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Abstract: A stretchable electromagnetic absorber fabricated using screen printing technology is
proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable
absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont
PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen
printing technique. The reflection coefficient of the absorber was measured using a vector network
analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell,
wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of
the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it
fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement.
Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the
x-direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99%
absorption. Furthermore, when stretched along the y-direction, the resonant frequency shifted by
0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.
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1. Introduction

Metamaterials are artificial structures wherein periodical unit cells are arranged infinitely such
that the characteristics of the material can be controlled artificially. Owing to this extraordinary feature,
metamaterials are used in cloaking technology [1], super lenses [2], antennas [3], and control components
in the THz band [4].

Metamaterial absorber is a technology that uses metamaterials [5,6]. A metamaterial absorber was
first introduced by Landy [7]. Owing to the infinitely periodic structure of a metamaterial absorber,
the substance can be easily expanded [8]. In addition, since the absorber uses a thinner substrate than
conventional absorbers (such as ferrite or wedge-tapered absorbers) [9,10], it can be fabricated in light
and compact volumes.

Recently, metamaterial absorbers have been studied not only for narrow bandwidths but also for
wide bandwidths through multi-layer absorbers [11], lossy patterns [12,13], frequency switching [14–17],
etc. Especially, a frequency switchable metamaterial absorber can operate in a diverse spectrum.
In addition, it can be used as sensors by detecting frequency changes for different physical or
chemical actuation.

One of the methods of frequency switching is the use of electrical switching components such as
pin diodes, varactor didoes, or microelectromechanical systems [18–20]. The instantaneous frequency
of these absorbers is tunable owing to the use of electronic devices. However, these electrical switching
components require complex direct current (DC) bias lines and are expensive. Therefore, there is
a restriction on the fabrication of the absorber since unnecessary bias lines must be designed.
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Alternative methods include performing frequency switching without using electrical switching
components, e.g., microfluidic absorbers [15,21] or stretchable absorbers [22–24]. Microfluidic absorbers
such as injection liquid metals [21] and crystal into microfluidic channels [15] can have tunable
frequency; however, these absorbers not only are difficult to fabricate but also require complex
microfluidic channel lines. Hence, we proposed a stretchable electromagnetic absorber for frequency
switching. The proposed stretchable absorber can vary the resonance frequency by varying the
electrical length of the resonator. Therefore, it is not necessary to design a separate electrical bias
line. In addition, the stretchable absorbers can be used as remote strain sensors [25,26]. In this study,
we fabricated an absorber using a screen printing technique on a stretchable polydimethylsiloxane
(PDMS) material, which is expected to be applicable not only as an absorber but also as a sensor.
PDMS substrate has been employed in flexible or stretchable radio frequency (RF) electronics [27,28].
Conventional fabrication of PDMS should be processed via spin-coating, via exposure to UV light,
via deposition, etc. [29,30]. These are complicated processes and produce additional chemical waste.
Moreover, the equipment is very expensive. In this work, we fabricated the frame of PDMS substrate
using a 3D printing process, since such processes facilitate simple fabrication by eliminating the need
for complicated processes. In addition, we used DuPont PE872 silver conductive ink. Since PE872
ink has not only conductive but also stretchable characteristics, it is used for the fabrication of the
stretchable absorber in this study. The performance of the proposed absorber will be numerically and
experimentally demonstrated. The fabrication process will be explained in the following sections.

2. Absorber Design

The proposed electromagnetic absorber was designed as two rectangular patch unit cells. Figure 1
shows the unit cell geometry of the proposed electromagnetic absorber. The unit cell was designed
to consist of a PDMS substrate of dimensions 12 mm × 12 mm × 0.5 mm and a patch of dimensions
8 mm × 7 mm, as shown in Figure 1a. The bottom of the absorber was designed to have the same
width and length as the PDMS substrate, as shown in Figure 1b. The resonant frequency (f 0) of the
unit cell is given by the following equation [31]:

f0 =
c

2√εe f f

{
Lp + 0.824Hs

[
(εe f f +0.3)

(Wp
Hs +0.264
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where f 0 and εeff are the resonant frequency and dielectric constant, respectively.
According to Equations (1) and (2), the resonant frequency is determined by the substrate

height (Hs), dielectric constant (εe f f ), and the width (Wp) and length (Lp) of the patch. In this study,
the dielectric constant and loss tangent of the PDMS substrate were obtained using the T-resonator
method [32,33], and the values of these parameters were determined to be 2.89 and 0.02, respectively.
The resonant frequency obtained using Equations (1) and (2) were 11 GHz. In order to validate the
calculated value, we performed a resonant frequency simulation using the ANSYS high frequency
structure simulator (HFSS). Simulation results confirmed a resonant frequency of 11 GHz with
a reflection coefficient of −33 dB and approximately 100% absorption, as shown in Figure 2a.
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Figure 1. Unit cell geometry of the proposed electromagnetic absorber: (a) top view; (b) bottom view; 

(c) perspective view. Ls = 12 mm; Ws = 12 mm; Lp = 8 mm; Wp = 7 mm; Hs = 0.5 mm. Conductive 

patterns are shown in dark gray. 
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Figure 2b shows the normalized intrinsic impedance of the proposed absorber obtained from 

full-wave analysis. As evident from the figure, at 11 GHz, the real impedance is approximately one, 

and the imaginary impedance is approximately zero. In Equation (3), the transmission coefficient 

(S21) was assumed to be zero because the ground plane of the absorber was assumed to be a perfect 

conductor. Therefore, we expected to observe high absorption at 11 GHz. 
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Figure 2. (a) Simulated reflection coefficient and absorption of the proposed absorber; (b) 

Normalized complex impedance of the proposed absorber. 

Figure 1. Unit cell geometry of the proposed electromagnetic absorber: (a) top view; (b) bottom view;
(c) perspective view. Ls = 12 mm; Ws = 12 mm; Lp = 8 mm; Wp = 7 mm; Hs = 0.5 mm. Conductive
patterns are shown in dark gray.

The intrinsic impedance of the electromagnetic absorber was normalized to the impedance of
free space. Equation (3) was used for calculating the normalized intrinsic impedance (z) using the
S-parameter [34].

z =

√√√√ (1 + S11)
2 − S21

2

(1− S11)
2 − S21

2
, where z is the normalized intrinsic impedance. (3)

Figure 2b shows the normalized intrinsic impedance of the proposed absorber obtained from
full-wave analysis. As evident from the figure, at 11 GHz, the real impedance is approximately one,
and the imaginary impedance is approximately zero. In Equation (3), the transmission coefficient
(S21) was assumed to be zero because the ground plane of the absorber was assumed to be a perfect
conductor. Therefore, we expected to observe high absorption at 11 GHz.
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Figure 2. (a) Simulated reflection coefficient and absorption of the proposed absorber; (b) Normalized
complex impedance of the proposed absorber.
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The absorption of the electromagnetic absorber can be understood from its electrical field
distribution and current density [35,36]. Figure 3a shows the magnitude of the electric field distribution
of the proposed absorber at 11 GHz. It is observed from Figure 3a that the electric field is distributed at
the edge of the patch which generates electric resonance. Figure 3b shows the vector current density at
11 GHz. As evident from Figure 3b, the vector current density is in the H(y)-direction in the top plane
and in the –H(y)-direction in the bottom plane. In addition, the vector current densities in the top and
bottom planes are anti-parallel, which generates magnetic resonance. Figure 4 shows the simulated
S-parameter of the absorber stretched in different directions. When the absorber was stretched in the
direction of the x-axis, as shown in Figure 4a, the resonance frequency shifted by 0.3 GHz, from 11 to
10.7 GHz. Furthermore, when the absorber was stretched by the same length in the direction of the
y-axis, as shown in Figure 4b, the resonant frequency shifted by 0.75 GHz, from 11 to 10.25 GHz. Thus,
we observed a wider change in frequency when we stretched the absorber in the direction of the y-axis.
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3. Fabrication Processes

3.1. PDMS Fabrication

Figure 5 shows the fabrication process of the PDMS substrate. The outline (to solidify the liquid
PDMS) was manufactured on a glass substrate via a 3D printing process [37,38], as shown in Figure 5a.
We used the Ultimaker2+ 3D printer (Ultimaker B.V., Geldermalsen, The Netherlands) for the outline
fabrication. Subsequently, the PDMS base in liquid state and the curing agent were mixed in a beaker
in a ratio of 10:1. The mixed solution was poured into the outline, as shown in Figure 5b, and cured
at 100 ◦C for 25 min using a hot plate, as shown in Figure 5c. Subsequently, plasma treatment was
performed to enhance the adhesion of the PDMS surface, as shown in Figure 5d. We used the PDC-32G
plasma (Harrick Plasma, New York, NY, USA), treated at 18 W for 20 s.
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Figure 5. Fabrication process of the PDMS substrate; (a) Step 1: PDMS substrate outline, fabricated
using a 3D printer; (b) Step 2: mixing the Sylgard184 A type and the Sylgard184 B type silicone
elastomers; (c) Step 3: pouring PDMS into the outline and curing processing using hot plate; (d) Step 4:
plasma treatment process.

3.2. Screen Printing Process

In this study, we proposed the use of screen printing technology for fabricating the top patch and
bottom ground of the unit cell. The screen printing process is simple and easy, thereby allowing the
fabrication of large quantities with a high number of patches and ground fabricated simultaneously.
We used PE872 stretchable conductive silver ink for screen printing. Prior to screen printing, we performed
plasma treatment to prevent the absorber from detaching when stretched [39]. After plasma treatment,
we printed the absorber using (Daeyoung-Tech Co., Gyeonggi-do, Korea). The device provided squeegee
speeds of 45–595 mm/s, and squeegee angles of 60–90◦, as shown in Figure 6a,b. A stainless wire mesh
with a mesh tension of 150 N and a wire count of 400 was also used in the screen printing process.
We printed two unit cells on the top side of the PDMS. The gap at the top of the unit cell was 2 mm,
and the size of each unit cell was 8 mm × 7 mm. The bottom ground of the cell was similarly printed.
Further, a curing process was performed to improve the conductivity of the screen-printed surface.
The curing process for screen printing technology can be performed via various methods such as the use
of a well-ventilated oven, dryer curing, and thermal sintering [40]. In this study, we used the ON-22GW
well-ventilated oven (Dongsung Science Co., Busan, Korea). The curing was performed in an oven at
100 ◦C for 30 min.

We used DuPont PE872 (DuPont, USA) silver conductive ink for screen printing. When the
printed thickness is 14 µm, the sheet resistivity is 0.4 Ω. Figure 7a shows the screen-printed Ag
patterns, and Figure 7b shows the morphological characterization using a field emission scanning
electron microscope (FE-SEM).
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4. Measurement Results and Discussion

We used the waveguide measurement method to measure the characteristics of the fabricated
absorber. The absorption A(ω) is given by the following Equation (4):

A(ω) = 1− |S11|2 − |S21|2 = 1− |S11|2, where A(ω) is the absorption. (4)

The transmission coefficient (S21) was assumed to be zero owing to the presence of a backside
conductive plate [7]. Therefore, we measured only the reflection coefficient (S11), as shown in Figure 8,
using waveguide measurements. Figure 8a shows the measurement results when the absorber was
stretched in the x-axis direction. After stretching the absorber, it was confirmed that the resonance
frequency decreased by 0.3 GHz, from 11.1 to 10.8 GHz. Similarly, Figure 8b shows the measurement
results when the absorber was stretched in the y-axis direction. The resonant frequency decreased
by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption. Therefore, it was confirmed that
the frequency change was larger when the absorber was stretched in the direction of the y-axis,
which is consistent with the simulation results. Figure 9 shows the absorption A(ω) calculated using
Equation (4). The absorber demonstrated absorption of 99% at 10.8 GHz when stretched in the direction
of the x-axis, as shown in Figure 9a. Furthermore, Figure 9b shows that the absorption was 99% at
10.3 GHz when the absorber was stretched in the direction of the y-axis.
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Figure 11a shows the measured reflection coefficients after 1, 5, 10, 20, and 30 cycles in order to
prove adhesive strength and reliability. One cycle is defined as the un-stretched state after stretching
the absorber. It is observed from Figure 11a that the resonant frequency is changed after 20 cycles.
In addition, we measured a sheet resistance at different strain levels. As shown in Figure 11b,
the resistances are 0.4, 0.6, 0.7, 1.0, 2.4, and 5.6 Ω when strain levels are 0%, 2%, 4%, 6%, 8%,
and 10%, respectively.
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5. Conclusions

In this paper, we proposed a stretchable electromagnetic absorber fabricated using screen printing
technology. In order to realize stretchable characteristics in screen printing technology, a stretchable
PDMS material and PE872 stretchable conductive ink were used as the substrate and conductor,
respectively. Two rectangular patch unit cells of dimensions 8 mm × 7 mm were printed on top of
the PDMS substrate. We measured the performance of the screen-printed electromagnetic absorber
using a network analyzer and a WR-90 waveguide. The resonant frequency was determined to be
11 GHz with a reflection coefficient of −33 dB. When the length of the absorber was increased along
the y-direction, the resonant frequency decreased by 0.6 GHz, from 11 to 10.4 GHz, demonstrating
99% absorption. When the length of the absorber was increased along the x-direction, the resonance
frequency decreased by 0.3 GHz, from 11.1 to 10.8 GHz. Therefore, we demonstrated the successful
fabrication of a stretchable electromagnetic absorber by using screen printing technology and validated
the results through simulation and experiment. For practical applications, the screen-printed patterns
must be encapsulated in order to protect from moisture permeation or damages.
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