Fig. 8, and (f) Q metric values of resulting images using RGB and NGB bands shown in Fig. 9.
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Fig. 20. Sensitivity analysis of the main parameter, denoted as τ . (a) Average PSNR of images shown Fig. 8. (b) Average SSIM of images shown in Fig. 8.
(c) Average Q metric values of images shown in Fig. 8.

TABLE III
CONVENTIONS

SNR 30 dB. Fig. 18(c)–(e) shows restored results using dark
channel [29], intensity prior [30], and the proposed methods,
respectively. Both dark channel- and intensity prior-based
methods iteratively deblur the input image without considering
noise suppression. For this reason, these methods cannot avoid
noise amplification and result in lower PSNR values.

On the other hand, the proposed method combines dark chan-
nel and intensity prior terms. In (5), �0-norms ‖ · ‖0 represent the
number of nonzero intensities, which cannot effectively reduce
the amplification of additive Gaussian noise. The proposed
method shows less robust results for noise amplification and
has limitations in the noisy case as shown in Fig. 18(e).
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C. Parameter Setting

Fig. 19 shows average of PSNR, SSIM, and Q metric values in
experimental results to verify the effect of the main parameters
γ, ω, and τ in the proposed �0-norm-based deblurring and
image fusion process. For the experiment, WorldView-2/4 and
KOMSAT-3A images were used as shown in Figs. 8 and 9.
Since Fig. 19(c) and (f) are nonreference images, PSNR and
SSIM are not measured. For that reason, KOMSAT-3A images
are measured using only Q metric, which is a nonreference
measurement criterion. For the �0-norm-based deblurring pro-
cess given in (5), we experimentally selected regularization
parameters for dark channel prior, intensity prior, and gradient
prior, respectively, denoted as γ, μ, and ω. In this article, the
proposed method empirically set penalty parameters α, β, and
λ to 105, 8, and 8, respectively. These parameters control the
balance of the gradient, intensity, and dark channel priors. Also,
γ and ω were initially set to 10−6 and 10−3, respectively, and
increased by 8× 10−5. Fig. 19(a), (b) shows that PSNR and
SSIM were the highest when γ = 9.61× 10−4, and ω = 10−6.
Fig. 19(c) also shows that the Q metric value was the highest
when γ = 1.61× 10−4, and ω = 10−6. We fixed the gradient
prior parameter as μ = 10−5.

As shown in Fig. 19(a)–(c), the larger γ and the smaller ω
yield higher average of PSNR, SSIM, Q metric values. Intensity
prior is less smoothed because a large ω is less updated in (15),
and dark channel prior is expected to have a smoothing effect
on the dark channel only when γ is large. On the other hand,
Figs. 19(d)–(f) show that RGB and NGB images with lower
resolution than PAN band images have the highest PSNR, SSIM,
and Q metric values when γ = 10−6 and ω = 10−6. Since RGB
and NGB images have a lower resolution than the pan band
images, high γ and ω cause oversmoothing. As a result, high
PSNR, SSIM, and Q metric values were obtained when γ and ω
were small.

We also performed experiments with various values of τ in
(17) for the image fusion process as shown in Fig. 20 τ values
were set in the range [0, 4.0] by interval of 0.1. In (17), g1,
g2 was tested by fixing the result of Sections II-A and II-B and
increasing only τ . Since PSNR and SSIM represent similarity of
contextual information, the highest value is shown at τ = 3.1.
On the other hand, Q metric is the highest at τ = 0 because
it represents the degree of structural preservation of the image.
However, when τ = 0, the texture detail is lost, so we empirically
selected the range of τ values between [1.5, 3.5]. The set of
variables and parameters are summarized in Table III.

V. CONCLUSION

In this article, we proposed a novel deblurring method using
�0-norm-based deblurring with the intensity and dark chan-
nel priors and �2-norm-based minimization for adaptive image
fusion. In the proposed method, we incorporated the activity
map and �2-norm-based minimization to preserve the texture
details of the results of Richardson–Lucy deconvolution and
unsharp masking, respectively. In addition, we analyzed that the
property of the intensity and dark channel priors of the remote
sensing images impose the sparsity to the latent sharp image.

Experimental results demonstrated that the proposed method can
provide the high-quality restored result preserving both strong
edges and texture details without noise amplification and ringing
artifact near edges compared with the state-of-the-art methods.
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