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INTRODUCTION

Elevated intravascular pressure increases the radius of blood vessels, 

which leads to considerable increase in blood flow. Contrarily, decreased 

intraluminal pressure results in insufficient blood perfusion. As the tran-

sitions in intraluminal pressure and subsequent surplus/lack of blood 

flow cause vascular rupture, edema, or ischemia, small arteries or arteri-

oles (generally < 200 μm of internal diameter) exhibit an intriguing au-

toregulatory mechanism in response to change in intraluminal pressure 

to regulate local blood perfusion, minimize capillary hydrostatic pres-

sure, and modulate peripheral vascular resistance [1]. This arterial auto-

regulation, called the ‘myogenic response’, is defined as intrinsic vascular 

behavior which elicits vasoconstriction or vasodilation when intralumi-

nal pressure increases or decreases, respectively [2]. The myogenic re-

sponse is referred to as the inherent properties of vascular smooth mus-

cle cells (VSMCs) since myogenic responsiveness is independent of en-

dothelial cells (ECs) or neurohumoral modulation [1,3]. Abnormal regu-

lation of the myogenic response has been observed in various cardiovas-

cular or metabolic disorders such as subarachnoid hemorrhage, diabetes, 

congestive heart failure [4]. In this context, as impaired myogenic respon-

siveness is closely linked to cardiovascular diseases (e.g., hypertension, 

ischemic stroke, vasospasm), the intrinsic autoregulation has been paid 
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PURPOSE: Mechanosensitive vascular smooth muscle cells (VSMCs) of resistance arteries crucially regulate blood flow by constricting 
or dilating over fluctuation of blood pressure (the myogenic response). This review was aimed at introducing cellular signaling that is 
relevant to arterial myogenic response and briefly describing how the arterial autoregulation is impaired by aging and exercise inter-
vention restores the diminished myogenic responsiveness.     

METHODS: A systemic literature research was conducted through PUBMED to comprehend previous studies that explore molecular 
mechanisms underlying arterial myogenic response, impaired pressure-induced vasoconstriction with advancing age, and effect of exer-
cise training on the arterial autoregulation. 

RESULTS:  The myogenic response generally consists of three steps: 1) detection of mechanical stress (e.g. stretch, tension) exerted on 
VSMCs, 2) biological transduction pathways (e.g., depolarization, Ca2+ entry, phosphorylation of myosin light chain, Ca2+ sensitiza-
tion, actin polymerization), and 3) adjustment of vascular tone (e.g. vasoconstriction or dilation). Aging induces vascular aging that is 
coupled to increased risks of development of cardiovascular diseases. The intrinsic ability of VSMCs to maintain appropriate blood flow 
in response to changes in intravascular pressure has been reported to be impaired with advancing age. In contrast, exercise intervention 
has been demonstrated to rescue aging-induced attenuation of arterial myogenic responsiveness.

CONCLUSIONS: Abnormal myogenic response of resistance arteries leads to vascular rupture, vasospasms, hypertension, or hypoten-
sion. Therefore, it will be valuable to investigate the exact mechanisms underlying the contribution of exercise training to arterial myo-
genic response to prevent and treat impaired arterial autoregulation-induced cardiovascular disorders.   

Key words: Aging, Myogenic reactivity, Pressure-induced vasoconstriction, Protein kinase C, Vascular smooth muscle cells

Exercise Science 

Vol.26, No.1, February 2017: 8-16
https://doi.org/10.15857/ksep.2017.26.1.8



http://www.ksep-es.org

https://doi.org/10.15857/ksep.2017.26.1.8

� Kwang-Seok Hong, et al.  •  Impact of Exercise on Aging-Induced Decrease in Arterial Autoregulation  |  9

attention as drug targets.

A major culprit of morbidity and mortality in older individuals is 

largely related to cardiovascular diseases [5]. Advancing age has been 

demonstrated to cause functional and structural alteration in vascular 

beds including vascular wall remodeling or excessive vascular stiffness 

[6]. It has been established along with aging that increased reactive oxy-

gen species (ROS) in the VSMCs and ECs lead to impairment of nitric 

oxide signaling, increased inflammatory responses, up- or down-regula-

tion of transcriptional factors regulating VSMC proliferation [7]. In con-

trast to advancing age, physical activity has a plethora of beneficial ef-

fects on the cardiovascular system [8]. It has been investigated that exer-

cise training markedly reduces coronary artery diseases, hypertension, 

and heart failure-mediated morbidity and mortality [9,10]. Thus, exercise 

intervention may act as a primary or secondary prevention and treat-

ment for cardiovascular diseases. In regard to the arterial autoregulaton 

that is crucial for the regulation of local blood flow, specific mechanisms 

by which myogenic responsiveness is impaired with advancing age have 

not yet fully defined. In addition, whether and how regular physical ac-

tivity restores the impaired myogenic reactivity in elderly individuals 

still remains poorly understood. This review has focused on briefly de-

scribing intracellular signaling pathways for the myogenic response and 

how the autoregulation is affected by aging and exercise training. 

MOLECULAR MECHANISMS UNDERLYING THE 
MYOGENIC RESPONSE

For over 100 years, numerous studies in vascular biology have contin-

ually sought to investigate intracellular signaling for the myogenic re-

sponse. Despite these efforts, how the intriguing myogenic responsive-

ness operates in physiological or pathological circumstances is still un-

clear. As far as is known, myogenic reactivity is comprised of several 

processes as follows: mechanosensitive ion channels, receptors, extracel-

lular proteins, and cytoskeletal proteins sense mechanical stresses on 

vascular wall following changes in intraluminal pressure. The detected 

mechanical forces are converted to biological signals (i.e., mechanotrans-

duction) such as alteration in membrane potential, Ca2+ influx, myosin 

light chain phosphorylation-dependent vasoconstriction, Ca2+ sensitiza-

tion, or cytoskeletal rearrangement for myogenic vasoconstriction [1,4,11].

Increased intraluminal pressure leads the sensory machineries of re-

sistance arteries or arterioles to detect tension or stretch of the VSMCs 

and then initiate intracellular signaling events for pressure-induced va-

soconstriction. Accordingly, the identification of mechanosensors in the 

VSMCs has been drawing keen attention of leading investigators. To 

date, integrins and G protein-coupled receptors (GPCRs) have been re-

ported to contribute to detection of change in intraluminal pressure and 

in turn evoke the myogenic response. Integrins consisting of a non-co-

valent interaction of α- and β-subunit heterodimers are involved in di-

vergent vasomotor reactivity by regulating Ca2+ dynamics (e.g., extracel-

lular Ca2+ influx) [12]. In addition to the role of integrins in vascular re-

activity, it has been elucidated that inhibition of αvβ3 or α5β1 integrin us-

ing specific antibodies abolishes myogenic vasoconstriction in skeletal 

muscle arterioles [13]. Further, more recently, activation of αvβ3 integrin 

has been delineated to regulate pressure-induced vasoconstriction in ce-

rebral arteries by modulating intracellular Ca2+ waves [14]. Next, since 

the novel finding that membrane stretch evokes conformational changes 

in angiotensin II type 1 receptor (AT1R) and provoke downstream sig-

naling in the absence of its ligand, angiotensin II [15], there is growing 

evidence that deformation of vascular wall following increased intralu-

minal pressure causes ligand-independent activation of GPCRs in the 

VSMCs. Specifically, numerous studies have been undertaken to dem-

onstrate using pharmacological inhibition or genetic manipulation (e.g., 

knockout or knockdown of target GPCRs) that mechanoactivation of 

purinergic receptors [16], cysteinyl leukotriene 1 receptors [17], and AT1R 

[18,19] takes part in myogenic vasoconstriction of mesenteric, cerebral, 

and skeletal muscle arterioles.

Membrane depolarization following an acute elevation in intravascu-

lar pressure is a major determinant for myogenic responsiveness of small 

arteries and arterioles. Transient receptor potential (TRP) channels have 

been suggested to regulate membrane potential and Ca2+ signaling [20]. 

Sub-families of TRP channels are comprised of canonical (TRPC), melas-

tatin (TRPM), polycystin (TRPP), and vanilloid (TRPV), akyrin (TRPA), 

and musolipin (TRPML) channels. Based on biophysical properties of 

the channels, cations (e.g., Ca2+, K+, Na+) are selectively or non-selectively 

allowed to be permeable for alteration in membrane potential [20]. With 

respect to myogenic vasoconstriction, blockade of TRPC6 channel by 

antisense oligodeoxynucleotides results in significant reductions in mem-

brane potential and myogenic reactivity in pressurized cerebral arteries 

[21]. Activation of TRPM4 channels being permeable to monovalent cat-

ions (e.g., Na+) and regulated by intracellular Ca2+ level and protein ki-

nase C (PKC) has also been identified to induce membrane depolariza-

tion and contribute to myogenic reactivity of cerebral arteries [22]. Thus, 

it is suggested that TRP channels play a critical role in membrane poten-
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tial regulation and pressure-induced vasoconstriction. Further, epithelial 

Na+ channel (ENaC) has been thought to be a mechano-gated channels 

in the VSMCs [23,24]. It is implicated that pressure-induced stretch of 

the VSMCs may be sensed by extracellular components of ENaC and 

then the detection may cause the opening of pore-forming components 

of ENaC [24]. Na+ entry through ENaC is coupled to membrane depo-

larization and subsequent Ca2+ influx that is required for myogenic re-

sponsiveness. Indeed, it has been found that amiloride/benzamil-depen-

dent pharmacological inhibition of ENaC profoundly abolishes myogenic 

vasoconstriction [25,26]. 

In contrast to the role of cation entry through TRP channels and ENaC 

in membrane depolarization following distension of the VSMCs, K+ chan-

nels serve as negative feedback regulators that prevent exaggerated myo-

genic reactivity in resistance arteries. Specifically, the large (big) conduc-

tance Ca2+-activated K+ (BKCa) channels and voltage-dependent K+ (Kv) 

channels participate in modulation of pressure-induced vasoconstriction 

through K+ efflux-mediated decrease in membrane potential of the VSMCs. 

Stimulation of BKCa channels by Ca2+ sparks (a vigorous local Ca2+ in-

crease by up to 1-100 μM) exerts spontaneous transient outward cur-

rents and in turn hyperpolarization-mediated vasodilation [27]. It has 

been revealed that increased intraluminal pressure augments the frequen-

cy of Ca2+ sparks and knockdown of subunits of BKCa channels marked-

ly increase myogenic responsiveness [28,29]. Along with BKCa channels, 

Kv channels negatively regulate pressure-induced vasoconstriction. Iso-

lated mesenteric or cerebral arteries treated with selective inhibitors of 

Kv1, Kv2, or Kv7 channel have shown a significant myogenic vasoconstric-

tion [30,31]. 

As described above, the activation of diverse ion channels evokes mem-

brane depolarization or hyperpolarization of the VSMCs once intralu-

minal pressure is altered. Pressure-mediated membrane depolarization 

has been identified to stimulate voltage-operated Ca2+ channels (VOCCs) 

[1]. Moreover, inositol trisphosphate (IP3) generated from activation of 

GPCRs and ryanodine activate IP3 receptors (IP3Rs) and ryanodine re-

ceptors (RyRs) in sarcoplasmic reticulum (SR). These events cause Ca2+ 

release from the SR by activating IP3Rs and RyRs [32]. It has been well-

defined that interaction of intracellular Ca2+ with calmodulin (i.e., Ca2+ 

-calmodulin complex) provokes activation of myosin light chain kinase 

(MLCK) and MLCK-induced phosphorylation of 20 kDa myosin light 

chain (LC-20) leads to VSMC contraction by stimulating the MgATPase 

of actomyosin cross-bridge [33,34]. Thus, Ca2+ influx through VOCCs 

and Ca2+ release from the SR are key determinants for myogenic vaso-

constriction. 

However, intracellular Ca2+ signaling in the VSMCs may not be suffi-

cient to account for pressure-induced vasoconstriction since a slight ele-

vation in intracellular Ca2+ has been found in response to increase in in-

traluminal pressure [35]. Ca2+ sensitization, one of Ca2+-independent mech-

anisms underlying the myogenic response, is defined as increase or main-

tenance of vascular contractility in the absence of increased intracellular 

Ca2+ in the VSMCs. This interesting phenomenon is associated with 

regulation of myosin light chain phosphatase (MLCP) suppressing the 

phosphorylation of LC-20 that is essential for VSMC contraction. Myo-

sin phosphatase targeting subunit 1 (MYPT1) and 17 kDa protein kinase 

C-potentiated inhibitory protein (CPI-17) are phosphorylated by Rho-

associated kinase (ROCK) and PKC, respectively [36,37]. The phosphor-

ylation of those subunits attenuates MLCP activity, which enhances MLCK 

activity and augments or maintain vascular contractility without a sig-

nificant increase in Ca2+ level. Suppression of phosphorylation of MLCP 

considerably reduces myogenic vasoconstriction in cerebral and skeletal 

muscle arterioles [38]. Next, as for pressure-induced cytoskeletal reorga-

nization, dynamics of actin thin filament has been focused as another 

Ca2+-independent mechanism underlying the myogenic response. Con-

tractile α-actin filaments have been known to anchor to focal adhesion 

complexes under integrins embedded in the plasma membrane [39,40]. 

Actin cytoskeleton reorganization (i.e. transition from globular α-actin 

to filamentous α-actin) following alteration in intraluminal pressure is 

obligatory for myogenic reactivity as globular α-actin level is found to 

decrease along with increase in intraluminal pressure and actin polym-

erization inhibitors (e.g., cytochalasins, latrunculin) significantly dimin-

ish pressure-induced vasoconstriction in cerebral or skeletal muscle arte-

rioles [18,41]. 

Collectively, the myogenic autoregulation of small arteries and arteri-

oles for the regulation of local flood flow and peripheral resistance is an 

intriguing outcome of integrity of diverse signaling pathways (Fig. 1). 

AGING-MEDIATED ATTENUATION IN THE 
MYOGENIC RESPONSE

Appropriate blood supply to skeletal muscle is required to perform 

daily activities and sustained muscle contraction [42]. Impaired physical 

performance with advancing age may be accompanied by dysregulation 

of local blood flow and inadequate oxygen supply [42]. Skeletal muscle 

in old rats has shown a reduction in blood flow capacity following elec-
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trical stimulation [43]. Further, it has been demonstrated in human study 

that elderly individuals have lower leg blood flow and vascular conduc-

tance during submaximal-intensity exercise, compared with those of 

young subjects [44]. In regard to this, a decline in physical performance 

has been suggested to be due, in part, to age-dependent impairment in 

myogenic responsiveness [45]. Indeed, myogenic reactivity has been re-

ported to decrease with advancing age in mesenteric, cerebral, and skele-

tal muscle arterioles [46,47].

Muller-Delp et al. [45] have found that skeletal muscle arterioles iso-

lated from rat soleus muscle (predominantly composed of oxidative mus-

cle fibers) and gastrocnemius muscle (referred to as glycolytic muscle fi-

bers) have a greater myogenic vasoconstriction in young rats compared 

to those in old rats. The impaired myogenic reactivity with advancing 

age is not limited to the microcirculation of rodents. Diminished pres-

sure-induced vasoconstriction with aging has been shown in human 

skeletal muscle arteries [48]. Retinal arteriole autoregulation during exer-

cise (i.e. lifting weights) has been investigated and suggested to be less in 

elderly individuals [49]. With respect to the decline in myogenic con-

striction, it has been hypothesized that aging-mediated attenuation of 

myogenic response is related to alteration in activity of voltage-depen-

dent (Kv) and/or BKCa channels [50]. The activation of K+ channels ex-

pressed in the VSMCs typically leads to membrane hyperpolarization 

that suppresses Ca2+ influx through VOCCs and prevents exaggerated 

myogenic vasoconstriction [11,31]. Thus, pharmacological inhibition of 

Kv or BKCa channels with 4-aminopyridine (4-AP) or iberiotoxin, respec-

tively, enhanced myogenic responsiveness in skeletal muscle arterioles in 

both young and old rats [50]. However, the significant difference in myo-

genic reactivity of soleus or gastrocnemius muscle arterioles between 

young and old rats was completely abolished in the presence of 4-AP or 

iberiotoxin. It is indicated that aging-mediated decline in myogenic va-

soconstriction may result from the augmented K+ channel activity in 

both skeletal muscle arterioles [50].

Beyond small arteries or arterioles in skeletal muscle, the myogenic 

autoregulation of resistance arterioles in brain such as the circle of Willis 

and pial vascular bed protects cerebral microcirculation from pressure-

induced injury and edema [51]. Even though the importance of the myo-

genic response has been well-investigated clinically and experimentally 

[52,53], the question as to how myogenic responsiveness is affected by 

advanced aging has not fully demonstrated. Middle cerebral arteries iso-

lated from young (3-month-old) and old (24-month-old) mice have shown 

Fig. 1. Schematic diagram showing molecular mechanisms underlying arteriolar myogenic vasoconstriction. Abbreviations: BKCa, large conductance Ca2+-
activated K+ channel; CPI-17, 17-kDa protein kinase C-potentiated inhibitory protein; DAG, diacylglycerol; GPCR, G protein-coupled receptor; IP3, inositol 
trisphosphate; IP3R, inositol trisphosphate receptor; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; MYPT1, myosin phosphatase 
targeting subunit; PIP2, phosphatidylinositol bisphosphate; PKC; protein kinase C; PLC, phospholipase C; RyR, ryanodine receptor, SR, sarcoplasmic reticu-
lum; TRPM4, transient receptor potential melastatin 4.

Fig. 1. Schematic diagram showing molecular mechanisms underlying arteriolar myogenic vasoconstriction. Abbreviations: BKCa, large conductance Ca2+-activated
K+ channel; CPI-17, 17-kDa protein kinase C-potentiated inhibitory protein; DAG, diacylglycerol; GPCR, G protein-coupled receptor; IP3, inositol trisphosphate; IP3
R, inositol trisphosphate receptor; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; MYPT1, myosin phosphatase targeting subunit; PIP2, p
hosphatidylinositol bisphosphate; PKC; protein kinase C; PLC, phospholipase C; RyR, ryanodine receptor, SR, sarcoplasmic reticulum; TRPM4, transient receptor p
otential melastatin 4
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similar myogenic vasoconstriction in response to increases static intralu-

minal pressure (i.e., 20-100 mmHg) [47]. However, at the relatively high 

intravascular pressure (i.e., 140 mmHg), myogenic responsiveness of the 

cerebral arteries has shown to be significantly lower in old mice, com-

pared to that in young mice. Springo and colleagues [47] applied pulsa-

tile intravascular pressure (pulse pressure frequency: 450/min, pulse pres-

sure amplitude: 40 mmHg) to mimic physiological circumstance. In con-

trast to static intravascular pressure, it was found that pulsatile pressure-

induced vasoconstriction is markedly impaired with advanced age. It is 

suggested that the inappropriate autoregulation of proximal resistance 

arterioles causes distal cerebral microcirculation to be exposed high in-

traluminal pressure and subsequent vascular injury [47]. Previous stud-

ies showing the negative effects of advancing age on arterial myogenic 

response are summarized in Table 1. 

Meanwhile, there may be some debate of whether advancing age ex-

clusively diminishes pressure-induced vasoconstriction. There are several 

subtypes of voltage-dependent Ca2+ channels including L-type, P/Q-type, 

R-type, and T-type Ca2+ channels in the VSMCs and/or ECs [54]. In con-

trast to L-type channels, Cav3.2 T-type channels allow local Ca2+ entry in 

the VSMCs, stimulating BKCa channels and eliciting hyperpolarization-

induced decrease in Ca2+ influx and vasodilation [55]. In this context, 

mouse mesenteric arteries with a deficiency of Cav3.2 T-type channels 

display augmented pressure-induced vasoconstriction [56] that has been 

consistently observed with NiCl2, an inhibitor of Cav3.2 T-type chan-

nels, in mesenteric arterioles of young mice (8-17 weeks old) [54]. It is in-

dicated that the T-type channels in the VSMCs appear to limit myogenic 

vasoconstriction. Interestingly, Mikkelsen & Colleagues [54] have dem-

onstrated that the opposite effect of Cav3.2 T-type channels on myogenic 

vasoconstriction is markedly abrogated in resistance arterioles of adult 

mice (28-56 weeks old). It is implicated that myogenic autoregulation 

can be enhanced with advancing age. Thus, further investigation is re-

quired for a better understanding of impact of aging on myogenic re-

sponsiveness of small arteries and arterioles.

EXERCISE-INDUCED RESTORATION OF 
IMPAIRED MYOGENIC REACTIVITY WITH 
ADVANCING AGE

Intrinsic autoregulation of resistance arteries and arterioles in response 

to changes in blood pressure plays crucial roles in regulation of local blood 

flow and peripheral resistance in animals and humans [1]. It has been 

delineated that the ability of resistance arteries and arterioles to modu-

late vascular contractility for the satisfaction of appropriate local blood 

perfusion is enhanced by exercise training [57]. To examine intracellular 

mechanisms by which exercise ameliorates the myogenic response in 

porcine coronary resistance arteries, PKC-mediated signaling pathways 

for myogenic vasoconstriction has been paid attention [57]. PKC has 

been well-established to regulate the myogenic response through L-type 

Ca2+ channel activation, Ca2+ sensitization, and actin polymerization 

[38,58]. In this study, coronary arteries isolated from animals involved in 

Table 1. Spontaneous tone and pressure-induced vasoconstriction in young and old arterioles 

Animal or  
   human subject

Age Vessels studied
Vascular responses (Spontaneous tone &  

Pressure-induced vasoconstriction)
References

Fischer 344 rats Young: 4 months;  
Old: 24 months

Soleus and gastrocne-
mius muscle arterioles

1) Spontaneous tone (young vs. old): 52±3 vs. 25±4% (soleus), 
20±4 vs. 11±3% (gastrocnemius)

2) Reduced pressure-induced vasoconstriction in old arterioles 
(both soleus and gastrocnemius)

Muller-Delp et al. 
[45]

Human subjects Young: 25±1 year; 
Old: 65±1 year

Brachial artery In response to increased intravascular pressure, lower peak 
mean blood velocity in old subject group (12.43±1.16 vs. 
17.97±2.01 cm/s)

Lott et al. [48]

Fischer 344 rats Young: 4 months;  
Old: 24 months

Soleus and gastrocne-
mius muscle arterioles

1) Spontaneous tone (young vs. old): 52±4 vs. 44±3% (soleus), 
34±2 vs. 30±2% (gastrocnemius)

2) Reduced pressure-induced vasoconstriction in old arterioles 
(both soleus and gastrocnemius)

Kang et al. [50]

Fischer 344 rats Young: 4-6 months; 
Old: 22-24 months

Soleus muscle arterioles 1) Spontaneous tone (young vs. old): 28±3 vs. 19.4±3.6%
2) Reduced pressure-induced vasoconstriction in old arterioles

Ghosh et al. [46]

C57BL/6 mice Young: 3 months;  
Old: 24 months

Middle cerebral arteries 1) Static intravascular pressure (over 140 mmHg): diminished 
myogenic constriction in old arteries

2) Pulsatile intravascular pressure (pulse pressure amplitude: 40 
mmHg, frequency: 450/min): lower pressure-induced vaso-
constriction in old arteries 

Springo et al. [47]
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a training program (6 miles per hour, 60-minute, 16 weeks) showed 

greater pressure-induced vasoconstriction than that of control animals 

[57]. Further, the trained animals exhibited greater attenuation of myo-

genic vasoconstriction in the presence of PKC inhibitor chelerythrine, 

suggesting that the enhanced myogenic response in coronary arteries of 

trained animals is attributed to increased PKC signaling pathways. This 

is supported by their additional findings showing that PKC-dependent 

Ca2+ influx through L-type Ca2+ channels was substantially greater in 

coronary arteries from trained animals. Additionally, decreased Ca2+ en-

try by PKC inhibition and PKC-α expression at a protein level were con-

siderably higher in the exercise group [57]. Thus, exercise training may 

enhance the myogenic vasoconstriction of coronary arteries by modulat-

ing PKC-related intracellular signaling. 

Based on previous work [57], it may be assumed that regular physical 

activity improves age-related impairment of myogenic response. Indeed, 

it has been found that treadmill exercise training (15 meter/minute, 15 

incline, 20-60 min/day, 5 days/week, 10-12 weeks) consistently enhances 

myogenic responsiveness in skeletal muscle arterioles isolated from young 

(4-6 month old) rats and interestingly restores the attenuation of pressure-

induced vasoconstriction with advancing age [46]. The restored myo-

genic vasoconstriction in old (22-24 months old) rats was largely similar 

to that in young control rats. It has been demonstrated that an increase 

in Kv channel activity is responsible for a reduction in myogenic vaso-

constriction with advancing age [50]. As previously described, K+ efflux 

through Kv channels leads to membrane hyperpolarization and vasodi-

lation. Thus, it is suggested that aging-induced increase in Kv channel ac-

tivity diminishes myogenic vasoconstriction of skeletal muscle arterioles 

in old rats [50]. Consistent with this interesting findings, Ghosh and col-

leagues have elucidated that exercise training elicits Kv1 channel adapta-

tion (i.e. presumably decreases in channel activity and/or expression), 

thereby restoring arterial myogenic responsiveness from old rats [46]. 

However, despite those novel studies [46,57], the mechanisms underlying 

exercise-mediated enhancement of the myogenic response remain poorly 

understood. Therefore, further investigations into the role of exercise 

training in the myogenic response are needed. In addition, it may be 

worth investigating whether physical inactivity (e.g., bed rest) deterio-

rates activities of biological machineries that are involved in the myo-

genic autoregulation and whether the impaired myogenic response by 

physical inactivity could be restored by exercise training. 

CONCLUSION

Small arteries and arterioles are considered as mechanosensitive blood 

vessels that control their diameter to regulate local microvascular hemo-

dynamics by sensing alteration in intraluminal pressure. Exaggerated or 

attenuated myogenic responsiveness in resistance arteries has been re-

ported to cause pathophysiological conditions such as hypertension, va-

sospasm, ischemic stroke, or orthostatic hypotension. The prevalence of 

vascular diseases is associated with advancing age, which may be partly 

attributed to age-dependent impairment of myogenic responsiveness in 

resistance arteries. In view of prevention and treatment of cardiovascular 

disorders, a decline in the myogenic response with advancing age has 

been a therapeutic target. Taken together, greater insight of specific mech-

anisms underlying the impact of regular physical activity on arterial myo-

genic responsiveness has to be further made to reduce cardiovascular 

diseases-related mortality in elderly individuals.
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