
Research Article

International Journal of Distributed
Sensor Networks
2017, Vol. 13(5)
� The Author(s) 2017
DOI: 10.1177/1550147717707896
journals.sagepub.com/home/ijdsn

Deep learning–based real-time query
processing for wireless sensor network

Ki-Seong Lee, Sun-Ro Lee, Youngmin Kim and Chan-Gun Lee

Abstract
The data collected from wireless sensor network indicate the system status, the environment status, or the health
condition of human being, and we can use the wireless sensor network data to carry out appropriate work by process-
ing it. In recent years, using deep learning, it is possible to construct a more intelligent context-aware system by predict-
ing future situations as well as monitoring the current state. In this article, we propose a monitoring framework for
wireless sensor network streaming data analysis based on deep learning. In particular, in an environment where time
requirements are strictly enforced, data analysis results must be derived within a deterministic time. Therefore, we con-
duct query refinement adaptively to enable timely analysis of wireless sensor network data in the predictor. Even if some
sensor data that is not synchronized in time are included or even if some data have not arrived yet, reasonably accurate
query analysis results can be obtained within the deadline by performing the proposed method.

Keywords
Wireless sensor network, query processing, deep learning, real-time system, monitoring

Date received: 18 January 2017; accepted: 5 April 2017

Academic Editor: Minglu Jin

Introduction

Wireless sensor network (WSN) data are the result of
measuring the available values from the physical envi-
ronment. Sensor data are already widely used in every-
day life. The types of data that can be obtained from
the sensors are temperature, brightness, motion, chemi-
cal values, and biological signals. These data can be
used to observe human health conditions, system con-
ditions, or environmental information. It can also con-
tinuously monitor the data coming from the sensor,
and if the sensor value satisfies a certain condition or
goes out of the reference value, it can handle the appro-
priate task corresponding to the situation.

With the rapid enhancement of hardware in recent
years, the WSN environment becomes more complex
and more versatile. Munir et al.1 proposed a WSN
architecture composed of nodes with multi-core, and
the data collected in this environment can handle high-
level applications compared to the past. As the quality
of sensor data is improving, researches are being

conducted to analyze WSN data by machine learning.
Machine learning is a technique for analyzing the
meaning of new data based on the history of past data.
In the case of streaming sensor data, data can be col-
lected and stored continuously; therefore, we can ana-
lyze and monitor sensor data using various machine
learning techniques like classification or regression.
Alsheikh et al.2 presented machine learning studies
related to WSN that various machine learning algo-
rithms are applicable to WSN because WSN covers a
very wide range of information and communication
technology (ICT) applications. Especially, the high
level of machine learning represented by deep learning

School of Computer Science and Engineering, Chung-Ang University,

Seoul, Korea

Corresponding author:

Chan-Gun Lee, School of Computer Science and Engineering, Chung-Ang

University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea.

Email: cglee@cau.ac.kr

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/

openaccess.htm).

shows fairly accurate classification and prediction per-
formance. Thus, when new WSN data arrive, we can
predict what the system will potentially be concerned
with the ICT domain.

However, in an environment where temporal pro-
cessing is important, it may be difficult to stably ana-
lyze the streaming sensor data. For machine learning
analysis, it is necessary to construct several sensor data
as one feature vector. Also, the feature vector should
consist of data of the same time window. In an environ-
ment like WSN, data may not arrive within a definite
time or may be imprecise due to problems such as net-
work delay, hardware limitations of device, and com-
plex natures of the surroundings.3 In this case, if we
wait for the data to use the completed vector, it will not
be able to produce the analysis results within the dead-
line, and we will not get the results available in time-
critical environments. On the other hand, if the analysis
is performed without considering the missing data, the
results can be obtained within a definite time, but the
accuracy of the analysis is low and the monitoring sta-
bility can be deteriorated.

In this article, we propose a query processing system
for analyzing streaming sensor data collected from WSN.
Especially, we design real-time monitor which can per-
form deep learning–based analysis within the deadline
considering time-constrained environment. Simulation
using the published data and the performance of the deep
learning under time constraint are reported and discussed
to assure the effect of the proposed technique.

Query processing framework for analyzing
sensor data

Overview

In WSN system, the base station, a powerful server out-
side of the WSN, collects sensor data and processes the
data to utilize them.4 In addition, it monitors the

overall situation. Our approach is to equip a deep
learning analyzer into the base station so as to provide
useful analysis results. The overall process flow of sen-
sor data collection, deep learning analysis, and results
reporting is shown in Figure 1.

As shown in Figure 1, the distributed WSN nodes
transmit data to the base station server via the main
sink node. The base station server collects data and per-
forms basic processing. The collected data are stored in
a database, the sensor measurement value is checked to
identify whether the measured value satisfies a specific
constraint condition, and the result is informed to the
user. In addition, the proposed method queries the data
to the deep learning analyzer to perform in-depth anal-
ysis of the current situation. For example, even though
the individual sensor values do not exceed the con-
straints and seem to be unproblematic, the deep learn-
ing analyzer can produce a prediction that it is in a
state of danger when comprehensively assessed. The
predicted information is used to trigger the appropriate
actions or be delivered to the user.

Architecture design

The architecture of the base station server is shown in
Figure 2. In the figure, the solid rectangle represents the
module, and the dotted rectangle represents the decom-
position of logical function. The following is a descrip-
tion of the major modules.

Streaming data collector. The Streaming Data Collector
plays a fundamental role in collecting streaming data
from each WSN. The collected data are stored in the
database. It also sends the data to the deep learning
processor or to the monitoring condition checker.

Deep learning model generator. In order to perform deep
learning, a training model must be created in advance.

Figure 1. Overview of WSN data processing framework.

2 International Journal of Distributed Sensor Networks

The Deep Learning Model Generator performs machine
learning using stored sensor data. In fact, deep learning
algorithms are very diverse, such as convolutional neural
network (CNN), recursive neural network (RNN), long
short-term memory (LSTM), and deep belief network
(DBN), and have different advantages depending on
the data characteristics. Therefore, this module applies
a deep learning technique suitable for domain charac-
teristics. The created deep learning model is delivered to
the Deep Learning Predictor. Data training and model
generation are computationally expensive and time-
consuming tasks, so it is desirable to perform them
every few days or every few weeks by a scheduler.

Deep learning query generator. The data acquired from
the sensor needs to be generated as a query for deep
learning analysis. The query is the result of construct-
ing each sensor data into a feature vector. The query
generator holds the recently arrived data in the tempo-
rary memory database and constructs the feature vec-
tor at the point where the deep learning query is to be
executed. In order to construct the values of several
heterogeneous sensors into one feature vector, it needs
to be synchronized with time. Therefore, the value of
each sensor data is extracted based on a time window
of a predetermined size and is generated as a query.
However, since certain feature values may be imprecise
depending on the situation, we perform query refine-
ment to compensate for this. The completed query is

sent to the Query Processor. Note that the Query
Generator, Query Refinement, and Query Processor
components are real-time tasks. These tasks are exe-
cuted with a high priority, unlike other common tasks,
and are not preempted by other low-priority tasks.
This requires a real-time system such as a real-time OS
or Real-Time Specification for Java (RTSJ).

Query processor. The Query Processor is responsible for
requesting the Deep Learning Predictor for query analy-
sis and receiving the results. It communicates with the
Deep Learning Predictor through real-time queues and
operates in soft real time. The time information of the
events together with the query processing result is sent
to the Monitoring Condition Checker to check whether
the result of the response satisfies the time constraint.

Deep learning predictor. TheDeep Learning Predictor uses
the query as input and returns the result. The result is
derived from classification or regression method.
Classification is to predict the input query is classified
to which kind and regression is a technique to deduce
the value of a specific factor from the input query. We
can apply various machine learning models depending
on the situation.

Monitoring condition checker. The basic roles of the base
station server are to check the value of the sensor data,

Figure 2. Architecture of the proposed base station monitor.

Lee et al. 3

to grasp the current situation, to respond appropriately,
and to notify the manager. The Monitoring Condition
Checker performs monitoring function to check pre-set
condition continuously. The Data Checker is a compo-
nent that determines if the measured value of the sensor
meets the valid condition. It is therefore used to trigger
direct actions based on the results of the checkers. In
contrast, the Prediction Result Checker identifies the
results of the deep learning analysis. Because prediction
represents potential situation, unlike direct data, it can
be used as a guide to flexibly coping with situations
rather than responding strongly. Meanwhile, in a time-
constrained environment, it is important to monitor to
ensure whether timing violations occur or not, as they
can cause harm to people, money, or the system.
Therefore, the Timing Correlation Monitor component
plays a role of monitoring whether the deep learning
task satisfies pre-defined time constraints.

Deep learning analysis

In this study, we use deep learning which shows good
performance in recent data processing among machine
learning methods.5 Deep learning was introduced in the
1980s, but it was not well used for problems such as
local optimal convergence problems and excessive com-
putation. As learning algorithms improve and hard-
ware performance improves, they are attracting
attention again. Deep learning is most notable because
it shows higher accuracy than previously known
machine learning algorithms. Currently, our architec-
ture is designed to use deep learning techniques; how-
ever, it can be easily integrated with other machine
learning algorithms requiring less computation power
depending on the situation. The deep learning tech-
nique described in this section is the CNN
(Convolutional Neural Network; UFLDL Tutorial,
http://ufldl.stanford.edu/tutorial/supervised/Convolutional
NeuralNetwork/) model designed for our case study.

Figure 3 shows the architecture of the CNN model
for learning sensor data. The major steps of learning
process in the proposed model are summarized as
follows:

1. In the first convolution layer step, 200 convolu-
tion filters of 3 3 3 size are used. In our experi-
mental environment, there are 72 features. The
convolution filter extracts 3 3 3 convolution
features from 8 3 9 input data and collects
data from 200 filters in different ways. The size
and number of filters can affect the analysis
depending on factors such as the size, type, and
complexity of the data. Therefore, we deter-
mined the values that show good performance
through experiments.

2. In the convolution feature extracted from the
convolution layer, a characteristic value is
selected through a max-pooling process. Max-
pooling is one of the pooling techniques that
selects the largest value in a given feature. Max-
pooling results are merged into one.

3. The proposed model consists of two stages of
convolution and max-pooling. Then, we apply
softmax regression (Softmax Regression;
UFLDL Tutorial, http://ufldl.stanford.edu/
tutorial/supervised/SoftmaxRegression/) to the
pooled features to obtain the probability of
belonging to each class. It is classified as a class
having the highest probability.

4. The values of the convolution layer and the soft-
max regression matrix can be modified by back-
propagation technique when the classification
test is not matched with the ground truth. This
process corrects the classification performance.

5. In CNN, internal values such as convolution
layer can converge abnormally in order to
increase the accuracy in specific input (learning
data) as learning progresses. In this case, the
training data show high accuracy but the test
data can show low accuracy. To solve this prob-
lem, dropout is applied to prevent overfitting in
deep learning.

The prediction process is also very similar to the
learning process described above. The above three steps
(1–3) are the same as the prediction method.

Figure 3. CNN model architecture used in our deep learning engine.

4 International Journal of Distributed Sensor Networks

Deep learning analysis of sensor data in
real-time system

Guaranteeing timing constraints for streaming sensor
data analysis

We focus on real-time processing of deep learning. In
time-critical environment such as cruise control, online
stock trade, and medical device, since violation of time
constraints can cause great disaster, specification for
timing constraints and its monitoring are very impor-
tant. In a real-time system, task processing must be
deterministic, and operating system capable of priority-
based task scheduling is essential. However, it is not a
complete real-time system that only a high-priority task
is not preempted by another task. It is more important
that the task finishes execution within the deadline and
must be guaranteed when the time constraint is hard-
real-time. In this section, we present how our frame-
work guarantees timing constraints in streaming sensor
data analysis. Figure 4(a) shows the process of collect-
ing various sensor data from WSN and analyzing them
in deadline time.

First, the horizontal axis of the figure represents the
time, and three types of sensor values A, B, and C are

being collected by the base station over time. Using these
data, the deep learning task performs analysis periodi-
cally. We assume a real-time system, so deep learning
task has constraint that must be completed between
release time and deadline. This task combines the col-
lected sensor data to generate a query and inputs the
query into a deep learning analyzer for query processing.

However, sensor data may not always be fully col-
lected due to network delays or differences in sampling
period. Figure 4(b) shows a situation where data B
arrives late. Deep learning task tries to perform query
generation after release time but pending due to miss-
ing data. After B arrives, the query is completed and
analysis is performed. However, when the execution is
completed, the deadline is missed and the real-time
constraint is not satisfied. We therefore propose a
query refinement to solve this problem. Figure 5 is an
example of the proposed technique. In this example,
the deep learning task starts without sensor data B like
previous Figure 4(b). If there is missing data, we per-
form the query refinement to derive the expected B#
based on the recent history record and complete the
query. After the normal query processing is performed,
analysis results can be obtained within the deadline.

Figure 4. Example for temporal processing of sensor data: (a) normal processing example and (b) deadline missed example.

Lee et al. 5

A specification using Real-Time Logic (RTL)-like
expressions6 is used to model timing constraints for-
mally and manage this process. Lee and Lee7 have per-
formed real-time event detection using temporal
correlation logic. Using the RTL-like expression, the
following temporal logic can be expressed:

� @(evA, 1) : timestamp of the first evA event
instance;

� @(evA, 1) + 5 � @(evA, 2) : the second evA
should occur within 5 time units since the first
evA occurred (deadline constraint).

We specify RTL-like expressions for release events of
deep learning tasks, query generation start and end
events, and query processing start and end events:

� @(Trelease, n) : time at the nth release of the deep
learning task;

� @(QGstart, n) : start time of the query generation
at the nth period;

� @(QGend, n) : end time of the query generation
at the nth period;

� @(QPstart, n) : start time of the query processing
at the nth period;

� @(QPend, n) : end time of the query processing at
the nth period.

The deadline constraint can be expressed as:

� @(Trelease, n) + Tdeadline � @(Trelease, n + 1)

where Tdeadline is a constant value meaning deadline,
which depends on the system situation. Tdeadline always
satisfies the following:

� @(QPend, n) 2 @(Trelease, n) � Tdeadline � @
(Trelease, n + 1) 2 @(Trelease, n)

On the other hand, the deep learning query processing
is always performed at a deterministic time because the
feature set of the same size is always used, while the
execution time of the query refinement may be variable
depending on the situation of the arrival data. Next
statement shows delay time constraint.

� @(QPstart, n) 2 Tdelay � @(QGstart, n)

The real-time logic checker constantly monitors these
conditions to ensure satisfaction of temporal
constraints.

Query refinement

The streaming sensor data may be missing in some
situations or may not be synchronized in time.
Therefore, we perform refinement of inaccurate sensor
data in order to reliably execute the deep learning
query. Refinement of the query means complementing
some inaccurate sensor data to generate a complete fea-
ture vector. The following is a process for refining a
query:

1. Collect sensor data within the time window to
be analyzed.

2. Identify missing sensor data.
3. Exponential smoothing is performed to estimate

the missing sensor value(s).
4. Complete the query and send it to the deep

learning predictor.

The exponential smoothing used in this article is also
known as an exponentially weighted moving average
(EWMA8)

st =a 3 xt + ð1� aÞ3 st�1 ð1Þ

where 0 \ a \ 1. In the equation, t indicates the
current time, st represents estimation value of what the

Figure 5. Proposed method for temporal processing of streaming sensor data.

6 International Journal of Distributed Sensor Networks

next value of x will be, and a is smoothing factor.
Large value of a gives greater weight to recent data. In
other words, EWMA is a statistical method for estimat-
ing the next data value using the sequence of observa-
tions. While EWMA is simple and easy to understand,
it is argued that accuracy is reduced when the data are
not linear, and the criteria for determining the value of
the target range are ambiguous. Sensor data show that
data changes gradually as the sampling period becomes
shorter, whereas data continuity decreases when the
sampling frequency is lower. Therefore, the query
refinement by the moving average method depends on
the characteristics of the data. In fact, we can consider
other algorithms with high accuracy for refining
queries, but we have chosen a simple algorithm that
does not require heavy computation in consideration of
time constraints. We report through the case study in
the next section how there is a difference in the deep
learning results applying the query refinement com-
pared to when the actual correct values were used.

Case study

Experiment settings

For the case study, we performed deep learning analy-
sis using sensor data sets. The case study is a simple
simulation of the proposed technique exploiting CNN.
The settings for CNN followed the settings described in
the previous Deep learning analysis section. The data
are gas sensor data published by Vergara et al.,9 which
can be retrieved from UCI Machine Learning
Repository (Gas sensor data; UCI Machine Learning
Repository, http://archive.ics.uci.edu/ml/datasets/Gas+
sensor+arrays+in+open+sampling+settings). These
are the data of air pollution degree in a tunnel using 72
metal-oxide gas sensors. In addition, air purifying fan
speed information according to the degree of air pollu-
tion is included. The purpose of the query processing in
the experiment is to determine the optimal fan speed
for air purification in the tunnel by analyzing the
degree of pollution of the air. In fact, gas data analysis
is a simple regression problem, but our purpose is to
demonstrate that our architecture is general enough to
integrate with various machine learning algorithms
including deep learning techniques. CNN is a well-
known deep learning technique with high performance
in various problems such as image classifications and
sentence categorizations. The example can be further

extended to complex sensor data and context-aware
systems such as cruise control system, intelligent traffic
system, and disaster warning system.

Table 1 shows the data set information used in our
experiments. There are 72 gas sensor data, and each
sensor is used as a feature to construct a vector com-
posed of 72 features. The value of the feature is an inte-
ger value representing the air gas value. We used
1,349,470 records using information acquired over time,
and each feature vector has a fan speed as a class. The
fan speed was defined as 30 classes by setting the range.
In the case of deep learning, it is necessary to repeat
training to reach a certain level of prediction accuracy.
The prediction level was stabilized through 50 training
iterations. Based on these models, we measured how
accurately the fan speed was predicted when a new
query was entered. The base station server used in the
experiment was running on INTEL i7 4770 CPU,
16 GB RAM, NVIDIA gtx1080 GPU, and 8 GB
VRAM. The module for CNN processing was imple-
mented with python language and tensorflow library.
The training took about 1.8 h.

Experiments were performed on the query process-
ing every 1 s period and set to 1 s for the deadline as a
time constraint. We set the number of queries to 1000
each time, and the accuracy of prediction was analyzed
by missing one sensor data every cycle. The purpose of
the analysis is to predict the appropriate air cleaning
fan speed according to the degree of air pollution. The
ratio of the correct prediction is expressed as accuracy.

Experiment result

Table 2 and Figure 6 show the prediction accuracy of
the experiment. In the table,Missing data is the number
of sensors missing for the experiment. Refined is the
result of performing the query processing after correct-
ing the missing feature with the EWMA method, and
Enforced is the result of performing the prediction by
setting 0 for the feature that does not have the value.
The range of recent data for EWMA was set to 100.

The prediction accuracy is very high as 0.94 when all
sensor data arrive normally. In the case of Enforced,
accuracy is worsening to 0.3 even in the absence of two
sensor values. However, in Refined case, the accuracy
of prediction is rarely reduced. The prediction accuracy
exceeds 0.9 even when there are eight missing data.
This is because the estimated value compensates for the
missing data and operates similarly to the actual data.

Table 1. Data set and experiment setting.

Records Features Classes Iterations Training time (h)

1,349,470 72 30 50 1.8

Lee et al. 7

Moreover, there is no task pending for waiting for the
missing data. However, since the method of estimating
the missing data is not perfect, significant data loss
may lead to poor prediction accuracy. As shown in
Figure 6, when more than 10 of the 72 features start to
miss, the accuracy drops sharply, and in the case of
missing 20 or more data, the prediction function is lost.
Through the experiment, we observed that the pro-
posed method has some limitation but shows good per-
formance at a reasonable level.

Also, some features may have stronger prediction
power than others. This means that the accuracy can be
significantly reduced if a feature that has a large impact
on predictive performance is missing. In order to con-
firm this, we experimented how the prediction accuracy
changes by missing each feature one by one. Figure 7
shows the prediction result when one feature is missing.
The X-axis is the 72 features aligned in order of the
importance, and the Y-axis is the prediction accuracy
when there is no such feature. Enforced is a naive way
to predict when the feature is missing, and Refined is

the proposed technique using EWMA. As shown in
Enforced, in the case of a feature with a high impor-
tance, it can be seen that the prediction accuracy is
greatly degraded by omission of only one feature. On the
other hand, if the same feature is processed by Refined
method, accuracy is significantly improved. However,
there is no consistent pattern of degree of improvement,
which is likely to vary depending on the data. Our experi-
mental data show that accuracy is improved from about
0.6 to 0.9 for high-importance features.

We also measured the time spent in actual query
processing. Table 3 shows the query processing time
for 10 rounds. Each round is configured to process
1000 queries at once. Time on CPU means the task exe-
cution time using the CPU in the normal situation and
Time on GPU is the result of performing the task using
the GPU which has a superior effect on the improve-
ment of the deep learning performance. The query gen-
eration time is not shown in this table, but it takes less
than 1 ms on average to perform query generation
and refinement. The average processing time for 1000
queries is about 355 ms, which shows similar results
every round. In addition, query processing on the GPU
has been found to be very good. Since we set the dead-
line to 1 s, we did not detect any violation in the
Timing Correlation Monitor module because there was
no deadline miss. As a result, we can confirm that it is
possible to perform the deep learning process of the
streaming data with a definite time.

Related work

WSN moves toward our daily lives such as smart office
and smart home. 10 However, today’s advanced ICT
environment requires intelligent WSN techniques more
and more. In this regard, the convergence of WSN and
machine learning is very active.

Alsheikh et al.2 categorized machine learning as a
way to contribute to WSN’s functional issues and how

Table 2. Prediction accuracy for missing data growth.

of Missing data Refined Enforced

0 0.940 0.940
1 0.930 0.779
2 0.907 0.308
3 0.940 0.272
4 0.937 0.341
5 0.932 0.258
6 0.936 0.263
7 0.941 0.263
8 0.934 0.285
9 0.660 0.257
10 0.621 0.270
..
. ..

. ..
.

71 0.274 0.002
72 0.283 0.299

Figure 6. Prediction accuracy for missing data growth.

Figure 7. Prediction power of features.

8 International Journal of Distributed Sensor Networks

to improve non-functional requirements such as perfor-
mance. Functional issues for machine learning include
network routing, node clustering, data aggregation,
event detection, and query processing. For non-func-
tionality, it can be used for security, anomaly intrusion
detection, quality of service, data integrity, and fault
detection. Among them, our research is related to query
processing and event detection.

Conventional WSN query processing was in directing
tasks by checking that collected sensor data met certain
conditions. However, machine learning–based query pro-
cessing has been emerged to handle the appropriate
action for the situation. In this technique, a supervised
learning is performed in advance using a set of correct
answers and use a new query to predict the current situa-
tion. Yu et al.11 applied the neural network method to
query processing for fire detection. In their study, a large
number of sensors collect the forest data (e.g. tempera-
ture and relative humidity) and construct a neural net-
work. Based on the neural network, when new sensor
data is input, it is classified as a weather index to detect if
there is a high possibility of a fire. Bahrepour et al.12 also
used a decision tree for early detection of the disaster.

By extending these studies further, our research
attempts to converge deep learning and WSN query
processing because deep learning is drawing attention
in many areas of computer engineering concerned with
machine learning. Abdel-Hamid et al. 13 used CNN in
automatic speech recognition. They used audio data
frequency in learning audio data. Ciresan et al.14 used
CNN for image classification, CNN is particularly good
in this area. Deep learning is also used in the field of
natural language processing. Mikolov et al.15 vector-
ized the meaning of words in Word Embedding, and
Kim16 performed text categorization using deep learn-
ing. Deep learning has good performance for classifica-
tion and prediction in case of complex data analysis.
As sensor data become more diverse and complex, our
approach is expected to be a good guide for construct-
ing context-aware WSN system.

Meanwhile, in the case of WSN, real-time processing
tends to be important. For example, in a disaster

detection system, WSN data should be analyzed and
reported to the administrator as quickly as possible.
More precisely, processing should be performed within
a precise time condition rather than as fast as possible.
To do this, we need to set a time constraint (deadline)
and monitor it whether a successful analysis is being
performed in a timely manner. For such monitoring,
the time specification is required, and Jahanian and
Mok6 proposed a method to formalize timing proper-
ties in real-time systems. They defined various timing
constraints in a formal language using the relationship
between event timestamps. Based on various real-time
specifications, Mok et al.17 studied the size of the
bound event history, and Song and Parmer18 con-
ducted monitoring studies to detect timing errors and
deadlocks. Our research also monitors time constraints
for computation-intensive environments like deep
learning. This is because deep learning research is
expected to shift to a domain in which time-critical fac-
tor is important as well as accuracy.

Conclusion

We propose a framework for analyzing and monitoring
WSN data. Our query processing is based on deep
learning, and the system is useful in environment where
sensor data collection can be incomplete. The proposed
method satisfies the temporal constraint because it uses
the correction value through the query refinement pro-
cess even when there is missing sensor data, and at the
same time, the prediction accuracy is not significantly
reduced. Through case studies, we confirmed the accu-
racy of deep learning analysis using real-world sensor
data and the stability of task execution. We plan to pre-
dict and monitor more complex WSN environments
that will further enhance the benefits of deep learning.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIP) (Nos NRF-2014R1A2A2A01005519 and
NRF-2016R1A6A3A11932789).

References

1. Munir A, Gordon-Ross A and Ranka S. Multi-core

embedded wireless sensor networks: architecture and

Table 3. Query processing time.

Round Time on CPU (ms) Time on GPU (ms)

1 353.90 10.11
2 348.17 10.10
3 363.01 11.06
4 356.94 11.10
5 359.00 11.12
6 353.84 11.11
7 352.28 10.17
8 348.95 11.09
9 349.82 10.67
10 367.92 10.61

Lee et al. 9

applications. IEEE T Parall Distr 2014; 25(6):
1553–1562.

2. Alsheikh M, Lin S, Niyato D, et al. Machine learning in
wireless sensor networks: algorithms, strategies, and
applications. IEEE Commun Surv Tut 2015; 16(4):
1996–2018.

3. Xie X, Yiu ML, Cheng R, et al. Scalable evaluation of
trajectory queries over imprecise location data. IEEE T

Knowl Data En 2014; 26(8): 2029–2044.
4. Kazemitabar S, Demiryurek U, Ali M, et al. Geospatial

stream query processing using Microsoft SQL Server Strea-
mInsight. Proc VLDB Endow 2010; 3(1–2): 1537–1540.

5. Schmidhuber J. Deep learning in neural networks: an
overview. Neural Networks 2015; 61: 85–117.

6. Jahanian F and Mok A. Safety analysis of timing proper-
ties in real time systems. IEEE T Software Eng 1986;
12(9): 890–906.

7. Lee KS and Lee CG. A component-based reconfigurable
sensor network monitor for adapting time-critical
requirements. J Internet Technol 2013; 14(3): 443–451.

8. Roberts SW. Control chart tests based on geometric
moving averages. Technometrics 1959; 1(3): 239–250.

9. Vergara A, Fonollosaa J, Mahiques J, et al. On the per-
formance of gas sensor arrays in open sampling systems
using Inhibitory Support Vector Machines. Sensor

Actuat B: Chem 2013; 185: 462–477.
10. Bhutani G. Application of machine-learning based pre-

diction techniques in wireless networks. Int J Commun

Netw Syst Sci 2014; 7(5): 131–140.
11. Yu L, Wang N and Meng X. Real-time forest fire detec-

tion with wireless sensor networks. In: Proceedings of the
2005 international conference on wireless communications,

networking and mobile computing, Wuhan, China, 23–26
September 2005, pp.1214–1217. New York: IEEE.

12. Bahrepour M, Meratnia N, Poel M, et al. Distributed

event detection in wireless sensor networks for disaster

management. In: Proceedings of the 2nd international con-

ference on intelligent networking and collaborative systems

(INCOS), Thessaloniki, 24–26 November 2010, pp.507–

512. New York: IEEE.
13. Abdel-Hamid O, Mohamed AR, Jiang H, et al. Convolu-

tional neural networks for speech recognition. IEEE/

ACM T Audio Speech Lang Process 2014; 22(10):

1533–1545.
14. Ciresan DC, Meier U, Masci J, et al. Flexible, high per-

formance convolutional neural networks for image classi-

fication. In: Proceedings of the twenty-second international

joint conference on artificial intelligence, Barcelona, 16–22

July 2011, pp.1237–1242. Palo Alto, CA: AAAI Press.
15. Mikolov T, Sutskever I, Chen K, et al. Distributed repre-

sentations of words and phrases and their compositional-

ity. In: Proceedings of the 26th international conference on

neural information processing systems, Lake Tahoe, NV,

5–10 December 2013.
16. Kim Y. Convolutional neural networks for sentence clas-

sification. In: Proceedings of the conference on empirical

methods in natural language processing, Doha, Qatar, 25–

29 October 2014, pp.1746–1751. Stroudsburg, PA: ACL.
17. Mok A, Konana P, Liu G, et al. Specifying timing con-

straints and composite events: an application in the

design of electronic brokerages. IEEE T Software Eng

2004; 30(6): 841–858.
18. Song J and Parmer G. C’Mon: a predictable monitoring

infrastructure for system-level latent fault detection and

recovery. Proceedings of the real-time and embedded tech-

nology and applications symposium, Seattle, WA, 13–16

April 2015, pp.1545–3421. New York: IEEE.

10 International Journal of Distributed Sensor Networks

