
Received May 24, 2019, accepted June 6, 2019, date of publication June 14, 2019, date of current version July 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923219

MMNoC: Embedding Memory Management Units
into Network-on-Chip for Lightweight
Embedded Systems
HYEONGUK JANG 1,2, KYUSEUNG HAN 1, (Member, IEEE), SUKHO LEE1,
JAE-JIN LEE 1,2, AND WOOJOO LEE 3, (Member, IEEE)
1Electronics and Telecommunications Research Institute, Daejeon, South Korea
2Department of ICT, University of Science and Technology, Daejeon, South Korea
3School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, South Korea

Corresponding author: Woojoo Lee (space@cau.ac.kr)

This work was supported in part by the ICT R&D program of MSIT/IITP under Grant 2018-0-00197, development of ultra-low power
intelligent edge SoC technology based on lightweight RISC-V processor, and in part by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2017R1D1A1B03027911.

ABSTRACT With the advent of the Internet-of-Things (IoT) era, the demand for lightweight embedded
systems is rapidly increasing. So far, ultra-low power (ULP) processors have been leading the development
of lightweight embedded systems. However, as the IoT era gets more sophisticated, existing ULP processors
are expected to reach a critical limit in the absence of a memory management unit (MMU) in that multiple
programs cannot be run in theMMU-less embedded systems. To tackle this issue, we propose an architecture
in which the MMU is embedded in a network-on-chip (NoC). Through the proposed approach, NoC offers
MMU functionality without modifying the processor design, allowing developers to easily leverage the
existing ULP lightweight processors and build embedded systems that support multiprocessing. In this
paper, along with the details of the proposed MMU-embedded NoC (MMNoC) design, a prototype platform
including the MMNoC and dual RISC-V processors is provided. The prototype platform is synthesized with
FPGA and Samsung 28 nm FD-SOI technology to verify the functional accuracy and small performance,
area, and power overhead of the MMNoC.

INDEX TERMS Network-on-chip, NoC, memory management unit, MMU, embedded system.

I. INTRODUCTION
As the age of Internet-of-Things (IoT) begun, many changes
are taking place in the world of embedded systems. One of the
major shifts is the explosion in demand for small embedded
systems with an emphasis on energy efficiency, easy develop-
ment and affordability of the systems [1]–[3]. In these small
embedded systems, simple, narrow-issue and low-power pro-
cessors, referred to as lightweight processors, are desirable
in that system developers can dynamically integrate multiple
lightweight processors to achieve greater energy efficiency
with less costly design efforts. And even if performance
degradation is severe, an ultra-low-power (ULP) processor
that consumes significantly less power than traditional low-
power processors is more desirable. In line with this trend,
the ULP and lightweight processors have been intensively

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan M. Abu-Mahfouz.

researched and developed from both academia [4]–[8] and
industry [9]–[12]. In this paper, we call such small embed-
ded systems using the ULP lightweight processors the
lightweight embedded systems, and research on their design
methodologies.

Meanwhile, another big change in the embedded systems
is that the required functionality of the embedded system
are being expanded. Apart from the migration of existing
large embedded systems to smaller ones, the recent embedded
systems are desired to be able to run multiple programs
alternately or concurrently. In other words, as the embedded
systems are used to collect and analyze various types of data
in the IoT era, the multiprocessing capabilities of embed-
ded systems are becoming more important. For example,
embedded systems for IoT end nodes with various sensors
tend to perform varied types of lightweight data processing
[13]–[15], and therefore multiprocessing is necessary to these
types of embedded systems. Especially for the embedded

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 80011

https://orcid.org/0000-0001-7539-0734
https://orcid.org/0000-0002-9151-3447
https://orcid.org/0000-0003-3260-1620
https://orcid.org/0000-0001-8847-5657


H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

systems targeting biomedical applications whereby multi-
lead biological signals requires to be be processed in parallel
and energy efficiently, multiple ULP processors are used in
such systems to support multiprocessing [16], [17]. In this
regard, it is not surprising that the well-known IoT platform,
PULP (parallel and ultra low power platform) [7], [18], [19],
supports multiprocessing.

Between the two trends we have discussed above, we can
find a clear niche in what to do if we develop the lightweight
embedded system that support multiprocessing. To support
the multiprocessing, memory management unit (MMU) is
essential [3], [20], and must be implemented in the embedded
system. But unfortunately, due to the area, power, and cost
overhead of integrating the MMU into the processor [21],
most commercial ULP lightweight processors are MMU-less
(i.e., there are few ULP processors with own MMUs in
academia [17], [18]). Consequently, embedded systems using
such ULP lightweight processors cannot support multipro-
cessing by default.

To solve this problem, we explored an idea of detaching
MMUs from processors and placing them in the other hard-
ware intellectual properties (IPs), which has been researched
in the multiprocessor system-on-chip (MPSoC) field
[22]–[26]. While most of the previous research based on
the MMU isolation idea focused primarily on improving
the performance of MPSoC for high-performance platforms,
we found this idea to be a solution to our attention. In
other words, embedding MMU to another IP in a platform
may allow the embedded system developers to build the
MMU-integrated platform by using existing ULP lightweight
processors.

Especially, we paid attention to the network-on-chip (NoC)
that is a common IP for system interconnect in modern
embedded system platforms [8], [27], [28]. Then, atten-
tion has been paid to previous researches on the placement
of MMUs in network-on-chip (NoC) [23]–[25]. Starting
with a distributed MMU that uses multiple MMUs as the
resources of NoC to perform operations to handle memory
access requests, we propose a new NoC design that includes
a lightweight MMU architecture suitable for lightweight
embedded systems. This approach eliminates the need to
modify the processor design, therefore any existing ULP
lightweight processors can be used in the lightweight embed-
ded systems that support multiprocessing. In addition, the use
of the same MMU design in the proposed NoC simplifies
the development of embedded system software, otherwise
different types of MMUs should be taken carefully into the
consideration in the software development. In this paper,
the details of the proposed MMU design are presented, and
application-specific NoC is introduced along with the pro-
posed MMU (i.e., we call it MMNoC). Finally, an entire
system prototype, including MMNoC and RISC-V proces-
sors, is implemented in register transfer level (RTL) Verilog
HDL. For the verification and evaluation of the MMNoC,
the prototype is synthesized in both Xilinx FPGA and
Samsung 28nm FD-SOI technology. The simulation results

with the synthesized prototype show the functional accu-
racy of the proposed MMNoC and lightness suitable for
lightweight embedded system.

The remainder of this paper is organized as follows.
Section II is dedicated to a preliminary of the memory man-
agement systems for multiprocessing in embedded systems.
Section III elucidates the details of the proposed architecture,
including an embedded MMU design, a network interface,
and MMNoC architecture. Related work is also provided in
Section III. Section IV is to present the experimental setups,
executions and simulation results, while Section V concludes
the paper.

II. MEMORY MANAGEMENT SYSTEM: A PRELIMINARY
Memory management system (MMS) plays a pivotal role
to manage the primary memory (e.g., SRAM, DRAM) by
controlling and tracking the status of each memory allo-
cation. Traditionally, system softwares such as operating
systems (OS’s) have MMS and take a responsibility of the
memory management [3], [20]. However, the lightweight
embedded systems that generally do not have an OS,
the embedded system software developers (i.e., hardware
users) should take care of the memory management by
themselves.

Meanwhile, physical (memory) address space for a
program (or process) depends on the embedded hardware
platforms. Moreover, even on the same hardware platform,
physical address spaces change on the fly, so they change
over time. For example, various embedded hardware plat-
forms can have different sizes, types, and numbers of RAM
(random access memory). And, if a hardware module inside
the platform uses memory-mapped IO, the address space
assigned to the hardware module must not be assigned to
the other modules or programs. In addition, if some range
of address space is already assigned to a running program,
a newly running program only can access the remaining
parts of the address space, therefore the physical addresses
assigned for the new program running on the same type of the
hardware platforms may be different at time. For the reasons
stated above, a compiler assumes that the address space is
ideal when compiling the code. This means that the address
space is supposed to be large enough, and the addresses are
assumed to be consecutive and start at address 0. Compared
to the physical address space, this ideal space is called virtual
address space.

To run a program (process), it is necessary to map the
virtual address to a physical address at runtime. One of the
best known technique to manage the mapping is demand
paging. Managing the arbitrary size of data can induce signif-
icant increase of system complexity. Therefore, it is preferred
to use a fixed size of data, which is called page. And the
memorymanagement system based on pages is called paging.
FIGURE 1 shows the paging based memory management.
Since paging is a kind of caching techniques between main
memory and storage, the paging has similar behaviors with
the cache allocation. When a process references an address,

80012 VOLUME 7, 2019



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

FIGURE 1. A structure of the paged memory management.

FIGURE 2. Conversion of virtual address into physical address in a
hardware perspective.

the MMS checks whether the page has already been allocated
to physical memory, by referring to the page table where the
page table contains all the information of the mapping. If it
exists, the MMS will service the request. Otherwise, which is
called page fault, the MMS finds an empty frame, which is a
segment of physical memory, in order to store a new page
reading from the storage. If there is no room, some pages
should be swapped out to the storage, similar to the cache
eviction. After securing a frame, the mapping between the
page and the frame is updated to the page table and then the
requested reference is serviced.

MMU is a hardware for MMS that converts a virtual
address to a physical address using a page table as shown in
FIGURE 2. MMUs are usually integrated within the middle
and high end processors, namely each processor has its own
MMU. Typically, the entire page table is always in RAM, and
the MMU caches the most recently used entries in the page
table.

III. MMU EMBEDDED NoC
A. PROPOSED APPROACH
Modern embedded systems are required to perform a variety
of functions that multiprocessingmust support. The emerging
lightweight embedded systems are no exception to this trend.
In other words, these lightweight embedded systems require
multiprocessing capabilities, making MMUs indispensable
for such systems. The direct way to do this is to develop a
new ULP lightweight processor with an MMU, because there
is no MMU in the existing ULP lightweight processors. But
from the embedded system platform engineers’ point of view,
developing a new processor is not practical because it requires
a lot of design effort and development cost. Instead, if there

FIGURE 3. Implementing an MMU on an NI that is dedicated to a
processor.

FIGURE 4. The proposed MMU architecture.

is a way to integrate MMU functionality into an embedded
system without modifying the existing processor design (and
thus the platform engineer can choose any existing processor
based on the design specification), that would be the most
practical approach.

To realize this approach, we focused on NoC, an IP
commonly found in embedded system platforms, and pro-
pose to embed an MMU into NoC. NoC plays an important
role in supporting concurrent communication on embedded
system platforms [8], [27], [28]. In state-of-the-art embedded
systems, NoC has become one of the most popular system
interconnect IPs owing to its ability to overcome the limi-
tations of the conventional bus-based system interconnects
(e.g., unbearable increasing density and complexity induced
by the system interconnect) [29]–[31]. Motivated by the fact
that a processor in the platform with NoC communicates with
other IPs only through the dedicated network interface (NI)
in the NoC, we come up with an idea that we implement an
MMU in an NI, as shown in FIGURE 3, so that we can easily
provide the MMU functionality to the platform regardless of
the processor types in the platform.

B. RELATED WORK
Compared to the common processor-individual MMU,
some previous research have tried to place the MMU

VOLUME 7, 2019 80013



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

FIGURE 5. Examples of the PTE operation, when the page size is (a) 256kB and (b)16kB.

outside the processors [22]–[26]. For example, an on-chip
centralized hardware MMU module was presented for data
allocation on the distributed shared memory space in the
NoC-based MPSoC [22]. And, a distributed MMU archi-
tecture exploiting the NoC architecture was introduced to
reduce the memory access bottleneck in contrast of tradi-
tional MMU [23]. This work targets the mesh-based NoC and
provides detailed memory access mechanism that effectively
improves network throughput. Meanwhile, in order to reduce
the design complexity and increase the flexibility of memory
management in MPSoC, a programmable microcoded con-
trollers including mini-processors was proposed [24]. The
microcoded controllers are processor-independent, each of
which locates in the node of the NoC. In [25], a concept
of memory protection unit (MPU) based on NoC was intro-
duced. The proposed concept of the MPU covers most of the
complex functions of the MMU in the high-end processors,
in that it provides data protection in the shared memory as
well as the address translation. More recently, a lightweight
MMU for many-core accelerators was proposed [26]. The
proposed lightweightMMUprovides virtual memory support
for the cluster-based many cores, and there is a host processor
that manages the lightweight MMU.

Our approach in this paper is similar to the previous works
that separate MMUs from the processors and deploy them in
NoC [23]–[25]. However, compared to the previous works
aimed at MPSoC for high-performance platforms and to
improve the performance of MPSoC, this approach aims at
a lightweight platform in which the MMUs embedded in
the NoC should be light and to simply support the address
translation. In this regard, the previous studies except [24]
that only perform simulations based on conceptual MMU
design methods without implementing real MMUs in NoC
may not be practical for the lightweight embedded systems.

In this paper, we devise a lightweight MMU on NoC
(MMNoC) and implement the lightweight embedded system
prototype equipped with the MMNoC. Based on the proto-
type, we provide detailed experimental results in Section IV.
Note that the MMNoC prototype demonstrates the much
smaller number of gates are required for the MMNoC than
the microcoded controller presented in [24].

C. MMNoC ARCHITECTURE
On the basis that the MMNoC targets lightweight embedded
system platforms whereby the low power and small area
are desirable, the MMU is designed to have small footprint,
and therefore supports the minimal functionality of common
MMU and NoC. The details of the proposed MMU architec-
ture in the MMNoC is described in FIGURE 4. As seen in
the figure, the MMU has several page table entries (PTEs),
each of which contains conversion information of a single
page. Each PTE generates intermediate results, matched and
target address. The combination of the intermediate results
produces the final results, page fault and converted physical
address.

FIGURE 5 shows the examples of how the PTEs operate
in the MMU. We divide an address into several parts and
configure the number of parts as four in these examples.
A base address and valid parts represent a virtual address
page to be converted by one PTE. The valid parts determine
the size of the page by indicating the parts to be compared
between a virtual address and a base address. For example,
the valid parts ‘‘1100’’ in FIGURE 5 (a) and ‘‘1110’’ and
FIGURE 5 (b) mean that each page size is 256kB and 16kB,
respectively. The comparison result of the virtual address and
the base address is processed to the matched parts as seen in
the figure.

80014 VOLUME 7, 2019



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

Algorithm 1 PTE Operations
1: function CALCULATE_A_MATCH(va,ba,vp)
2: np : the number of parts
3: pav : an array of parted virtual addresses
4: pab : an array of parted base addresses
5: vp : an array of validity of parts
6:

7: if all vp = 0 then
8: matched ← 0
9: else

10: for i = 0 to np − 1 do
11: if vp[i] = 1 then
12: if pav[i] = pab[i] then
13: matched_parts[i]← 1
14: else
15: matched_parts[i]← 0
16: end if
17: else
18: matched_parts[i]← 0
19: end if
20: end for
21: if all matched_parts = 1 then
22: matched ← 1
23: else
24: matched ← 0
25: end if
26: end if
27: end function

The comparison procedure is designed to be performed
only when the corresponding valid parts is 1. For instance
in FIGURE 5 (a), since only the first and second valid parts
are 1, no comparison is performed for the remaining parts,
while a comparison between the base address and the virtual
address is performed for the first and second parts. As the
comparison results, both first and second parts report 1 to the
matched parts, because the virtual and base addresses in each
part fall into line. Without comparison, the third and fourth
parts just write 1 to the corresponding matched part. Mean-
while, as seen in FIGURE 5 (b), because the first, second and
third valid parts are 1, the comparisons are performed to these
parts. The base and virtual addresses in the first part are same,
which writes 1 to the matched part, while the second and third
pare not, thereby writing 0 to the matched parts.

Finally, we conduct an ‘AND’ operation on the matched
part to confirm if the virtual address matches the target range
of the PTE. From the matched bit in FIGURE 5 (a) and (b),
each of which is 1 and 0, we conclude that it is matched and
mismatched, respectively.

The detailed procedure of the PTE operation is introduced
in Algorithm 1. Compared to the description of the above
example, we add a new process to cover the invalid PTE in the
algorithm, which is described in the line 7∼8. In a case when
all valid parts are 0, it semantically means that the PTE is not

FIGURE 6. An example of the address translation.

configured. In this case, however, the match bit can be set
to 1, which is undesirable. Therefore, we add the process that
forces to set thematched bit to 0, when all the valid parts are 0.

By collecting the matched bits of all PTEs, the page fault
can be determined. In other words, if there is no matched
bit that holds 1 (i.e., all the matched bits are 0), a page
fault will be generated. Otherwise, the address translation
should be performed for each case where the matched bit is 1.
On the hardware side, there may be many cases where the
match bit is 1, so the system software must manage that the
addresses should not be overlapped. Meanwhile, as described
in FIGURE 4, we use a multiplexer to select a target address
that will be converted to a physical address. The target address
is generated by concatenating the valid parts of the target
base address and the invalid parts of the virtual address.
An example of generating a target address is provided in
FIGURE 6.

The proposed MMU has an interface for configuring three
kinds of registers for the base address, the valid part and
the target base address. We design the interface to have
memory-mapped I/O implemented as an advanced peripheral
bus (APB) protocol for configuration. However, this
implementation may cause a critical problem, which must
be handled and addressed carefully. Since the addresses
for the configuration also pass the MMU, they can cause
infinite page faults. This means that if a processor tries to
write to the MMU for the first time when the PTE is not
configured, a page fault will occur. Because of the page fault,
the processor repeatedly attempts to access the MMU via
memory-mapped I/O, resulting in the infinite loop. In order
to prevent this problem, Therefore, to prevent this problem,
we add a special PTE that is responsible for the configuration
address. When the MMU receives a configuration address,
then this special PTE always set the matched bit to be 1,
so that the address passes the MMUwithout a page fault. The
special PTE is fixed at the design time and not changeable
during the execution time.

The entire architecture of the proposed MMU is designed
to be configurable and customizable for different platforms.
Depending on how platform developers/designers set differ-
ent values for the valid parts, the MMU can have multiple
page sizes. This allows the developer to maximize memory
usage. Especially, the developers can choose the page sizes

VOLUME 7, 2019 80015



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

FIGURE 7. Application specific NoC architecture.

FIGURE 8. Comparison of three AMBA protocols.

by adjusting the number of address parts in the design time,
and the selected page sizes can be used during the run time.
In addition, developers can minimize the occupying area of
the MMU, by inserting the minimum numbers of PTEs based
on the expecting system requirement.

D. MMNoC DESIGN
The proposedMMNoC exploits the application-specific NoC
(ASNoC). AsNoC [32] is the most practical and widely used
NoC type in modern embedded system platforms. ASNoC
tools such as FlexNoC [33], NIC-301 [34], and SonicsGN
provide development environments for customizing NoC
depending on a target system. FIGURE 7 shows a repre-
sentative architecture of the ASNoC, which consists of NIs
and switches (SWs). AsNoC is designed by arranging NI to
connect with IP and then configuring the SW according to
the target platform. Converting IP interfaces is one of the key
issues in ASNoC design, unlike regular structuredNoCs. This
is because the interfaces vary in protocol and data width [31].
For example, the three AMBA protocols [35], advanced
extensible interface (AXI), advanced high-performance
bus (AHB), and APB, have similar but different character-
istics to each other, which can be depicted as Venn diagram
in FIGURE 8. In the figure, the relative complement sets
should be managed by the ASNoC. We developed our own
ASNoC based on the presented architecture in [31], that sup-
ports various types of IP interface conversions and designed
very compact for low power and low cost embedded systems.
The proposed MMU is then implemented in this ASNoC.

To design the MMNoC, the NI for the AXI master is first
designed, which is shown in FIGURE 9. The AXI protocol
has five channels including two address channels. Because

FIGURE 9. The proposed NI architecture that extends beyond the
traditional NI designs.

FIGURE 10. Hardware platform for verification. The proposed MMU is
integrated into two black colored NI in the figure.

duplicating an MMU for each address channel causes large
overhead, the NI is design to support the two channel arbitra-
tion so as to share a single MMU. For this purpose, we imple-
ment a logic with an arbiter, a mux, and a demux as described
in the figure. The virtual address is translated to the physical
address in the two channels through the MMU, and then the
channels enters to the AXI inputted NI. Then the NIs for the
other protocols (e.g., APB, AHP) are easily designed based
on the presented AXI NI, because they may be implemented
with only on channel. In addition, the proposed MMNoC
design is a general solution for embedding MMU into NoC
that is not limited to the presented ASNoC, in that the new NI
design does not need to modify the original internal structure
of NI.

The proposed MMU has the APB interface described
in Section III-C, and it is connected to NoC as shown in
FIGURE 3. Consequently, the processor can control the
MMU using simple read/write memory operations that can
be written in a high-level language instead of an assembly
language. Namely, the simple read/write operations to the
MMU control are independent of the processor architecture
and can be made into application program interfaces (APIs)
written in a high-level language. For this reason, software
engineers can easily develop the system softwares.

IV. EXPERIMENTAL WORK
In order to verify the proposed MMNoC, we implemented
a full system including a verification hardware platform as
described in FIGURE 10, where the two black colored NI

80016 VOLUME 7, 2019



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

TABLE 1. Resource consumption on Xilinx Artix-7 FPGA.

includes the proposed MMU. Two ORCA processors [36]
based on RISC-V instruction set architecture were imple-
mented for the dual processors in the platform. Note that the
ORCA processor has noMMU. The platformwas designed to
have a boot ROM and 64kB SRAM. The Ctrl In FIGURE 10
has a responsibility to control the platform based on external
JTAG signals, and the UART is one of the standard I/Os
for the external interface. Since only the processors utilize
the MMU, we setup the processor dedicated NIs to have the
MMU. Each MMU has four PTEs, and the number of the
address parts is set to eight.

To test the functional accuracy of the proposed MMNoC,
we first synthesized the platform by using Xilinx Vivado [37]
targeting Artix-7 FPGA, and the target operating frequency
is 50Mhz. Note that conventional ULP processors have clock
frequency ranges from tens of kHz to tens of MHz [4-12],
so 50 MHz clock frequency is one of the fastest clock fre-
quencies in the ULP processor. The resource consumption of
the MMU and NI are reported in TABLE 1. The designed
MMU consumes only 85 loop-up tables (LUTs) and 105
flip-flops (FFs), which cause 23% and 16%overhead in LUTs
and FFs compared to the conventional NI (i.e., the conven-
tional NI is the NI in the NoC presented in [31]). As a result,
the resource consumption of the proposedMMNoC including
two MMUs is increased by 4% in both LUTs and FFs.

The synthesized FPGA prototyping platform is shown in
FIGURE 11. The USB connection in the left side is in charge
of configuring Xilinx FPGA chip and linking the UART to
the screen of a host machine. When the textitprintf function
used in the C library send characters to the UART, the output
from the FPGA is printed in the screen. The wires in the top-
right corner is for the JTAG signals, which is connected to
Ctrl in the platform. An OpenOCD program [38] running on
the host controls the platform through the JTAG and sets up
the multiprocessing.

At the same time, we programmed two testbenches to
test multiprocessing capability of the platform. The two
testbenches perform sorting 16 numbers (sort) and generating
96 prime numbers (prime). Binary codes for the two test-
benches were loaded into 0x10000000 and 0x10004000 in
SRAM. Then the first processor is set to execute the sort,
while its MMU converts the 1kB address starting with
0x0 into 0x10000000. The second processor runs the prime,
while its MMU converts the 1kB address from 0x0 into
0x10004000. FIGURE 12 shows the execution results of the
two testbenches. For better readability, we use a lock so that

FIGURE 11. The prototyping platform on Xilinx Artix-7 FPGA.

FIGURE 12. Multiprocessing screen output with two running testbenches.

the testbenches are executed sequentially. The results demon-
strate the functional accuracy of the proposed MMNoC by
confirming that the two programs are running correctly.

After verifying the functional correctness of the MMNoC,
we performed evaluations of the MMNoC in terms of perfor-
mance, area and power overheads induced by the MMNoC.
Regarding the performance overhead of MMNoC, we inves-
tigated how long it would take to run a single non-multi-
program on a platform with MMNoC compared to when
running on a platformwithoutMMNoC. To do that, we imple-
mented two prototype platforms in the Artix-7 FPGAs. Both
platforms have one RISC-V core, but one has MMNoC and
the other has no MMU. Then, selected five benchmark pro-
grams, Coremark, Sieve, Bubble sort, Fibonacci, and Sobel
filter were run in the two platforms. TABLE 2 reports the
resulting execution times of the benchmarks. The execution
time is increased by only about 7.5% on all benchmarks, lead-
ing to the conclusion that the multiprocessing capability of
MMNoC can outweigh the small performance degradation.

In order to investigate the area and power overheads,
we synthesized the prototyping platform in FIGURE 10
by using a state-of-the-art commercial CMOS technology,
Samsung 28nm FD-SOI technology. TABLE 3 provides the
resulting area and power overhead of the MMNoC, that are
calculated based on the comparison between the two MMUs
equipped MMNoC and the MMU-less NoC. The proposed
MMNoC increases gate count only by 5% and power 3.5%

VOLUME 7, 2019 80017



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

TABLE 2. Investigation results of the performance overhead of the
MMNoC. Execno_MMU, ExecMMNoC, and Overheadperf. imply the
benchmark execution time (µs) of the platform without MMU, with
MMNoC, and the performance overhead of the MMNoC (%), respectively.

TABLE 3. Area and power overhead of the MMNoC. The gate count (gate
equivalent, GE) and power (mW) values are extracted from the
synthesized platform in FIGURE 10. The overheads are calculated based
on the platform with the two MMU equipped MMNoC.

compared to the MMU-less NoC. In other words, for the case
of the target platform that has dual cores, the resulting area
and power overheads of the MMNoC are about 10% and 7%.
Compared to the synthesizedmicrocoded controller proposed
in [24] whereby twomini processors, a NI and a core interface
are required and take 44k GE, the lightweight MMU in this
paper only requires 1K (i.e., the whole NoC with six NIs and
two MMUs even takes only 25k GE, still almost half of the
microcoded controller in [24]).

V. CONCLUSION
This paper have introduced a new approach to MMU func-
tionality in the lightweight embedded systems targeting low
power and low cost. A novel architecture to embed MMU
into NoC has been proposed, enabling multiprocessing in
the lightweight embedded system platforms. The details of
the MMU design and how it is integrated into NoC have
been presented with specific AsNoC designs. We called the
proposed MMU embedded NoC, MMNoC.

Since the MMNoC does not need to modify the original
architecture of the NoC, the proposed method is easily
applied to the various types of NoC. The MMNoC allows
embedded system hardware engineers to leverage the existing
lightweight processors (that normally do not have MMU) to
build a target platform that supports multiprocessing. Further-
more, owing to the simple way to program a code for the
MMU control in the MMNoC, embedded system software
engineers can easily develop the system software.

A entire prototype platform with MMNoC has been imple-
mented in synthesizable verilog RTL codes and synthesized
with FPGA and Samsung 28nm FD-SOI technology. The
FPGA synthesized results have verified the functional accu-
racy of the MMNoC and 16∼23% more resources require-
ments than a NI, which is only 4% of the entire NoC. The
28nm FD-SOI synthesized results have demonstrated that a
MMU in the MMNoC takes only 1.1K GE and consumes

79µW, which leads us to conclude that the multiprocessing
capability can outweigh the associated overhead.

REFERENCES
[1] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, ‘‘A review of

low-end, middle-end, and high-end IoT devices,’’ IEEE Access, vol. 6,
pp. 70528–70554, 2018.

[2] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
‘‘A survey on 5G networks for the Internet of Things: Communication
technologies and challenges,’’ IEEE Access, vol. 6, pp. 3619–3647, 2018.

[3] A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir, and S. W. Kim,
‘‘A survey on resource management in IoT operating systems,’’ IEEE
Access, vol. 6, pp. 8459–8482, 2018.

[4] K. Craig, Y. Shakhsheer, S. Arrabi, S. Khanna, J. Lach, and B. H. Calhoun,
‘‘A 32 b 90 nm processor implementing panoptic DVS achieving energy
efficient operation from sub-threshold to high performance,’’ IEEE
J. Solid-State Circuits, vol. 49, no. 2, pp. 545–552, Feb. 2014.

[5] C. Wang, J. Zhou, L. Liao, J. Lan, J. Luo, X. Liu, and M. Je, ‘‘Near-
threshold energy- and area-efficient reconfigurable DWPT/DWT proces-
sor for healthcare-monitoring applications,’’ IEEE Trans. Circuits Syst. II,
Express Briefs, vol. 62, no. 1, pp. 70–74, Jan. 2015.

[6] A. Roy, P. J. Grossmann, S. A. Vitale, and B. H. Calhoun,
‘‘A 1.3 µW, 5pJ/cycle sub-threshold MSP430 processor in 90nm
xLP FDSOI for energy-efficient IoT applications,’’ in Proc. 17th Int.
Symp. Qual. Electron. Design (ISQED), pp. 158–162, Mar. 2016.

[7] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, ‘‘Near-threshold RISC-V core
with DSP extensions for scalable IoT endpoint devices,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2700–2713, Oct. 2017.

[8] Y. Pu, C. Shi, G. Samson, D. Park, K. Easton, R. Beraha, A. Newham,
M. Lin, V. Rangan, K. Chatha, D. Butterfield, and R. Attar, ‘‘A 9-mm2

ultra-low-power highly integrated 28-nm CMOS SoC for Internet of
things,’’ IEEE J. Solid-State Circuits, vol. 53, no. 3, pp. 936–948,
Mar. 2018.

[9] STMicroelectronics. STM32L151C6: Ultra-Low-Power ARM
Cortex-M3 MCU With 32 Kbytes Flash, 32 MHz CPU, USB.
Accessed: Jun. 17, 2019. [Online]. Available: https://www.st.com/en/
microcontrollers/stm32l151c6.html

[10] M. Integrated. MAX32626: Ultra-Low Power, High-Performance ARM
Cortex-M4 with FPU-Based Microcontroller for Wearables. Accessed:
Jun. 17, 2019. [Online]. Available: https://www.maximintegrated.com/en/
products/microcontrollers/MAX32626.html

[11] NXP. K32W0x MCUs for Wireless IoT Applications. Accessed:
Jun. 17, 2019. [Online]. Available: https://www.nxp.com/docs/en/fact-
sheet/K32W0XFS.pdf

[12] Samsung. Bio-Processor. Accessed: Jun. 17, 2019. [Online]. Available:
https://www.samsung.com/semiconductor/products/bio-processor

[13] R. Kumar, E. Kohler, andM. Srivastava, ‘‘Harbor: Software-basedmemory
protection for sensor nodes,’’ in Proc. 6th Int. Conf. Inf. Process. Sensor
Netw., Apr. 2007, pp. 340–349.

[14] L. S. Bai, L. Yang, and R. P. Dick, ‘‘MEMMU: Memory expansion for
MMU-less embedded systems,’’ ACM Trans. Embedded Comput. Syst.,
vol. 8, no. 3, p. 23, Apr. 2009.

[15] H.-P. Chang, Y.-T. Liu, and S.-S. Yang, ‘‘Surviving sensor node failures by
MMU-less incremental checkpointing,’’ J. Syst. Softw., vol. 87, pp. 74–86,
Jan. 2014.

[16] A. Y. Dogan, D. Atienza, A. Burg, I. Loi, and L. Benini,
‘‘Power/performance exploration of single-core and multi-core processor
approaches for biomedical signal processing,’’ in Integrated Circuit
and System Design. Power and Timing Modeling, Optimization, and
Simulation. Berlin, Germany: Springer, 2011, pp. 102–111.

[17] A. Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, and D. Atienza, ‘‘Multi-
core architecture design for ultra-low-power wearable health monitor-
ing systems,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2012, pp. 988–993.

[18] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, ‘‘PULP: A parallel
ultra low power platform for next generation IoT applications,’’ in Proc.
IEEE Hot Chips 27 Symp. (HCS), Aug. 2015, pp. 1–39.

[19] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and L. Benini, ‘‘PULP-HD:
Accelerating brain-inspired high-dimensional computing on a parallel
ultra-low power platform,’’ in Proc. 55th Annu. Design Automat. Conf.,
Jun. 2018, p. 111.

80018 VOLUME 7, 2019



H. Jang et al.: MMNoC: Embedding Memory Management Units into Network-on-Chip for Lightweight Embedded Systems

[20] B. Shi, B. Li, L. Cui, and L. Ouyang, ‘‘Vanguard: A cache-level sensitive
file integrity monitoring system in virtual machine environment,’’ IEEE
Access, vol. 6, pp. 38567–38577, 2018.

[21] L. Zuolo, G. Miorandi, C. Zambelli, P. Olivo, and D. Bertozzi, ‘‘System
interconnect extensions for fully transparent demand paging in low-cost
MMU-less embedded systems,’’ in Proc. Int. Symp. Syst. Chip (SoC),
Oct. 2013, pp. 1–6.

[22] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, ‘‘Exploration of
distributed shared memory architectures for NoC-based multiprocessors,’’
in Proc. Int. Conf. Embedded Comput. Syst., Archit., Modeling Simulation,
Jul. 2006, pp. 144–151.

[23] C. Man, X. Bin, Q. Fuming, S. Qingsong, C. Tianzhou, and Y. Like, ‘‘Dis-
tributed memory management units architecture for NoC-based CMPs,’’
in Proc. 10th IEEE Int. Conf. Comput. Inf. Technol., Jun./Jul. 2010,
pp. 54–61.

[24] X. Chen, Z. Lu, A. Jantsch, and S. Chen, ‘‘Supporting distributed
shared memory on multi-core Network-on-Chips using a dual microcoded
controller,’’ in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
Mar. 2010, pp. 39–44.

[25] J. Porquet, A. Greiner, and C. Schwarz, ‘‘NoC-MPU: A secure architecture
for flexible co-hosting on shared memory MPSoCs,’’ in Proc. Design,
Autom. Test Eur., Mar. 2011, pp. 1–4.

[26] P. Vogel, A. Marongiu, and L. Benini, ‘‘Lightweight virtual memory
support for many-core accelerators in heterogeneous embedded SoCs,’’
in Proc. Int. Conf. Hardw. Softw. Codesign Syst. Synth. (CODES+ISSS),
Oct. 2015, pp. 45–54.

[27] S. Khan, S. Anjum, U. A. Gulzari, T. Umer, and B.-S. Kim, ‘‘Bandwidth-
constrained multi-objective segmented brute-force algorithm for efficient
mapping of embedded applications on NoC architecture,’’ IEEE Access,
vol. 6, pp. 11242–11254, 2018.

[28] H. Ali, U. U. Tariq, Y. Zheng, X. Zhai, and L. Liu, ‘‘Contention & energy-
aware real-time task mapping on NoC based heterogeneous MPSoCs,’’
IEEE Access, vol. 6, pp. 75110–75123, 2018.

[29] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, ‘‘Power punch: Towards
non-blocking power-gating of NoC routers,’’ in Proc. HPCA, Feb. 2015,
pp. 378–389.

[30] K. Han, J.-J. Lee, J. Lee, W. Lee, and M. Pedram, ‘‘TEI-NoC: Opti-
mizing ultralow power NoCs exploiting the temperature effect inver-
sion,’’ IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 37,
no. 2, pp. 458–471, Feb. 2018.

[31] K. Han, J.-J. Lee, and W. Lee, ‘‘Converting interfaces on application-
specific network-on-chips,’’ J. Semicond. Technol. Sci., vol. 17, no. 4,
pp. 505–513, Aug. 2017.

[32] L. Benini, ‘‘Application specific NoC design,’’ in Proc. Conf. Design,
Automat. Test Eur., Mar. 2006, pp. 491–495.

[33] Arteris. FlexNoC. Accessed: Jun. 17, 2019. [Online]. Available:
http://www.arteris.com/flexnoc

[34] ARM. NIC. Accessed: Jun. 17, 2019. [Online]. Available:
http://www.arm.com/products/system-ip/interconnect/corelink-nic-
family.php

[35] ARM. AMBA. Accessed: Jun. 17, 2019. [Online]. Available:
https://www.arm.com/products/silicon-ip-system/embedded-system-
design/amba-specifications

[36] RISC-V. Accessed: Jun. 17, 2019. [Online]. Available: https://riscv.org
[37] Xilinx. Vivado 2016.4. Accessed: Jun. 17, 2019. [Online]. Available:

https://www.xilinx.com/support/download/index.html/content/xilinx/en/
downloadNav/vivado-design-tools/2016-4.html

[38] OpenOCD. Accessed: Jun. 17, 2019. [Online]. Available: https://openocd.
org

HYEONGUK JANG received the B.S. and M.S.
degrees in electrical engineering fromGyeongsang
National University, Jinju, South Korea in 2013
and 2015. Since 2015, he has been pursuing the
Ph.D. degree with the University of Science and
Technology. He has also been with the SoCDesign
Research Group, Electronics and Telecommuni-
cations Research Institute. His research interests
include network-on-chip and system software in
embedded systems.

KYUSEUNG HAN (M’18) received the B.S. and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University
(SNU), Seoul, South Korea, in 2008 and 2013. At
SNU, he researched on computer architecture and
design automation. Since 2014, he has been with
the Electronics and Telecommunications Research
Institute (ETRI), Daejeon, South Korea, and he
currently belongs to the SoC Design Research
Group as a Senior Researcher. His current research

interests include reconfigurable architecture, network-on-chip, and ultra-low
power techniques in embedded systems.

SUKHO LEE received the Ph.D. degree in infor-
mation communications engineering from Chung-
namNational University, Daejeon, South Korea, in
2010. He is currently a Principal Researcher with
the SoC Design Research Group, Electronics and
Telecommunications Research Institute, Daejeon,
South Korea. His current research interests include
ultra-low power system-on-chip design, embed-
ded system design, video codec design, and video
image processing.

JAE-JIN LEE received the B.S., M.S., and Ph.D.
degrees in computer engineering from Chungbuk
National University, in 2000, 2003, and 2007,
respectively. He is a Group Leader of the SoC
Design Research Group, Electronics and Tel-
ecommunications Research Institute, and a Pro-
fessor with the Department of ICT, University of
Science and Technology. His research interests
include processor and compiler designs in ultra-
low power embedded systems.

WOOJOO LEE (M’15) received the B.S. degree
in electrical engineering from Seoul National Uni-
versity, Seoul, South Korea, in 2007, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from the University of Southern California,
Los Angeles, CA, in 2010 and 2015, respectively.
From 2015 to 2016, he was with SoC Design
Research Group, Electronics and Telecommunica-
tions Research Institute, as a Senior Researcher,
and from 2017 to 2018 with the Department of

Electrical Engineering, Myongji University, as an Assistant Professor. He is
currently an Assistant Professor with the School of Electrical and Electron-
ics Engineering, Chung-Ang University, Seoul, South Korea. His research
interest includes ultra-low power VLSI and SoC designs, embedded system
designs, and system-level power and thermal management.

VOLUME 7, 2019 80019


	INTRODUCTION
	MEMORY MANAGEMENT SYSTEM: A PRELIMINARY
	MMU EMBEDDED NoC
	PROPOSED APPROACH
	RELATED WORK
	MMNoC ARCHITECTURE
	MMNoC DESIGN

	EXPERIMENTAL WORK
	CONCLUSION
	REFERENCES
	Biographies
	HYEONGUK JANG
	KYUSEUNG HAN
	SUKHO LEE
	JAE-JIN LEE
	WOOJOO LEE


