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ABSTRACT Visual attention plays an important role in saliency detection by highlighting meaningful
context regions. In this paper, we present a novel saliency detection method using a bilateral attention
network. The proposed network consists of two branches: i) a spatial path using an encoder-decoder structure
to learn spatial cues and ii) a context path using an attention mechanism to learn contextual cues. The feature
aggregation module is finally used to predict salient objects by concatenating the cues. To optimize the
weights of the network in the sense of minimizing the class imbalance problem, we minimize the dice
coefficient loss together with the classical cross-entropy loss. The proposed network can predict salient
regions in an end-to-end manner without post-processing. Experimental results show that the proposed
network achieved better performance than existing state-of-the-art methods in most cases. Furthermore, the
proposed network takes only 0.03 seconds to process a 224× 224 image. The code for the proposed method
can be found at the following URL: https://github.com/tiruss/SdBAN

INDEX TERMS Salient object detection, deep learning, dice coefficient, attention mechanism.

I. INTRODUCTION
Saliency detection aims at extracting the most visually
noticeable region in an image. Unlike other segmentation
approaches such as semantic segmentation and boundary
detection, saliency detection only distinguishes themost visu-
ally attractive and interesting object from the background.
It can be applied to various computer vision fields such as
image segmentation [1], object recognition [2], action recog-
nition [3], weakly supervised semantic segmentation [4]–[7],
visual tracking [8], video compression [9], [10] and video
summarization [11].

Existing hand-crafted feature-based saliency detection
methods commonly measure the contrast. Itti and Koch pro-
posed contrast difference between the center pixel and its
neighborhood [12]. Klein and Frintrop used Kullback-Leibler
Divergence (KLD) to measure the difference [13]. How-
ever, these difference measurement-based saliency detection
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methods commonly fails when there is no significant dif-
ference between the object and background, or the back-
ground has a complex pattern or clutters. Wang et al.
applied a learning-based discriminative model to guaran-
tee high performance in various types of domains [14].
To provide a pre-specified prior, they need additional
pre- and post-processing steps. Kong et al. proposed an
exemplar-aided method that complement heuristic saliency
assumptions by leveraging only a few exemplar images [15].
Zeng et al. proposed a game-theoretic method that does not
require labeled training data [16]. Zhou et al. proposed a
superpixel-based two-layer diffusion process [17].

In recent years, convolutional neural networks (CNNs)
have demonstrated unparalleled performance in the salient
object detection and segmentation fields. Specifically, fully
convolutional networks (FCNs) greatly improve the abil-
ity to preserve spatial information [18]. Mnih et al. pro-
posed U-shape structure to reduce the loss of details of an
object [19]. By fusing the hierarchical features of the back-
bone network, the U-shape structure gradually increases the
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FIGURE 1. Example of learned spatial and context feature maps:
(a) feature map computed by the spatial path using the U-net
architecture, (b) feature map of the context path using the pixel-wise
attention mechanism, (c) fusion of (a) and (b) using the feature fusion
block, (d) the input image, (e) the prediction result using the proposed
method, and (f) the ground truth mask.

spatial resolution and fills some missing details. For that
reason, recent saliency detection studies are based on FCNs
and U-shape structures. He et al. proposed a super-pixel-
wise convolutional neural network using hierarchical contrast
features [20]. For each scale of super-pixel, two contrast
sequences were fed into the convolutional network for more
detailed features. Li and Yu proposed a deep contrast network
to emphasize the contrast information [21]. It concatenates a
pixel-level FCN stream and a segment-wise spatial pooling
stream. A fully connected conditional random field (CRF) is
also used for refining the output from the contrast network.
Liu et al. used a hierarchical recurrent convolutional neural
network for saliency detection [22]. This network consists of
two stages: i) generating a coarse output map using a deep
CNN and ii) hierarchical refinement of the details using a
recurrent CNN. Both Li’s and Liu’s works commonly used
multiscale features that are extracted by convolutional lay-
ers. Hou et al. proposed skip-connections between layers
to find a salient object in a deep neural network without
loss of information [23]. Hu et al. tried to find the salient
object by minimizing the loss of each pooling layer and
refinement using guided super-pixel filtering [24]. Fu et al.
proposed a deep framework for salient object detection that
effectively fuses multi-scale outputs [25]. To fuse differently
scaled outputs, they proposed: i) a linear model using a fully
connected layer, ii) a nonlinear model using the FCN for
concatenation, and iii) a joint fusion of the two models.
Edge-based salient object detection approaches were recently
proposed in [26], [27]. Zhao et al. proposed an edge guid-
ance network using an explicit edge modeling method [26],
which estimates deterministic object boundaries by adding
a complementary salient edge to multi-scale information.
Wu et al proposed a stacked cross refinement network for an
edge-aware network [27], which simultaneously leans both
saliency map and salient object boundaries using consecu-
tively stacked cross refinement units (CRUs). Compared with
existing hand-crafted feature-based methods, CNN-based
methods can produce generalized results in various domains,
and give a significantly imporved performance without using

FIGURE 2. Conventional attention network with a single path(left) and
the proposed network with an additional bilateral path. Red arrow
represent the attention path, and the red box represents the
concatenation operation of attention maps in each layer.

pre-specified priors. However, since these methods learn the
entire image, background may be detected as a salient object
when the size of the salient object is smaller than the back-
ground. This is called class imbalance problem, and we will
discuss about related experimental results in section IV-E2.

To solve this problem, we present a novel saliency detec-
tion method using an attention mechanism to assign a higher
weight to informative regions. The proposed network consists
of two branches: spatial path and context path. The spatial
path has an encoder-decoder structure with skip-connections
to learn the spatial information. On the other hand, the con-
text path has an attention mechanism to learn the context
information. We also propose a feature aggregation block to
effectively concatenate two branches without loss of infor-
mation as shown in Fig. 2. To train the proposed network,
we minimize a harmonic loss function that combines the dice
coefficient and cross entropy losses. The cross entropy loss
cannot solve the class imbalance problem by itself since it
tends to decrease when the object size is small. The dice
coefficient is devised as an index to measure the similarity of
two images. By minimizing the dice coefficient loss, back-
ground is ignored and only the object region is considered.
As a result, minimization of the dice coefficient loss can
solve the class imbalance problem. Since learning with only
dice coefficient loss becomes unstable, we added the classical
cross-entropy loss for stable learning without class imbalance
problem.

The main contributions of this work are summarized as
follows:

1) We present a bilateral attention network to learn both
spatial and context information. The spatial path is an
encoder-decoder structure with skip-connection, which
is robust to object size variations. The context path
assigns a higher weight to the informative region of the
image through the attention mechanism. This process
will be proved to be robust even when the background
is complex and the difference between object and back-
ground is not significant.

2) We propose a harmonic loss function that combines the
dice coefficient loss and cross-entropy loss for stable
learning without class imbalance problem.
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3) Extensive experiments show that the proposed method
compares favorably to the state-of-the-art methods,
both in terms of visual quality and in terms of different
metrics.

II. RELATED WORKS
A. ATTENTION MECHANISM
Recently, attention mechanism, which makes computation
resource concentrated on the informative region of the image,
is applied in various deep neural networks. Over the last
few years, the attention mechanism has been studied in nat-
ural language processing [28]–[30]. Mnih et al. proposed a
method to adaptively select a region of interest in an image
through a recurrent attention model [19]. To the best of
authors’ knowledge, this is the first attempt to apply the
attention mechanism to the computer vision tasks. How-
ever, training the network including the recurrent attention
model is a challenging problem since it is not easy for the
attention model to focus on a definite point in the image,
which is called hard attention problem. To solve that prob-
lem, Bahdanau et al. proposed a soft attention model, which
calculates attention weights of all input features [31]. This
allowed the RNN encoder-decoder network to overcome the
limitations of containing all the sentence information in a
fixed-length vector. This method significantly improves per-
formance in machine translation.

In recent years, attention mechanisms have been intro-
duced into various computer vision applications. Xu et al.
applied the recurrent attention model to the field of image
captioning by highlighting the area corresponding to each
word of the sentence describing the given image [32]. Ser-
manet et al. enhanced performance of image classification
by extracting discriminative regions in the image through
the recurrent attention model [33]. Chen et al. replaced
average-pooling and max-pooling for multi-scale features by
the attention module to increase performance of the seman-
tic segmentation [34]. Li et al. applied the region of inter-
est (ROI) to the object detection field through the attention
model [35]. These studies proved that the attention mech-
anism successfully assigned higher weights to informative
regions to increase performance of object detection. Liu et al.
proposed pixel-wise contextual attention network (PiCANet)
to apply the attention mechanism to saliency detection [36].
In PiCANet, an attention-guided network selectively inte-
grates multi-level contextual information to alleviate dis-
traction of cluttered features. This method is robust to
background changes and cases successfully detects objects in
most cases. However, it cannot preserve high-level features
with semantic information, resulting in a blurred boundary
of the object. To solve this problem, Krähenbühl and Koltun
used conditional random field (CRF) in post-processing [37].
Feng et al. used boundary-enhanced loss (BEL) with the
attention feedback module to detect salient objects [38],
where the context of the object is learned through atten-
tion, and the boundary of the object is learned through
BEL.

The proposed network is different from feature
integration-based approaches described above in that our
bilateral network can separately obtain both spatial and
context information from different paths to preserve the
advantages of both paths.

B. ENCODER-DECODER ARCHITECTURE
In computer vision, image segmentation is the process of
assigning a pixel-by-pixel label to an entire image, and its
performance depends on the ability to preserve multi-scale
features. Most existing multi-scale feature handling networks
are based on an encoder-decoder architecture. The encoder
of the network compresses the information of the object
through the layer, where the high-level layer contains detailed
information of the object, and the low-level layer contains
the context information of the object. Most encoders used a
pretrained network to extract general features in an efficient
manner using a small amount of training data sets. The feature
vectors compressed by the encoder are then reconstructed by
the decoding layer. Through this structure, more generalized
results can be obtained.

Badrinarayanan et al. proposed SegNet which uses an
encoder-decoder structure for semantic segmentation [39].
This is first attempt to apply the encoder-decoder structure
to the pixel-wise prediction task. SegNet showed higher
localization than simple upsampling based methods. Ron-
neberger et al. proposed an encoder-decoder structure using
skip-connection, calledU-net [40]. Skip-connection concate-
nates pairs of encoder and decoder layers of the same size.
A successive layer can then learn to assemble a more precise
output based on this information. Saliency detection is distin-
guished from object detection and segmentation tasks in that
the shape of an object is not constant. It is important to create
a more generalized network since there is no fixed shape for a
salient object. The proposed network uses the U-net structure
to obtain generalized spatial information.

III. PROPOSED METHOD
The proposed network consists of spatial and context paths
as shown in Fig. 3. The spatial path performs semantic seg-
mentation whereas the context path generates the contextual
attention vector of the object. Since the low-level layer in the
spatial path has high-resolution spatial information, it is not
suitable to find the context of the object through the attention
mechanism. Therefore, the context attention block (CAB)
is applied to the compressed feature map through convo-
lution and pooling. In order to preserve the characteristics
of each path, feature map of each path is concatenated
through the feature fusion block (FFB) at the last layer of the
decoder.

A. SPATIAL PATH
To extract features, we use the pretrained ResNet-50 as the
encoder in the spatial path [41]. This network is modified to
be fully convolutional to produce dense feature maps while
preserving spatial location.More specifically, we replaced the
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FIGURE 3. Architecture of the proposed SdBAN.

last fully-connected layers of the original ResNet-50 by four
deconvolution blocks to reconstruct features. The reason for
using four deconvolution blocks is that the spatial decimation
factor of the ResNet-50 is 16when fourmax-pooling layers of
stride 2 are employed. In addition, skip-connection is applied
between pairs of encoder and decoder layers of the same scale
to preserve multi-scale features.

B. CONTEXT PATH
One of the problems of the saliency detection task is incon-
sistent prediction result where the background is complex
or the difference between background and object is low.
These problems are mainly due to the lack of context.
Global average pooling can be used to find global con-
texts [42], [43]. However, global context just has the high
level semantic information, which is not helpful for recover-
ing the spatial information. Therefore, a multi-scale receptive
view is needed to restore spatial information successfully.
To accurate guide multi-scale features, we design a con-
text attention block (CAB) as shown in Fig. 4. A CAB
calculates the channel attention vector for each scale fea-
ture. Both high- and low-level features provide a consistent
guidance and discrimination information of features. In this
way, the channel attention vector can select discriminative
features.

FIGURE 4. Components of the context attention block (CAB).

1) CONTEXT ATTENTION BLOCK
In the FCN architecture, the convolution operator has a score
map as an output. The score map is interpreted as the proba-
bility of a class for each pixel. Let s be the scale of the feature
map, the score ys is the sum of all feature maps as

ys = F(x;w) =
S∑
i=1

wixi, (1)

where S represents the largest scale, xi the i-th scale feature
map, and wi the i-th scale convolution kernel.
Since the convolution operation takes all input feature

maps with an equal weight, the predicted output may become
incorrect when background is noisy or the object is relatively
small. To solve this problem, we use a weighting parameter α,
which becomes large for a highly discriminative region of the
object.

To determine the optimal value of ys, global average pool-
ing (GAP) is performed before the max-pooling layer in the
encoder and d ∈ {1, . . . ,D} scores of feature maps are
obtained. The final weight vector αd is then obtained by 1×1
convolution operation which maps the score between 0 and 1
through the softmax function.

αd =
exp (yd )∑D
i=1 exp (yi)

. (2)

Finally, we construct an attended contextual feature yA as
a weighted sum of αd and the original feature map as

yA =
D∑
d=1

αdyd . (3)

As shown in Fig. 5, the proposed context attention
block (CAB) weights the discriminative region in the feature
maps. The output of the CAB can be regarded as the heat map
of attention.

Components of the CAB look similar to the squeeze-and-
excitation (SE) block proposed by Hu et al. [44]. The CAB
is different from the SE block in that the intermediate fully
connected layer is replaced with a 1 × 1 convolution layer
to preserve spatial relationship and reduce computational
overhead.

C. DICE SIMILARITY COEFFICIENT LOSS
The size of a salient object is often much smaller than
that of background. This makes the learning process get
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FIGURE 5. Attention maps extracted by the context path: (a) input
images, (b) saliency masks (ground truth), and (c-d) two most close
attention maps to the ground truth.

FIGURE 6. Comparison of binary cross entropy and dice coefficient values
for different size of salient objects. The cross entropy is sensitive to the
size of the salient object, while the dice coefficient is less sensitive
because it measures the overlap between objects.

trapped in a local minimum of the loss function yielding a
network whose predictions are strongly biased towards the
background. To solve this problem, weighted cross-entropy
loss, class-balanced cross-entropy loss [45] are used
in [23], [46].

Weighted cross entropy (WCE) is a variant of CE where all
positives get weighted by coefficient β and defined as

LWCE=−
1
N

N∑
i

(βgi log (pi)+(1−gi) log (1− pi)), (4)

where pi ∈ P be the predicted saliency map, and gi ∈ G the
corresponding ground truth. If β is larger than the unity, the
foreground gets more weights, and vice versa.

For the pixel-wise prediction, Xie and Tu used a sim-
pler strategy called class-balanced cross-entropy (CBCE) that
adaptively weights positives and negatives as [45]

LCBCE=−
1
N

N∑
i

(βgi log (pi)+(1−β) (1−gi) log (1−pi)),

(5)

where β = |N−| / |N | and 1 − β = |N+| / |N |. |N−|
and |N+| represent the saliency and non-saliency maps,
respectively.

This simple approach can solve the class imbalance prob-
lem. However, Deng et al. argued that the CBCE loss causes
the ‘thickness’ in the edge detection task [47]. This is due
to the nature of the cross entropy loss. More specifically, the
cross entropy loss is calculated as the average of per-pixel
loss, and the per-pixel loss is independently calculated with-
out considering whether its adjacent pixels are salient or not.
As a result, the cross entropy loss considers loss in a local
sense rather than the global sense.

Milletari et al. proposed another objective function that
maximize the dice coefficient between images [48] to solve
class-imbalance problem. The dice coefficient is an index that
measures the overlap between the ground truth and the pre-
diction output in segmentation-like tasks. the dice coefficient
denoted as D can be computed as

D =
2
∑N

i pigi∑N
i p

2
i +

∑N
i g

2
i

. (6)

In saliency detection tasks, the ground truth and pre-
dicted saliency maps can be viewed as two sets. In (6), the
denominator considers the total number of saliency maps
at the global scale, while the numerator considers the over-
lap between the two sets at a local scale. Therefore, the
dice coefficient loss considers the loss information in both
local and global manners. The dice coefficient in (6) is
minimized when its gradient with respect to pi is equal to
zero as

∂D
∂pj
= 2

gj
(∑N

i p
2
i +

∑N
i g

2
i

)
− 2pj(

∑N
i pigi)+ ε(∑N

i p
2
i +

∑N
i g

2
i

)
+ ε

 ,
(7)

where ε is a smoothing term to avoid division by zero.
To make the converged become zero, we modified the loss
as

LD = 1−
2
∑N

i pigi∑N
i p

2
i +

∑N
i g

2
i

. (8)

The class imbalance problem can be solved by minimiz-
ing (8). However, since the dice coefficient loss can only
learn about object, the learning process is unstable due to the
high variance. To learn both object and background, we used
binary cross-entropy loss

LCE = −
1
N

N∑
i

(gi log (pi)+ (1− gi) log (1− pi)). (9)
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FIGURE 7. Subjective comparison of saliency detection performance
using different combinations of losses. The proposed method using both
binary cross-entropy and dice losses generated better saliency detection
result than using only CBCE loss and DSS [23] using CBCE loss.

FIGURE 8. Components of the feature fusion block (FFB).

The total loss function, denoted as LT , is the sum of the
dice coefficient and the binary cross entropy losses as

LT = τLD + (1− τ)LCE , (10)

where τ is the weighting parameter to balance the effect of
LD and LCE .

D. FEATURE FUSION BLOCK
Features from the proposed dual path network have different
types of representation. Therefore, a simple concatenation
deteriorates the performance. The information captured by
the spatial path encodes most of rich detail information.
On the other hand, the information captured by the context
path mainly encodes context information. In other words,
the spatial path extracts a low-level feature map, whereas
the context path extracts a high-level feature map. Therefore,
we present a feature fusion block (FFB) that concatenates
features of different levels without loss of information as
shown in Fig. 8.

TABLE 1. Network architecture table of proposed method.

Given various levels of features, we first concatenate the
output features of both spatial and context paths. Next, the
integrated features obtained by convolution operation and
batch normalization. We also obtain the attention weight vec-
tor through the softmax function after global average pooling
in the integrated feature in the similar way of SENet [44].
The weight vector guides the correct feature selection in the
integrated feature.

The network architecture of the proposed method is sum-
marized in Table 1.

IV. EXPERIMENT RESULTS
A. DATASETS
We used five popular saliency benchmark datasets to
evaluate the performance of our method. SOD dataset
has 300 images with complex background and multiple
objects per image [49]. HKU-IS dataset consists of 4,447
low-contrast images with multiple objects [50]. DUT-O
dataset consists of 5,168 challenging images with complex
background and one or more objects per image [51]. DUTS

104362 VOLUME 8, 2020



D. Kang et al.: SdBAN: Salient Object Detection Using Bilateral Attention Network With Dice Coefficient Loss

dataset consists of DUTS-TR consisting of 10,553 images
for training and DUTS-TE consisting of 5,019 challenging
images for testing [52]. ECSSD dataset consists of 1,000
images of various types and sizes [53].

B. EVALUATION METRICS
The performance was evaluated using mean absolute
error (MAE), precision-recall (PR) curve, F-measure [50],
weighted F-measure [54], and S-score [55] which are com-
monly used in salient object detection.

1) MAE
Themean absolute error (MAE) between the predicted output
pi and the ground truth gi is defined as

MAE =
1

W × H

W∑
i=1

H∑
j=1

|p(x, y)− g(x, y)|, (11)

where W and H respectively represent the width and height
of images.

2) PRECISION-RECALL (PR) CURVE
The PR curves are calculated from the precision and recall
values of predicted output pi and ground truth gi given a
pre-specified threshold between 0 and 255. Specifically, the
PR curve reflects the object retrieval performance in the sense
of both precision and recall by binarizing the final saliency
map using different thresholds.

3) F-MEASURE (Fβ)
The F-measure, denoted as Fβ , is an overall performance
measurement, and is computed by the weighted product of
precision P and recall R as

Fβ =
(1+ β2)P× R
β2P+ R

, (12)

where β2 is set to 0.3 according to previous researches to
assign a higher weight on precision than recall. More specifi-
cally, maximum F-measure, denoted as maxFβ , is associated
with the maximum F-measure value computed from the PR
curve, while average F-measure, denoted asmeanFβ uses the
adaptive threshold for binarization.

4) WEIGHTED F-MEASURE (F w
β )

Margolin et al. proposed weighted F-measure, denoted asFwβ ,
to compensate for the drawback of the original F-measure by
considering both pixel dependency and pixel importance with
an appropriate weight as [54].

Fwβ =

(
1+ β2

)
Pw × Rw

β2Pw + Rw
, (13)

where Pw and Rw respectively represegnt the weighted preci-
sion and recall. The weighted F-measure is different from the
original F-measure in that it directly compares a non-binary
map using a binary ground truth without thresholding to avoid
the interpolation flaw. β2 = 0.3 is used to give more weight

TABLE 2. max Fβ , F w
β

, and mean absolute error (MAE) of the baseline
model trained with and without dice coefficient loss, context attention
block and feature fusion block on the HKU-IS dataset [50].

the precision more than recall. More details about this metric
can be found in [54].

5) S-MEASURE (Sα)
Fan et al. proposed S-measure, denoted as Sα , to quantify
the spatial structure similarities (SSIM) of the saliency map,
which is widely used in the quality assessment (IQA) field,
and is defined as

Sα = α ∗ S0 + (1− α) ∗ Sr , (14)

where the weighting coefficient α controls the balance
between two terms, and α = 0.5 was used according to
previous researches. S0 and Sr respectively represent the
object-aware and region-aware structural similarities. More
details about this metric can be found in [55].

C. IMPLEMENTATION DETAILS
The proposed model was implemented on the TensorFlow
framework with a single GTX 1080 Ti GPU for acceleration.
For a fair comparison with previous works, the proposed
model was trained with the DUTS-TR dataset [30]. For data
augmentation, we resized each image to 256 × 256, and
then used random cropping and random mirror-flipping for
training. We trained our model using Adam optimizer [56],
with initial learning rate 0.002 decayed down to 0.00003
per epoch, 200 epochs and mini-batch size 16. It took
about 6 hours to converge.

For the test, we resized the image to 224 × 224 to get the
prediction result, and then restore it back to the original size.
Using Resnet-50 as a backbone [41], it took 0.03 second to
predict one image.

D. ABLATION STUDY
1) EFFECTIVENESS OF THE SdBAN
To demonstrate the effectiveness of the proposed net-
work, we investigated each component in the proposed net-
work as shown in Table 2, where Baseline represents the
U-Net [40] without SdBAN. In Table 2, we designed our
ablation study using three different settings. w/o Dice means
only use cross-entropy loss, w/o CAB means the baseline
with harmonic loss function, and w/o FFB means simple
concatenation of feature maps of two paths. The ablation
study demonstrated that each component contributed fairly
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TABLE 3. Comparison of the saliency detection performance of 14 methods including ours in the sense of max Fβ , mean Fβ , and MAE. The best and
second-best results are highlighted in red and blue, respectively.

FIGURE 9. Quantitative evaluation of HKU-IS dataset [50] using the MAE
with different τ values.

to the overall performance. In particular, the CAB made the
significant contribution in the sense of Fwβ .

2) EFFECTIVENESS OF THE PROPOSED LOSS FUNCTION
Fig. 9 shows the result of using different values of τ ∈
{0, 0.25, 0.5, 0.75, 1} that balances each loss. τ = 0 means
that only binary cross entropy loss is used for learning,
whereas τ = 1 means that only dice coefficient loss is used.
We found τ = 0.5 was the optimal by experiment. Since the
dice coefficient loss is more effective than the binary cross
entropy loss, a higher τ tends to give higher performance.

Fig. 10 shows results of learning with only one of the two
loss functions. The difference in MAE between only cross
entropy loss and only dice coefficient was not significant.
However, qualitative evaluation shows the characteristics of
each loss.

FIGURE 10. Prediction results based on binary cross entropy loss and
dice coefficient loss respectively. The binary cross entropy loss has a soft
boundary but takes into account the context of the object. The dice
coefficient loss has a sharp boundary, but does not consider the context
of the object.

3) EFFECTIVENESS OF THE CONTEXT PATH
We used frequently used networks as backbone. Specifically,
we used VGG16 [57] and ResNet50 [41] with six multi-scale
feature maps 224, 112, 56, 28, 14, and 7. We did not con-
sider 224 because it is so close to the input that the receptive
field becomes very small. Figs. 12 (c) and 12 (d) respectively
show CAB outputs of 112 and 56. Instead of using the single
path that separately adds attention maps of each feature scale,
we added the bilateral path as a separate path to learn the
concatenated multi-scale attention maps. To concatenate the
attention maps, 28 and 14 require ×8 and ×16 upsampling,
respectively. This scheme can neither obtain fine information,
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FIGURE 11. Qualitative evaluations with previous methods. GT means ground truth image.

FIGURE 12. Attention maps of the context path: (a) input image,
(b) ground truth, (c) attention map of CAB-112, and (d) attention map of
CAB-56.

nor reduce errors. Experimental results showed that perfor-
mance improved in 112 and 56, but not from 28.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
We compared our network with 12 deep learning-based state-
of-the-art methods, including PiCANet [36], CKTS [65],
PAGR [64], RAS [63], DSS [23], SRM [62], Amulet [61],
DHS [22], UCF [60], CDL [21], RFCN [59], MDF [50], and
DS [21].

1) QUANTITATIVE EVALUATION
Results of quantitative comparison of the proposed network
with 12 state-of-the-art methods are shown in Table 3 and
Table 4. As shown in the tables, our method outperforms
other methods for all the seven benchmark datasets in the
sense of MAE. Our method also gives the first or second
performance in the sense of maxFβ , mean meanFβ , Fwβ ,
and Sα . F-measures of our method were relatively low com-
pared to MAE. In particular, the maxFβ is low since the
PR curves of the proposed network are short as shown in
Fig. 13. The shorter the PR curve, the better the binarization
of the prediction output without blurring. In the F-measure
curve of Fig. 13, we can see that the proposed method has
a constant value, while the other methods differently behave
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TABLE 4. Comparison of the saliency detection performance of 14 methods including ours in the sense of F w
β

and Sα . The best and the second-best
results are highlighted in red and blue, respectively.

FIGURE 13. The PR curves and F-measure curves 10 state-of-the-arts and proposed method across five benchmark datasets.

according to the threshold. Therefore, our average value of
the F-measure curve, denoted as meanFβ , shows the best
performance in most cases. As shown in Fig. 4, our method
gives the best results over all five datasets in the sense of Fwβ ,
while it gives either the best or second-best results in the sense
of Sα , which was compensated for the flaws of conventional
metrics.

2) QUALITATIVE EVALUATION
For a subjective evaluation, we compares the saliency detec-
tion results of our method over several challenging images
with existing state-of-the-art methods. As shown in the col-
umn of Fig. 11, our method generated sharper object bound-
aries and was less sensitive to background clutters than other
methods. For example, the first three rows of Fig. 11 show the
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TABLE 5. Processing speed of seven different methods including ours in frame per second (FPS). All experiments were conducted using a single Nvidia
GTX 1080-Ti GPU.

FIGURE 14. Failure cases of the proposed method.

case of irregular boundary. Our method accurately detected
object boundaries, while other methods produced blurry
boundaries. The fourth row include four objects, all of which
were correctly detected by ourmethod. Othermethodsmissed
the right most person since the existing network is trained
with a center-biased training dataset. In other words, con-
ventional learning-based methods cannot successfully detect
an off-centered object. On the other hand, our method can
detect an object located anywhere in the image by learning
the global context of an object. However, since our method
learns the global context of an object, it detect outer object
well. In the case of complex background represented in the
fifth to seventh rows, other methods detect the background
as an object. The fifth, sixth, and seventh rows of Fig. 11
show the case of complex background. Our methods correctly
detected objects in a robust manner, while others could not.
The eighth row of Fig. 11 shows the case of unusually shaped
structures, which was correctly detected by our method, but
not by others. The ninth and tenth rows of Fig. 11 show the
case of small objects, which were correctly detected by our
method.

F. FAILURE CASE
Although the proposed method correctly detected the salient
object in most cases, it fails in some cases. In the first low

FIGURE 15. Qualitative evaluation results of camouflage object
dataset [66].

of Fig. 14, the shadow of the plane is erroneously detected.
Differentiation of a real object from its shadow is still chal-
lenging because it is similar to the object and the contrast
also changes drastically. In the second row, the salient object
is blurred, while the track lane is distinct. This is the case
when the track lane is detected as a salient object instead of
the running person. This is because most of the learning data
are objects with distinct characteristics. In the third low, the
salient object is a person, but the colors of the clothes vary,
and the background and the color of the clothes are similar
to background clutters. Also, the person to the right of the
object can be a salient object in some cases. In the proposed
method, the right person is detected as a salient object, and
false detection occurs.

In summary, a deep learning based method is also sensitive
to changes in contrast. Therefore, we will carry out a study on
the regularization term in order to obtain generalized results
in the future research.

G. CAMOUFLAGE CASE
Small objects and complex backgrounds are one of the factors
that make salient object detection task difficult. However,
if the difference between the object and the background is
very small as shown in Fig. 15, it is also a challenging
problem even using human eyes. In this case, if the network
does not understand the context of the object, it is difficult
to obtain the correct prediction result. In Fig. 15, DSS [23]
creates a grid artifact when it can not detect a salient object.
This problem is the effect of the dilated convolution. Dilated
convolution has the advantage that the receptive field can be
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increased without increasing the parameter. However, if the
difference between the background and the object is small,
the background is recognized as an object and vice versa.
To alleviate this problem, DSS used CRF [37] as post pro-
cessing. PiCANet [36] used a similar attention mechanism to
the proposed method. However, as shown in the experimental
results, the attention mechanism of PiCANet did not find a
discriminative part of the image. Unlike the previous two
methods, the proposed method sensitively responds to the
small context of the object. It is not enough to predict the
detail of an object, but the discriminative region of the object
is well detected.

H. PROCESSING TIME
Processing time of the proposed method is compared with
other methods as shown in Table 5.

V. CONCLUSION
In this paper, we proposed a novel saliency detection method
using a bilateral attention network (SdBAN) consisting of: i) a
spatial path containing an encoder-decoder structure to learn
the spatial information of the salient object and ii) a context
path containing the attention-module structure to learn the
context information. Weight vectors of different scales in the
attention network are concatenated through the feature fusion
module at the last layer to effectively preserve the information
of each path. In addition, effective learning is achieved by
incorporating a novel loss function based on the invariant
index of the salient object scale and dice coefficient loss along
with the cross entropy loss. As a result of the comparison
with the state-of-the-art methods for five different datasets,
we demonstrate that the proposed network performs best in
most cases. The proposed method also outperforms exist-
ing methods in the sense of processing speed in frames per
second. In addition to the quantitative evaluation, qualitative
performance of the proposed method is much better than
others especially in camouflage cases.
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