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Introduction

Protein phosphorylation is a prevalent and pivotal
mechanism in cell physiology. Dephosphorylation of
amino acid residues counteracts the effects of protein
phosphorylation, thereby controlling biological functions.
This reversible modification is critical for the proper
control of a wide range of cellular activities, including cell
cycle, proliferation and differentiation, metabolism, motility,
cytoskeletal organization, neuronal development, cell-cell
interactions, gene transcription, and immune responses.
All these processes are concomitantly orchestrated by
protein kinases and phosphatases [1-3]. Phosphorylation
usually occurs at serine and threonine residues (Ser/Thr)
in eukaryotic cells. In contrast, tyrosine (Tyr) phosphorylation
rationalizes 0.1-0.5%, but upon growth factor stimulation
gradually increases up to 2% [4, 5]. Even though Tyr
phosphorylation shows meager occurrence compared with

Ser/Thr phosphorylation, it is a prerequisite in constituting
key cellular signaling mechanisms, such as receptor
tyrosine kinase (RTK) signaling, epidermal growth factor
signaling, and cytokine-like cell surface receptor signaling
[6-9]. Perhaps both Ser/Thr phosphatases and Tyr
phosphatase constitute similar activity “dephosphorylation,”
but structurally differentiate in catalytic and active site
domains and mechanism of action. Contradictorily, Ser/
Thr and Tyr protein kinases share similarity in catalytic
domain sequences [10-12].

Based on substrate specificity and functional diversity,
protein phosphatases are classified into three super-
families as summarized in Table 1. To date, available
information of nearly 500 protein tyrosine phosphatases
(PTPs) from genome sequencing data have been obtained
throughout the eukaryotic genome, and so far, 107 PTPs
are well characterized and explored in the human genome
[13]. Based on structures, catalytic activities, and specificities,
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Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable

for about 30% of key biological activities, such as cell cycle progression, migration, and

division. It is synergistically balanced by kinases and phosphatases, and any deviation from

this balance leads to disease conditions. Pathway or biological activity-based abnormalities in

phosphorylation and the type of involved phosphatase influence the outcome, and cause

diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein

tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation

and catalyze several biological functions. Abnormal PTP activities are reported to result in

several human diseases. Consequently, there is an increased demand for potential PTP

inhibitory small molecules. Several strategies in structure-based drug designing techniques for

potential inhibitory small molecules of PTPs have been explored along with traditional drug

designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this

review, we discuss druggable PTPs and structure-based virtual screening efforts for successful

PTP inhibitor design.
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conventional PTPs are broadly categorized into four major
classes (Table 1) [14]. Class I is the largest PTP class, which
consists of 99 members subdivided into 2 major subfamilies.
The first subfamily consists of 38 members, further
subdivided into 17 receptor and 21 non-receptor types; for
example, receptor-type tyrosine-protein phosphatase S
(PTPRS) and protein-tyrosine phosphatase 1B (PTP1B),
respectively. The second subfamily is very broad and it is
composed of 61 dual specific phosphatase members, including
mitogen-activated protein kinase (MAPK) phosphatases
(MKPs), myotubularin-related phospholipid phosphatases
(MTMRs), phosphatase and tensin homologs (PTENs),
slingshot protein phosphatases (SSHs), and low-molecular-
weight protein tyrosine phosphatases (LMW-PTPs). Three
CDC25 phosphatases lie in class III PTPs [15]. The above
classification is illustrated in Table 1. Four Eyes Absent
phosphatases (Eyas) have different catalytic motifs from
the other PTPs, and lie in class IV PTPs.

As a result of advances in X-ray crystallography, nuclear
magnetic resonance, and transmission electron microscopy
technologies, exquisite changes have been observed in
protein structural biology. It left many milestones in
proteomics by determining high-resolution structures for
target or receptor protein complexes [16-18]. In addition,

implementations of computational technology in biological
sciences have accelerated protein structure prediction
using computational methods [19, 20]. Consequently, many
proteins and enzymes are able to reveal three-dimensional
(3D) structures that have opened the doors for structure-
based drug design (SBDD) [21, 22]. A finely constructed 3D
structure of a receptor offers flexibility to design potential
ligands. This phenomenon makes SBDD a promising tool
for designing novel inhibitors for targeted receptors [23-
25]. Owing to the structural complexities of PTPs, SBDD is
assumed to be a favorable technique for designing novel
inhibitors for them. Virtual screening (VS) is a renowned
technique in the drug designing world. Hence, the
combination of robustness of SBDD and high-throughput
VS is referred to as structure-based virtual screening (SBVS).
This is a potent and suitable method to develop inhibitors
for challenging targets like PTPs.

Herein, we exclusively review the complexity of conserved
domains and their influence on catalytic activities of PTPs,
challenges in targeting PTPs, diseases associated with
defective PTPs, and pragmatic strategies such as a
combinatorial approach using SBDD and VS for designing
PTP inhibitors. Additionally, we discuss contemporary
techniques, alternative methods, and emerging strategies.

Table 1. Classification of protein phosphatases.

Name Catalytic site residues Target substrates Representative phosphatases

Protein serine/threonine phosphatases DXH…DXXD…N Serine/threonine residues in proteins PP1, PP2A, PP2B, PP2C 

Protein tyrosine phosphatases (H/V)C(X)5R(S/T) Tyrosine residues in proteins Class I PTPs: PTPRS, PTP1B

Serine/threonine residues in proteins Class II PTPs: MKPs, MTMRs,

PTENs, SSHs, LMW-PTPs

Lipids Class III PTPs: CDC25A-C

HAD-related protein phosphatases DXDXT/V Serine/threonine residues in proteins RNA Pol II C-terminal 

domain phosphatases 

Tyrosine residues in proteins Class IV PTPs: Eyas

Table 2. Protein tyrosine phosphatases and their representative implicated diseases.

PTP Disease/activity Reference

PTP1B Breast cancer, colon cancer, type II diabetes [141]

RPTPσ Stem cell regeneration, neuronal cell growth [142]

SHP2 Noonan syndrome, lung cancer, hepatocellular carcinoma [143]

CDC25B Non-Hodgkin’s lymphoma, prostate cancer, gastric cancer [144]

MKP1 Non-small-cell lung cancer, breast cancer, prostate cancer, renal cancer [52]

PRL3 Hepatocellular carcinoma, colorectal cancer, gastric cancer [145]

PTPMT1 Diabetes, oncogene transformation [64]
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Significance of Protein Tyrosine Phosphatases

in Disease

Phosphorylation is critical for the success of several inter-
and intra-cellular signaling events. To date, many studies
have presented the implications of tyrosine phosphatases
in numerous human diseases. Here, we attempt to
emphasize various classes of thoroughly studied PTPs
pertinent to diseases, and checkpoints for designing their
inhibitor molecules.

Protein Tyrosine Phosphatase 1B

PTP1B is the non-receptor type tyrosine phosphatase
encoded by the gene, protein tyrosine phosphatase, non-
receptor type 1 (PTPN1). It has a pivotal role in numerous
signal transduction pathways. Its major role has been
denoted in insulin receptor- and leptin receptor-mediated
signaling pathways [26]. From the literature and experimental
evidence, it has been known that PTP1B-deficient mice
showed increased sensitivity for insulin and were affected
with type II diabetes. In contrast, PTP1B expression reversed
the condition. This supports the theory that PTP1B can act
as a successful negative regulator of the insulin receptor [27,
28]. Since PTP1B activity is a key component for cellular
functions like cell adhesion and for metabolic processes
like insulin receptor signaling, it has been extensively
studied for the past decade. It has also been identified to
have a pivotal role in breast and colon cancers, because its
dephosphorylation property influences the epidermal growth
factor receptor and downstream genes that participate in
breast cancer [29]. In human breast cancer cells, it
dephosphorylates inhibitory tyrosine residues on Src kinases
in response to integrin signaling, and the dephosphorylation
enhances the Src kinase activity. Ras-extracellular signal-
regulated kinase (ERK) activation in conjunction with Src
activation contributes to the HER2/Neu-mediated breast
cancer pathway. Apart from the role of PTP1B in breast
cancer by activation of Src kinases, recent genetic studies
elucidated its role in colon cancer and renal cancers [30].
Owing to the primitive role of PTP1B in numerous metabolic
and pathological processes at certain levels, there is
necessity for inhibitors of PTP1B in order to develop
therapeutic drugs of diabetes and cancer. 

Src Homology 2 Domain-Containing Phosphatase 2 (SHP2)

Another non-receptor type tyrosine phosphatase, SHP2,
is encoded by the protein tyrosine phosphatase non-receptor
type 11 (PTPN11) gene and contains two Src homology 2
domains with auto-inhibitory activity and one PTP-signature

domain. PTPN11/SHP2 is associated with genetic diseases
such as Noonan syndrome, Leopard syndrome, and cancers
(breast cancer, colorectal cancer, and acute myeloid
leukemia) [31]. Synergistic expressions of SHP2 contribute
to activation of different intercellular signaling pathways
and tumorigenesis in response to various other triggers
such as growth factors and cytokines. SHP2 plays an
important role in Ras-mitogen-activated protein kinase
(MAPK)-signaling activation by promoting Gab2/Sos1
complex formation, as seen in evidence from the literature
[32]. SHP2 mediates MAPK activation, thereby further
contributing to the activation and regulation of various
proliferative pathways like Janus-kinase, and signal-
transducer and activator of transcription (STAT) [33].
Mutations in SHP2 led to 10-35% hyperactivation, and
concomitant downstream action on oncoproteins, resulting
in malignancies, as seen from studies on xenograft models.
A study on human breast cancer cells showed that
hyperactivated SHP2 led to activation on ERK pathways and
thereby facilitated expression of downstream transcription
factors such as v-myc, zinc finger E-box1 (ZEB1), and c-myc.
These factors could promote the expression of an emerging
oncogenic driver (LIN28B) in cancer stem cells [34].
Overexpressed LIN28B initiated growth of breast cancer-
inducing cells, but knock-down of SHP2 depreciated the
breast cancer cell growth and metastasis. Unlike in breast
cancer, SHP2 has shown a contradictory role in the case of
hepatocellular carcinoma (HCC) [35]. The tumor suppressor
role of PTPN11/SHP2 in hepatocytes is unexpected because
SHP2 has predominantly been denoted as a proto-oncogene
and its role is defined as a tumor proliferator [36].
Interestingly, knock-out of SHP2 in hepatocytes led to
inflammatory signal enhancement by an excited STAT3
pathway and subsequently induction of HCC [37]. Since
SHP2 has cell-specific regulation of cancer, there is a need
to develop novel inhibitors against it for each type of cancer.

Receptor Protein Tyrosine Phosphatase Sigma (PTPRσ)

PTPRσ is encoded by the gene receptor-type tyrosine-
protein phosphatase S (PTPRS), which belongs to a
receptor-type family since it has two tandem cytoplasmic
and one transmembrane domain. Active PTPRσ is a major
regulator in diverse cell functions, such as cell growth,
mitosis, differentiation, and transformation. Its differential
expression is important for promoting essential developmental
processes, such as axon genesis and neuron regeneration
[38]. Neurotrophic receptors of tropomyosin receptor
kinase (Trk) protein family members of receptor tyrosine
kinases have pivotal roles in neuron development and
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survival of sensory neuronal growth [39]. PTPRσ is well
studied among all 21 receptor protein tyrosine phosphatases
(RPTPs), and plays a role in axon guidance. Thus,
researchers have focused on a study of the signaling events
of PTPRσ in Trk-mediated downstream pathways and its
effects on neurite growth and sensory neurons outgrowth
[40]. PTPRσ dephosphorylates TrkA, TrkB, and TrkC, but
differentially interacts with Trk proteins. A study using
PC12 neuronal cells has shown that downregulation of
PTPRσ escalates neurite growth and TrkA activation [41].
PTPRσ was observed at higher expression than other PTPRs
in expression profiles of receptor PTPs in hematopoietic
stem cells (HSCs). This signifies that PTPRσ plays a role in
the repopulation of HSCs [42]. By virtue of PTPRσ‘s
dynamic balancing of tyrosine phosphatase activity, it
inhibits Ras-related C3 botulinum toxin substrate 1 (RAC1)
signaling by a dephosphorylating p250GAP member of
Rho GTPases [43]. PTPRσ dephosphorylation activity
activates p250GAP, thereby inhibiting RAC signaling.
PTPRσ, along with its co-expressing leukocyte antigen-
related tyrosine phosphatase (LAR) and neurite outgrowth
inhibitor (nogo) receptors, plays a critical role in speeding
recovery by simulating axon growth from spinal cord injury
by modulating chondroitin sulfate peptidoglycans [44].

M-Phase Inducer Phosphatase 2 (CDC25B)

CDC25B is cell division cycle 25 homolog B and a dual
specificity phosphatase belonging to the PTP super-family.
CDC25 phosphatases have a prime role in cell cycle
progression due to “ON and OFF” switching properties of
isoforms by orchestrating cyclin-dependent kinase (CDK)
activities [45]. CDC25 phosphatases act as positive
regulators of the cell cycle by selective dephosphorylation
of Thr14 and Tyr15 inhibitory phosphate residues of CDK
and constitute mitotic phase inductions [46]. The enzymes
are called “cell division cycle” phosphatases based on the
roles of the proteins. CDC25B has been thought to have an
exclusive role in dose-dependent oncogene transformation [46].
Elevated co-expression of M-phase inducer phosphatase 1
(CDC25A) and CDC25B was detected in various diseases like
prostate cancer, gastric cancer, non-Hodgkin’s lymphoma,
and Alzheimer’s disease. Importantly, concomitant
overexpression of CDC25A and CDC25B impacted cell
cycle checkpoint control, consequently leading to an
oncogenic condition [47]. Additionally, an interesting
study described its role in neuron degeneration associated
with Alzheimer’s disease [48]. In brain samples from
Alzheimer’s patients, it was observed that CDC25B rapidly
dephosphorylated Thr14 and Tyr15 of cell division cycle

protein 2 homolog (CDC2)/CyclinB. As a consequence,
prematurely activated cyclin kinase resulted in accumulation
of M phase phosphoepitopes, and mitotic phase structural
modifications led to neuronal degeneration in Alzheimer’s
disease [49]. From more observations of the elevated
CDC25A expression along with CDC25B, these insights are
implying that inappropriate expression of CDC25B is
associated with particular diseases. Hence, CDC25B could
be a promising drug target for many diseases.

Mitogen-Activated Protein Kinase Phosphatase 1 (MKP1)

MKP1 is also known as dual specificity phosphatase-1
(DUSP1). It dephosphorylates Thr and Tyr residues in
MAPKs [50]. MAPK signaling is exclusively associated
with cell proliferation, differentiation, and transformation;
thus, its misregulation results in inflammation and
carcinogenesis. Misregulation effects of MKP1 have been
properly observed in non-small-cell lung and renal cancers
[51]. MKP1 has an extensive role in non-small-cell lung
cancer by modulating the p38/JNK pathway [52]. An
essential role of MKP1 was proved in repressive response
for treatment with cisplatin due to its dual specificity
activity. MKP1 dephosphorylates and inactivates JNK.
Consequently, it protects from cisplatin impact [53].
Knock-out of MKP1 increased the sensitivity of animals to
cisplatin. Thus, MKP1 suppression in cancer treatment is
useful to improve the positive effects of anticancer drugs. 

Phosphatase of Regeneration Liver 3 (PRL3)

PRL3 is encoded by the gene protein tyrosine phosphatase
type IVA 3 (PTP4A3), and belongs to the novel family of
PTPs. It contains a C-terminal prenylated domain [54].
PRL3 is exclusively involved in cell migration, invasion,
and metastasis. Along with phosphatase of regeneration
liver 1 (PRL1), it plays a major role in progression to
metastasis [55]. PRL3 is implicated in ovarian cancer and
melanoma. Elevated levels of PRL3 are related to carcinomas
such as gastric cancer, colorectal cancer, and hepatocellular
carcinoma [56, 57]. Dynamic imbalance of PRL3 can affect
various stages of cell proliferation, invasion, and motility.
Initially, in cell proliferation, PRL3 is related to degradation
of p53 by ubiquitination and proteasome degradation that
thereby induces the carcinogenesis [58]. Furthermore,
PRL3 is involved in invasion and metastasis through
hyperactivation of the epidermal growth factor receptor.
Consequently, it activates the RTK, PI3K/AKT, Src/STAT,
and RAS/MAPK pathways [59]. The PRL3-mediated
aberrant RTK signaling pathway contributes to rapid
progression of malignancy and metastasis. The positive
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results by inhibition of PRL3 were shown in colon and
gastric cancers, stating that PRL3 could be targeted as a
cancer therapeutic drug target [60].

Protein Tyrosine Phosphatase Mitochondria 1 (PTPMT1)

PTPMT1 is a DUSP that is extensively localized to the
mitochondria inner membrane. PTPMT1 is a key regulator
of cardiolipin (CL) biosynthesis, since PTPMT1 activity is
the checkpoint for the control of CL metabolism. It is
indirectly associated with CL-mediated diseases, such as
Parkinson’s disease, Alzheimer’s disease, non-alcoholic
fatty liver disease, diabetes, and cancer [61, 62]. CL is vital
for mitochondrial respiration and cytochrome c release.
PTPMT1 balances CL biosynthesis through its phosphatase
activity [63]. Similarly, downregulation or knock-down of
PTPM1 exhibited decisive results against cancer cell
growth [64]. PTPMT1 is detected to have a role in
embryonic development along with its natural activity in
mitochondrial-based biosynthetic pathways, and it is also
identified that PTPMT1 contributes to dephosphorylating
phosphatidylglycerol phosphate to phosphatidylglycerol,
which is a precursor of CL [65]. Recent studies showed that
PTPM1 ablation regulated CL levels, which thereby led to
activation of mitochondrial-mediated apoptosis. This was
observed in the presence of the PTPMT1 inhibitor
“Alexidin” [66, 67]. Similar phenomena were observed in
glucose level regulation; a study revealed that PTPMT1
activity on succinate dehydrogenase influenced glucose
metabolism. This action was relevant to diabetes. Inhibition
of PTPM1 resulted in the lowering of sugar levels [68].

Structural Overview of Protein Tyrosine

Phosphatases

Owing to the advances in structural biology, many
proteins have been characterized as 3D structures. Some of
these solved structures included PTPs [69]. Typical PTPs
possess more than 400 residues. The hallmark that defines
the PTPase family is the conserved catalytically active site
(H/V)C(X)5R(S/T) that surrounds a 250-amino-acid-
residue region, and other catalytically significant structures
(WPD, Q-loop, p-Tyr-loop, and E-loop). These structures
are conserved in about >85% eukaryotic PTPs [70]. To
constitute phosphatase activity, PTPs require these conserved
loop structures for various activities like substrate
recognition, binding, and catalysis [71]. By virtue of the
structural conservation of PTPs, in this review we focused
on catalytically important structural components and their
functional significance. Among PTPs, PTP1B has an

elegantly modeled structure. Hence, we considered it to be
an ideal representative example of PTP structures in general,
and focused the remainder of the review on its features.

pTyr-Loop

The pTyr-loop (NXXKNRY) is a moderately conserved
loop structure that is present in all classical tyrosine
phosphatases and also considered a substrate-recognition
loop (Fig. 1). The conserved residues, NRY, are involved in
substrate recognition and loop stabilization. The tyrosine
residue (Y) has a notable role in defining active-site cleft
depth, recognizes the pTyr residue, and facilitates access to
the active site through electrostatic interactions [72]. The
highly conserved arginine (R) residue is implicated in loop
stabilization, which is important for constituting the
catalytic activity by interacting with adjacent oxygen
atoms. An adjacent moderately conserved asparagine (N)
residue strengthens the interaction between the pTyr
residue of the substrate and active site residues by forming
hydrogen bonds [73].

PTP-Loop

The PTP-loop is a highly conserved loop structure of the
PTPase domain and exhibits in most PTPs. Conserved PTP
active site motif (H/V)C(X)5R(S/T) lies in this PTP-loop
(Fig. 1). The arginine (R) in the loop helps to create a
positive charge in the active site pocket [74]. A charged
active site stabilizes the thiolate anion of the cysteine (Cys)
residue of the PTP-loop to cut down the pKa for efficient
catalysis and increases the Cys’s nucleophile activity [75].
It enhances the affinity for phosphate ions. The low pKa
values of Cys influence its nucleophilic mechanism. It is
sensitized to oxidation and nitrosylation, which result in
abolishing the phosphatase activity [76, 77].

WPD-Loop

The WPD-loop generally exists in an upstream region of
the conserved active site in all classical PTPs. Conserved
tryptophan (W), proline (P), and aspartate (D) residue
repeats offer the name as WPD-loop (Fig. 1); it is a movable
and flexible structure in the PTP domain [78]. W and D are
much more conserved compared with proline, and W has
an important role in loop flexibility. D acts as a general
acid/base catalyst in catalysis. An adjacent glycine acts as a
hinge residue and helps energetically in the loop motion
[79, 80]. Owing to its flexible quality, it acts as a
“regulatory switch” of the PTP-loop, and the WPD-loop
coordinates the closed and open conformations of the PTP-
loop. Upon substrate binding to the active site, the WPD-
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loop moves closer and the catalytic acid/base residue D
accelerates the catalytic action [81]. Mutational studies
demonstrated that the decrease in loop flexibility with W
mutation and D alterations resulted in a lower catalytic
activity [71]. A WPD-loop is missing in CDC25s and
MTMRs. It is placed differently to the downstream region
of the PTP-loop in LMW-PTPs [82].

Q-Loop

The Q-loop is the other less-conserved structure of the
PTP domain, and appears in all classical PTPs with a
moderately conserved glutamine (Q) residue [83]. A
conserved Q residue in the Q-loop (QTXXQY) moves
towards the active-site signature motif (Fig. 1), and forms
hydrogen bonds with an active site water molecule and
substrate oxygen anion. It contributes to Cys nucleophilic
activity and thereby helps in cysteinyl phosphate hydrolysis.
In addition, the Q residue combines with the D residue of
the WPD-loop and activates water molecules. It helps in
catalysis, and also helps to maintain the WPD-loop in its
active conformation during catalysis [84, 85]. Interestingly,
DUSPs do not possess the conserved glutamine, and LMW-
PTPs do not contain a similar loop structure [82, 86].

E-Loop

The E-loop is immediately contiguous to the PTP-loop
and WPD-loop and is conserved throughout human PTPs.
The E-loop contains 100% conserved glutamate (E) and
about 90% conserved lysine (K) residues (Fig. 1). An E
residue forms a hydrogen bond with a PTP-loop side chain
arginine in the active form, and stabilizes the guanidium
group to enhance the accessibility of the phosphate group
[87, 88]. On the other hand, the less-conserved K residue
has a similarly important role in WPD-loop stabilization in
its closed conformation. The K residue forms a hydrogen
bond with a catalytic aspartate (D) and maintains its closed
conformation under the influence of the substrate [79]. The
E-loop is extensively studied in hematopoietic PTPs
(HePTPs) and a kinase interaction motif PTP family
member. E-loop differs from classical PTPs in HePTPs in
terms of sequence and structure [89].

Challenges in Targeting PTPs

Since impaired functionality of PTPs has been
acknowledged in many diseases, researchers have focused
on PTPs as druggable targets. Although PTPs are perceived

Fig. 1. An illustrative structure of protein tyrosine phosphatase 1B (PTP1B). 

The upper image is the backbone of the PTP1B (PDB:3A5K) crystal structure with loops highlighted in the 3D structure. The lower structure

represents the arrangement of loops in the protein structure with corresponding colors and contributing residues.
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as promising drug targets, few challenges have been
presented. Structural complexity is a major hurdle to
overcome in the development of PTP inhibitors. Broadly,
PTPs are grouped into four major classes. Alternatively,
PTPs can be differentiated into Cys-based PTPs and Asp-
based PTPs based on general acid/base catalytic residues.
The active site and allied loop structures are highly
conserved among all PTPs except for Asp-based PTPs [90].
The high conservation in the catalytic domains of PTPs is a
big hurdle in targeting the malfunctioned ones [91].
Moreover, the positively charged active site, which binds
to phosphotyrosine residues, possibly attracts negatively
charged moieties during small molecule screening. This
leads to false-positive inhibitor predictions. Falsely predicted
redox compounds may affect the nucleophilic cysteine by
oxidation when the active site is in a reduced state, which
influences the phosphatase potentiality [76, 77, 92].

Classical PTPs share common functional features [93]. In
addition, a single phosphatase will be expressed in multiple
pathways. We cannot target one phosphatase, since selective
targeting for common functional PTPs will affect undesired
pathways and may lead to a dead end in terms of drug
development [94, 95]. For this reason, there have been
challenges in the developments of PTPs as drug targets
[73]. To achieve the fruitfulness in targeting PTPs for
treatment of threatening diseases, we are expected to
overcome the basic hurdles and to think in new dimensions.
Therefore, we herein discuss the novel ways of targeting
and alternative methodologies that will help in passing the
bottlenecks to predict potential inhibitors for targetable
PTPs.

Structure-Based Virtual Screening

In recent decades, remarkable changes have been pursued
in structural biology due to advancements in structural
genomics and proteomics. Cutting edge technologies like
X-ray crystallography and nuclear magnetic resonance in
structure determination have changed the face of genomics
and proteomics, and the structures of many biological
molecules have been obtained, which establish the new era
in the drug discovery process [96, 97]. Further computational
applications in the biological field have boosted the drug
designing process, made possible the screening of thousands
of compounds instantly, and provided opportunity to
select potential candidates against the desired biological
target [98]. Since high-throughput screening (HTS) is
burdened with false-negatives frequently, SBDD has emerged
as the promising tool for the drug industry, as it uses the

finely tuned target structure against lead compounds and
can visualize the binding process [99]. We believe that the
combination of SBDD and VS could be the paramount
technique to design small molecules for complicated drug
targets like kinases, G-protein-coupled receptors, and cancer
targets [100].

Virtual screening is the integral part of modern drug
discovery, but the sheer number of resulting compounds
from VS and HTS are not clinically viable owing to its
limitations. The solidarity of HTS results does not elucidate
the crucial properties like binding energies and intermolecular
forces. Most of the screened compounds could not be able
to pass the ADMET bottleneck at the final stage [101]. On
the other hand, SBDD could offer clear information of
binding pockets and visualization of protein-ligand binding
complex interactions with detailed binding energy data.
One on one, both VS and SBDD has its own advantages in
favor of drug designing; hence, in this review, we discuss
the benefits and limitations of SBVS in the perspective of
PTPs. On the other side, SBVS incorporates several steps
such as target preparation, decoy set preparation, docking,
post-docking analysis, scoring, and ranking (Fig. 2); in each
level, the difficulties endure when dealing with structurally
conserved molecules like PTPs [102, 103]. Here we want to
emphasize the capable edge of SBVS, and challenges and
prospective in successive ligand design in respect to PTPs.

SBVS Implementation

The SBDD and VS combinatorial approach has some
similarity in the workflow in the means of target preparation
and ligand preparation, and the uniqueness of the approach
lies in the docking and post-docking steps. Basically, the
prerequisite in SBDD is the receptor/target structure that
may be X-ray crystallized or systematically modeled.

Structure preparation. The fundamental step of SBVS
starts with target structure preparation, which is an
inevitable step in this approach. Almost all tyrosine
phosphatases possessing 3D structures and a few PTPs like
SHP2, MKP1, and PRL3 are crystallized on its catalytic
sites. The preeminent problem in targeting PTPs is a
structural similarity. The problem starts from the initiation
level, and our challenging motive behind selecting the
SBVS approach for tyrosine phosphatases is its structure
complexity [104].

Basically, in structure preparation, special attention is
required in the bond orders, active site waters, cofactors,
metal ions, topologies, tautomeric forms, ionization and
protonation states, missing atoms, side chain atoms, and
partial charges. Several programs are available to find the
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structure quality, such as PDBsum, Ramachandran plot,
WHATIF, and Prosa-web [105-107]. PTPs are known to be
identified by their signature catalytic site, so that focusing
on the active site is vulnerable. This is the primary and
ultimate challenge, but results can be achieved by targeting
other functional sites [104].

Binding site identification. This is the extended crucial
step to the previous step in this approach, because the
binding site has a major part in deciding the fate of the
result and is playing the exclusive role in PTP targeting. In
SBVS, the binding site projects the protein-ligand interaction
phenomenon, post-docking dynamics, hydrogen bond
formation, and free energies of the complex [108]. The best
calculated pharmacophores of the binding site determine
the fate of the novel inhibitor. In PTPs, the five functional
sites are the pTyr-loop signature site, PTP-loop, WPD-loop,
Q-loop, and E-loop. Among them, the Q- and E-loops are
less conserved and decisive for protein function [109]. On
the other hand, finding the novel binding sites using
randomly selected fragment-based chemical probes can
improve the specificity [110]. Numerous online tools and
web servers are available to calculate and identify the
probable binding sites in target proteins, such as CASTp,

QsiteFinder, metapocket, LigAsite, and MSpocket [111-
113].

Ligand library preparation. Ligand library preparation
is the important step for VS. For library construction,
compounds will usually be collected from various sources
such as natural ligands, public repositories like ZINC and
drug-bank, and commercial vendor sites. Every drug-like
compound or every ligand must obey the limitations of
“Lipinski’s rule of five” (logP values, molecular weight,
number of H-bond donors and acceptors). Generally,
natural drug-like compounds fail to cross this obstacle
[114-116]. More precisely, to improve the quality,
medicinal chemists propose a rule of 3 for compounds in
screening libraries, such as molecular weight <300 daltons,
H-bond donors or acceptors not more than 3, and logP
value not greater than 3, and finally no more than 3
rotatable bonds [117].

After satisfying the basic criteria, we need to optimize
the decoy sets. Fortunately, PTPs have information of
chemical probes, which helps to develop novel candidates
based on prior experiences. For PTP1B, researchers have
designed the small molecules using VS and biochemical
screening, but not many inhibitors have succeeded as

Fig. 2. A conceptual figure of structure-based virtual screening, illustrating the schematic design and typical drug discovery steps

in the search for a potential protein tyrosine phosphatase inhibitor. 
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commercial drugs. Further studies on native substrates like
chemical probes seem to be successful with a rational
SBDD. The 1,2,5-thiadiazolidin-3-one-1,1-dioxide template
as a pTyr mimic substrate showed satisfactory results [118].
Similarly decoy sets will be optimized to minimize the
number of screening compounds. Likewise, some web-
based and standalone tools help in designing new and
knowledge-based ligands, such as LUDI, MEGA, LEGEND,
and LigBuilder [119, 120]. Additionally, structure activity
relationship studies are useful to improvise the quality and
affinity of novel ligands [121].

Docking

Docking is the decisive step in inhibitor design, which
helps in visualizing the interaction patterns and binding
energies of protein-ligand complexes. There are no
prescribed tools for SBDD, but constructed algorithms and
scoring functions differentiate the usefulness of the tools
for this approach.

Recently, a large number of docking tools evolved based
on searching methods and scoring functions. Some of the
major tools used are Autodock [122], GOLD, Discovery
Studio, FlexX, ICM, and UCSF Dock [123]. Generally, these
tools are based on stochastic search algorithms such as a
genetic algorithm (Autodock, Gold), geometric matching
(Dock), and an exhaustive search algorithm (Glide). Apart
from docking algorithms, the output will depend on target
topologies, rotamers, and ligand polarities. Software
packages like Discovery Studio (Biovia, USA) and
Schrodinger’s small molecule designing suite (Schrodinger,
USA) provide end-to-end solutions for SBDD. Open source
tools such as the Autodock and Dock programs have been
widely used for SBDD. Additionally, scoring functions
play important roles in ranking the best poses and selecting
novel ligands. Autodock ranks the best posed molecules
based on binding free energies using stochastic-based
scoring functions. Hence, researchers can successfully used
Autodock for the screening of PTP1B inhibitors [124].

Scoring Functions

Scoring functions are mostly used for post-docking
analyses. Estimations of protein-ligand fitting and molecular
contacts form the focus of drug design processes.
Generally, scoring functions are used to calculate the
noncovalent interactions. Scoring function encompasses
basic characteristics like speed and veracity. Four major
types of scoring functions are typically used to describe
protein-ligand fitness [125].

Force-field analysis. These functions use force fields to

estimate the intermolecular non-bonded interactions like
van der Waals and the electrostatics of each atom in
binding complexes. When an experiment is carried out in
the presence of water, desolvation energies will be taken
into account and solved by Poisson–Boltzmann or generalized
Born and surface area (PBSA or GBSA) implicit solvation
methods. The van der Waals and electrostatic forces and
hydrophobicity are optimized to each force field to calculate
the binding efficacies of the protein-ligand complex [126].
Energies of binding molecules are estimated by Lennard-
Jones terms. Electrostatics are drawn from distance-
dependent dielectric constants of columbic formulation of
charged interactions, and similarly van der Waals interactions
are obtained from hydrogen bond energies and solvation
energies. The Medusa Score tool best handles the virtual
screening scoring job with the above-mentioned properties
[127].

Empirical scoring function. Empirical scoring function
is the faster one among all; it calculates the various
interactions between interacting atoms of binding molecules
and change in solvent-accessible surface area. The empirical
terms, such as van der Waals interaction energies, hydrogen-
bonding energy, electrostatic energy, hydrophobicity,
desolvation energy, and entropy are optimized according
to the developing algorithms. Potentially evolved empirical
scoring functions fit for SBVS are ID-Score and PLANTS
(Protein-Ligand ANT System). ID-Score covers a vast
variety of descriptors such as electrostatic interactions, van
der Waals interactions, hydrogen-bonding interaction,
metal-ligand binding interaction (which is not explored in
many scoring functions), π-π stacking interaction, entropic
loss effect, desolvation effect, shape matching, and surface
property matching, which reduces false positives and
redundant molecules [128]. ID-Score uses support vector
regression algorithm, and it is outperformed compared
with other existing empirical scoring function tools.
PLANTS works on the ant colony optimization algorithm
[129] and coordinates with various empirical values. It
functions well when tested with GOLD from experimentally
driven structures [130]. In the context of complex structures
like PTPs, we require robust scoring functions to achieve
better results.

Knowledge-based scoring function. As mentioned, in
name, these scoring functions use statistical structure
geometrical data from databases like PDB and differentiate
the deviated structures. This method calculates the
interactions by potential of mean force, and estimates
energies between frequent interactions of certain atom
types irrespective of other coordinates [131]. It also uses the
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changes in the solvent-accessible surface of binding
complexes. The main limitation of this method is calculating
the atoms’ random state by relying on their standard
state irrespective of intermolecular interactions and other
parameters. The software tool Drug Score overcomes
the limitation and calculates the potentials of distance-
dependent pairs, solvent-accessible surfaces, and solvation
independent of protonation states, and has succeeded in
differentiating structures with RMSD value < 2Å compared
with native structures [132].

Machine-learning (ML) scoring function. ML-based
scoring functions are distinct from classical scoring functions.
As these work in feed-forward mode, predetermined forms
do not infer with the protein-ligand complexes. ML-based
scoring functions use predominantly machine learning
algorithms that support vector machines, random forest,
multivariate adaptive regression splines, and k-nearest
neighbors to calculate the optimized parameters chosen by
the user. A minor constraint of ML scoring function is the
availability of relevant structure data. Comparatively, ML
scoring functions predict better than commercially
available tools like GOLD, FlexX, and Surflex. ML-based
scoring functions outperformed classical scoring functions
by 87% in identifying native poses of screened complex
data taken from the PDBbind 2007 database [133]. From the
observations, ML scoring functions are suitable to
incorporate with SBVS, and conserved structures like PTPs
could be easily scrutinized in bounded poses from near-
native poses with minor deviations [134].

Prospective

Many researchers are focusing on PTP targeting owing to
its critical role in innumerable diseases. Thus, numbers of

inhibitors are populating everyday, but negligible numbers
of compounds are evolving into commercial drugs.
Conserved structural features and multitasking ability are
confronting the novel inhibitor development for PTPs.
Despite of conventional drug targeting, few researchers are
concentrating on substitute novel approaches alike allosteric
targeting and fragment-based drug design (FBDD).
Allosteric docking and FBDD are emerging drug discovery
techniques, which differ from traditional methods and are
supportive for designing effective inhibitors (Fig. 3).
Allosteric targeting is an option that can be used as part of
a combinatorial technique for structure-based drug
discovery concepts that are more likely for targeting highly
conserved molecules such as PTP [135].

Traditional drug designing methodologies aim precisely
to design effector candidates, which bind the active site to
modulate the activity of target molecules. This phenomenon
is not suitable for ubiquitous targets like PTPs and most
oncoproteins, since the majority of these proteins or targets
are key players in vital cellular functions [136]. Allosteric
binding or targeting exclusively concentrates to design the
inhibitors aimed to barely bind in the active site. Several
studies have suggested that allosteric targeting exhibits
profound results. The inhibitor designed for phosphoinositide-
dependent kinase-1 (PDK1) successfully interrupted the
activity of downstream kinases by binding at the conserved
allosteric PDK1 interacting fragment (PIF) binding site or
PIF pocket [137]. A study by Lee et al. [138] on PTP1B
strategically confronted the phosphatase activity without
targeting the conserved active site; in this experiment,
bioflavonoids were used as ligands and docking results
denoted that amentoflavone was preferentially bound to
allosteric backbone residue Phe280 by hydrogen bond and
adjacent Glu276 by water-mediated hydrogen bond to

Fig. 3. Schematic illustration of a strategy for showing differences between traditional and allosteric docking modes.
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counter the PTP1B phosphatase activity [139]. Likewise,
ideal studies are emphasizing the significance of allosteric
docking, in order to develop persuasive inhibitors for
remaining PTPs [140]. Taken from the PTP1B result, in

similar fashion, other PTPs such as SHP2, CD45, and DUSP3
(VHR) also underwent allosteric docking for potential
distantly binding inhibitory compounds (Table 3).

In conclusion, in recent decades, structural proteomic-

Table 3. Protein tyrosine phosphatases with traditional and allosteric inhibitors.

Target Traditional inhibitor Allosteric inhibitor References

PTP1B [143, 146]

SHP2 [147, 148]

RPTPσ NA [149]

CDC25B NA [150]

MKP1 NA [151]

PRL3 NA [152]

PTPMT1 NA [153]

DUSP3 [154, 155]

PTPRC1 [145, 156]
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based research is evolving in a new dimension and
concentrating on the root cause of diseases, which revealed
that abnormal post-translational modifications (PTM) are
key players in numerous human diseases. The major PTM
across eukaryotes is phosphorylation, which is counter-
balanced by the phosphatases. Among protein phosphatases,
PTPs are associated with key intra and intercellular
mechanisms. Owing to PTP’s activity being closely
associated with the prime biological mechanism, abnormal
expression of PTPs has been observed in threatening
diseases like diabetes and numerous cancers, such as breast
cancer, prostate cancer, non-small-cell lung cancer, and
gastric cancer. As a consequence, PTPs are thought to be
promising targets for drug development, but structural
challenges and complex functionality hinder the potential
target discovery.

Recently, researchers have devised various biochemical
and in silico methods to find PTP inhibitors, but their
efforts have unfortunately not led to the development and
approval of many of these compounds. Recent advances in
structural biology changed the face of drug discovery by
enabling the precise prediction of target structures for
evaluation as part of the drug discovery process.
Additionally, computer-aided drug design as a supplement
to high-throughput biochemical screening has greatly
accelerated potential compound identification. In this
review, we addressed the structures and mechanisms of
typical PTPs, implications for diseases, and challenges in
targeting of appropriate compounds. Furthermore, we
discussed the pros and cons of SBVS, and useful scoring
functions to design potential small molecules to inhibit
PTPs. We have concluded that structure-based development
in silico can be a proxy for real-time drug development and
may constitute a way to bypass bottlenecks that occur
downstream in the investigational pipeline. Owing to
robust prediction of every detail of the protein-ligand
complex, we predict that SBVS would be a promising
technique to design successful inhibitors for highly
conserved structures like PTPs.

Although SBVS can be used for the design of PTP
inhibitors, the limitations currently outweigh the advantages.
A few of the bottlenecks include structural conservation of
the proteins, limited entities for analysis, and no prescribed
tools and tailored scoring functions. Further advancement
in recognizing non-regular binding sites and successfully
confronting the activity of receptors using classical docking
techniques force as to look into additional advanced
methods, such as the allosteric docking strategy. Allosteric
docking was found to be appropriate to overcome obstacles

presented by structurally conserved PTPs. A study of Lee
et al. [138] on PTP1B clearly denoted how distant binding
sites contribute to the development of novel inhibitory
compounds. Other experiments related to PDK1 have
disclosed the potential of allosteric docking to structurally
challenging targets. In conclusion, well-characterized drug
targets are prerequisites for the wise implementation of SBVS,
and allosteric docking will be an effective supplementary
strategy for designing novel inhibitors of PTPs.
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