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In this study we have investigated the determination of proper time step in molecular dynamics simulation.
Since the molecular dynamics is mathematically related to nonlinear dynamics, the analysis of eigenvalues is
used to explain the relationship between the time step and dynamics. The tracings of H2 and CO2 molecular
dynamics simulation agrees very well with the analytical solutions. For H2, the time step less than 1.823 fs pro-
vides stable dynamics. For CO2, 3.808 fs might be the maximum time step for proper molecular dynamics. Al-
though this results were derived for most simple cases of hydrogen and carbon dioxide, we could quantitatively
explain why improperly large time step destroyed the molecular dynamics. From this study we could set the
guide line of the proper time step for stable dynamics simulation in molecular modeling software.

Introduction

Molecular dynamics1,2 is a simulation3 method describing
the molecular motion by the equation of motion which New-
ton's classical mechanics describes. The first computer simu-
lation using molecular dynamics method was performed on
simple fluids, later on the solution of simple molecules like
water.4,5 Later, according to the acceleration of development of
computation speed and storage capacity, molecular dynamics
of bigger molecules and biopolymers have been performed.6

In the molecular dynamics simulation, the atoms included
in molecules move according to the Newtonian equation of
motions. In other words, when we know the structure of
molecule at one moment, we can find the structure at the
next moment using the integration method of the equation of
motion with time starting from here. The process of integrat-
ing the equation of motion can be achieved by several kinds
of algorithm. The commonly important concept in the vari-
ous algorithms is the time step (∆t). If a big time step is used,
the motion of molecule becomes unstable due to the very big
error occurring in the integration. Therefore, molecules may
not have a normal structure any more. Reversely, if a very
small value of time step is used, it will not be efficient due to
a very long calculation time.7

Therefore, the selection of the time step is very important
to perform the molecular dynamics simulation. In normal
molecular dynamics simulation, we use 1 femto second (fs:
10−15 sec) time step. There are some logical explanations8,9

about the usage of 1 fs time step. One of the explanations is
that stable dynamics will be executed only if we use the smaller
time step compared to the period of the highest vibrational
frequency of the molecule. If we can determine the biggest time
step for a stable dynamics, it is expected that the efficiency
of the molecular dynamics simulation will be maximized.

In this paper, we have investigated the reasons why the
dynamics sometimes break down after a maximum limit of
time step in the simulation, and determined the exact point
where a chaotic behavior start in molecular dynamics simu-
lations of simple system such as hydrogen or carbon dioxide
molecule.

Theory

If the energy of a molecule is expressed in a function
the molecular structure, the force acting on an atom can
determined by differentiating the energy with position of t
atom A. (See Figure 1 for notations in Eq. (1)).

(1)

where axA is the acceleration of atom A in x direction, vxA the
velocity of atom A in x direction, FxA the force acting on
atom A in x direction, E the potential energy of the molecule

If the acceleration is calculated by the above method, 
can determine the velocity by the integration of accelerat
with time, and also the change of position by the integrat
of velocity with time. Several algorithms are proposed 
carry out the integration processes. The most frequently u
algorithm is called Verlet.3

(2)

(3)

(4)

(5)

······

The other popular one is leap-frog3 algorithm. This gives vir-
tually the same result as Verlet algorithm as following.

axA = 
dvxA

dt
---------- = 

FxA

mA

-------- = − 1
mA

------- ∂E
∂xA

--------

v1
2
---
 = v

-
1
2
---
 + a0∆t

x1 = x0 + v1
2
---
∆t

v3
2
---
 = v1

2
---
 + a1∆t

x2 = x1 + v3
2
---
∆t

Figure 1. The Hydrogen Molecule. HA: hydrogen atom A, HB:
hydrogen B, l: bond length between two atoms.
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In this study, we investigated the changes of molecular
dynamics by the different time-step (∆t). The simpler trial
molecules are hydrogen (H2) and carbon dioxide (CO2).

Mathematical Model. Let V be a partial group of R2. If
a certain function F is described as F : V → R2, this function
is called “map”. This kind of function F can be expressed by
the following form.

(10)

Here, f and g are the coordinate functions of F. If this coor-
dinate function is internal coordinate system of a molecule,
the process of molecular dynamics simulation is same as the
iterative calculations of the above defined function like fol-
lowing procedure.

(11)

(12)

···

The movements of v0, v1, v2, ..., vn from the above iterative
calculations describe the same results as molecular dynam-
ics simulation. In order to analyse the dynamics of molecular
system as molecular dynamics simulation, one should know
the exact variations of v0, v1, v2, ..., vn and would define the
partial derivatives of the above defined functions.

(13)

This kind of partial derivative can be expressed in terms of
matrix. The dynamics depend upon the outcome (real or
complex number and the sign of imaginary part for complex
number) of the eigenvalues of the matrix. Therefore, we
have defined DF(v) for simple molecular systems (H2 and
CO2) and analyzed the outcome of the eigenvalues for differ-
ent time-step (∆t) for molecular dynamics simulations.

Hydrogen Molecule (Harmonic oscillator function).
The potential energy of the hydrogen molecule can be
expressed to the following equation.

(14)

where l is the bond length, l0 the most stable bond length, ks

the force constant.

In the above equation, l0 is 0.64 Å in MM2 force field.10

The force constant is 5 millidyne/Å (= 500 N/m). The ma
of the hydrogen atom is 1.66113×10−27 kg. The analytical
method of the molecular dynamics simulation for the hyd
gen molecule using the above equation is following.

(15)

where l = xB − xA (xB > xA), xA and xB are the positions of HA

and HB.

The positions of the hydrogen atoms by the leap-frog al
rithm will be changed by the following equations.

(16)

(17)

Therefore, the bond length defined by l = xB − xA, will be

(18)

The accelerations of atoms A and B are

(19)

(20)

Then, the Eq. (18) will be converted to Eq. (21).

(21)

where µ is the reduced mass (= 8.3057×10−28 kg)

Here, we define a vector containing the current bo
length (ln) and the previous bond length (ln−1) before the time
step ∆t.

(22)

Then, the above Eq. (21) can be transformed to the follo
ing form,

(23)

If we rewrite the function with a general expression,

v1 = 2v0 + a0 ∆t( )

x1 = x0 + v1 ∆t( )

x1 = 2x0 − x-1 + a0 ∆t( )2

x2 = 2x1 − x0 + a1 ∆t( )2

F V( ) = f v( )
g v( ) 

 
 

 for all v in V

v1 = F v0( ) = 
f v0( )
g v0( ) 

 
 

v2 = F v1( ) = 
f v1( )
g v1( ) 

 
 

DF v( ) = 

∂f
∂x
----- v( ) ∂f

∂y
----- v( )

∂g
∂x
------ v( ) ∂g

∂y
------ v( )

 
 
 
 
 
 

E = 
ks

2
---- l−l0( )

2

E = 
ks

2
---- l−l0( )

2

xA2 = 2xA1−xA0 + aA1 ∆t( )2

xB2 = 2xB1−xB0 + aB1 ∆t( )2

l2 = 2l1−l0− aA1−aB1( ) ∆t( )2

aA = − 1
mA

------- ∂E
∂xA

-------- = − 1
mA

------- ∂
∂xA

--------
ks

2
---- xB−xA−l0( )

2
 = 

ks

mA

------- l−l0( )

aB = − 
ks

mB

------- l−l0( )

l2 = 2l0−l0− 1
mA

------- +
1

mB

------- 
  ks l1−l0( ) ∆t( )2

= 2l1−l0−
ks

µ
---- l1−l0( ) ∆t( )2

l n-1

l n 
 
 

l1

l2 
 
 

 = 
l1

2l1−l0−
ks

µ
---- l1−l0( ) ∆t( )2
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Therefore, the simulation of molecular dynamics for the
hydrogen molecule is the same as the repeated iterations of
the Eq. (24). In order to understand the dynamics, we should
know the orbit and should define the differential of the func-
tion.

(25)

Since the molecular dynamics is mathematically related to
nonlinear dynamics,11 the analysis of eigenvalues is used to
explain the relationship between the time step and dynam-
ics.12 If find the eigenvalue of the above matrix, the dynam-
ics of the Eq. (24) will be completely understood. If we
define the eigenvalue λ, λ should satisfy the following deter-
minant.

(26)

Therefore,

(27)

Depending on the size of ∆t, the roots (λ) satisfying the
Eq. (27) can be several kinds of complex numbers.

i) λ's are complex roots and the real parts of the roots are
positive.

The following condition should be satisfied for λ to be
complex numbers.

(28)

Therefore, the range of ∆t for to be complex roots is

(29)

And the condition that the real parts of the roots are posi-
tive will require the following range of ∆t.

(30)

(31)

The time-step ∆t simultaneously satisfying the above two
conditions should be:

(32)

ii) λ's are complex roots and the real parts of the roots are

negative.
The similar process gives the following range of tim

step:

(33)

ii) λ's are real roots

(34)

Carbon Dioxide (CO2). The potential energy of carbon
dioxide molecule is expressed like following.

(35)

where : la = xC − xOA

lb = xOB − xC

The third term in above equation is related with an an
bending. The magnitude of contribution is determined to
very small to the total energy, and will be omitted in ne
calculation step for a simplification.

(36)

For carbon dioxide, the force constant (ks) of bond-stretch-
ing is 10 millidyne/Å, the equilibrium bond length (λ0) is
1.162. The mass of carbon atom 1.99336×10−26 kg, and the
mass of oxygen atom is 2.65781×10−26 kg .

Using the energy expression of carbon dioxide, we c
calculate the forces acting on the individual atoms by diff
entiation of the energy with respect to the coordinate of e
atom. From these forces, we can determine the accelera
of atoms.

(37)

F x

y 
 
 

 = 
y

2y−x−
ks

µ
---- y−l0( ) ∆t( )2

 
 
 
 
 

DF x

y 
 
 

 = 
0   1

−1      2−
ks

µ
---- ∆t( )2

 
 
 
 
 

−λ   1

−1      2−
ks

µ
---- ∆t( )2−λ

λ2 + 
ks

µ
---- ∆t( )2−2 

  λ + 1 = 0

ks

µ
---- ∆t( )2−2 

 
2

−4 0<

0 ∆t 2
µ
k
--- 

  1 2⁄
< <

− 
ks

µ
---- ∆t( )2−2 

  0>

− 
2µ
k

------ 
  1 2⁄

∆t
2µ
k

------ 
  1 2⁄

< <

0 ∆t
2µ
k

------ 
  1 2⁄

1.823 10-15×≈< <

1.823 10-15 2µ
k

------ 
  1 2⁄

∆t
2µ
k

------ 
  1 2⁄

2.578 1015–×≈< <≈×

∆t 2
µ
k
--- 

  1 2⁄
2.578 1015–×≈>

E = 
ks

2
---- l a−l0( )

2
 + 

ks

2
---- l b−l0( )

2
 + 

kθ

2
----- θ −θ0( )

2

E
ks

2
---- l a−l0( )

2
 + 

ks

2
---- l b−l0( )

2
≈

= 
ks

2
---- xC−xOA−l0( )

2
 + 

ks

2
---- xOB−xC−l0( )

2

aOA = − 1
mO

------- ∂E
∂xOA

------------ = 
ks

mO

------- l a−l0( )

Table 1. The eigenvalues and turning points for H2 dynamics

Cases λ's Maximum ∆t (sec)

1 2 complex numbers, real part (+) 1.823×10−15

2 2 complex numbers, real part (-) 2.578×10−15

3 2 real numbers ∞

Figure 2. Carbon Dioxide Molecule. C: carbon atom, OA and OB:
oxygen atoms, la: bond length between carbon and oxygen A, lb:
bond length between carbon and oxygen B.



422     Bull. Korean Chem. Soc. 2000, Vol. 21, No. 4 Jong-In Choe and Byungchul Kim

he

 of
 real

s of
 real

g
p-

lar
ted
 as

og
(38)

(39)

Applying the acceleration of each atom to the Verlet algo-
rithm, the following expressions of atomic coordinates after
a time-step (∆t) can be obtained.

(40)

(41)

(42)

If one define la = xC − xOA, lb = xOB − xC, the following
equations can be obtained.

(43)

(44)

In order to use the similar vector expression as hydrogen
molecule, one can define w = la(t − ∆t), x = la(t), y = lb(t −
∆t), z = lb(t). Then the above equations can be rewritten as
following.

(45)

In order to analyze the above function, one should derive
the following partial derivative matrix.

(46)

The above matrix has four eigenvalues (λ) and the out-
come will depend on the different time step (∆t).

ii) All four eigenvalues are complex numbers and the
signs of real parts are plus.

(47)

ii) All four eigenvalues are complex numbers and t
signs of real parts are minus for two of them.

(48)

iii) Two eigenvalues are complex numbers and the signs
real parts are plus, and the remain two eigenvalues are
numbers.

(49)

iv) Two eigenvalues are complex numbers and the sign
real parts are minus, and the remain two eigenvalues are
numbers.

(50)

v) All four eigenvalues are real numbers

(51)

Results and Discussion

In order to determine the proper time step (∆t) for molecu-
lar dynamics simulation, we have tried to find the turnin
points of dynamics through analytical calculation of lea
frog algorithm.

We have performed two simple cases for molecu
dynamics computer simulation to prove that the calcula
turning points are the drastically changing dynamics such
diverging bond distance.

Hydrogen Molecule. The potential energy function of
hydrogen molecule is derived from MM2 force field10 and
the molecular dynamics simulation is perform by leap-fr

aC = − 1
mC

------- ∂E
∂xC

-------- = −
ks

mC

------- l a−l0( )− l b−l0( )( )

aOB = − 1
mO

------- ∂E
∂xOB

------------ = − 1
mO

------- l b−l0( )

xOA t + ∆t( ) = 2xOA t( )−xOA t−∆t( ) + 
ks

mO

------- l a−l0( )∆t2

xC t + ∆t( ) = 2xC t( )−xC t−∆t( )

−
ks

mC

------- l a−l0( )− l b−l0( )( )∆t2

xOB t + ∆t( ) = 2xOB t( )−xOB t−∆t( ) + 
ks

mO

------- l b−l0( )∆t2

l a t + ∆t( ) = 2l a t( )−l a t−∆t( )

−
ks

µ
---- l a t( )−l0( )∆t2 + 

ks

mC

------- l b t( )−l0( )∆t2

l b t + ∆t( ) = 2l b t( )−l b t−∆t( )

−
ks

µ
---- l b t( )−l0( )∆t2 + 

ks

mC

------- l a t( )−l0( )∆t2

F 

w

x

y

z 
 
 
 
 
 

 = 

x

2x−w−
ks

µ
---- x−l0( )∆t2 + 

ks

mC

------- z−l0( )∆t2

z

2z−y−
ks

µ
---- z−l0( )∆t2 + 

ks

mC

------- x−l0( )∆t2

 
 
 
 
 
 
 
 
 
 

DF 

w

x

y

z 
 
 
 
 
 

 = 

0 1 0 0

−1 2−
ks

µ
----∆t2 0

ks

m
----∆t2

0 0 0 1

0
ks

µ
----∆t2 −1 2−

ks

µ
----∆t2

 
 
 
 
 
 
 
 
 

0 ∆t
2

k
1

mO

------- + 
2

mC

------- 
 

-------------------------------

 
 
 
 
  1 2⁄

3.80751 1015–  ×≈< <

2

k
1

mO

------- + 
2

mC

------- 
 

-------------------------------

 
 
 
 
  1 2⁄

∆t 2
1

k
1

mO

------- + 
2

mC

------- 
 

-------------------------------

 
 
 
 
  1 2⁄

< <

 5.38464 1015–×≈

2
1

ks
1

mO

------- + 
2

mC

------- 
 

---------------------------------

 
 
 
 
  1 2⁄

∆t
2mO

ks

---------- 
  1 2⁄

< <

 7.29083 1015–×≈

2mO

ks

---------- 
  1 2⁄

∆t 2
mO

ks

------- 
  1 2⁄

10.3108 1015–×≈< <

∆t 2
mO

ks

------- 
  1 2⁄

10.3108 1015–×≈>

Table 2. The eigenvalues and turning points for CO2 dynamics

Cases λ's Maximum ∆t (sec)

1 4 complex numbers, real parts (+) 3.808×10−15

2 4 complex numbers, 2 real parts (+) 5.385×10−15

3 2 complex numbers, real parts (+) 7.291×10−15

4 2 complex numbers, real parts (-) 10.311×10−15

5 4 real numbers ∞
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algorithm. The source code for the simulation is written by
Visual Basic.

Since the purpose of this simulation is the recording of the
bond-distance dynamics according to the time step (∆t), we
plotted the 500 iterations of molecular dynamics for each
time step from 0.00 to 3.00 femto seconds for 0.01 fs inter-
vals. The tracings are accumulated in Figure 3.

In Figure 3, the horizontal axis is the time step and the ver-
tical axis is the distance between two hydrogen atoms. The
two vertical lines at 1.823 and 2.578 fs are at the values cal-
culated from the analytical method (Table 1). For H2, the
time step less than 1.823 fs would provide stable dynamics.
Onto this time step, the bond distance normally oscillates
between +0.06 and -0.06 Angstrom from the average dis-
tance (0.64 A) for molecular dynamics simulation. After
1.823 fs time step, the bond distance (H-H) begins to oscil-
late with much bigger amplitude until 2.578 fs where the
molecular dynamics completely breaks down to go for a
chaotic behavior.11 As one compares the eigenvalues of
Table 1 with the boundary values of Figure 3, the 2.578 fs
calculated from theory is exactly matched for the time step
of MD simulation. After this point (2.578 fs), the bond dis-
tance will jump from a certain value to another without con-
tinuity or physical meaning.

The stability of the numerical integration with respect to
the time step can be tested directly by integrating the forces
used by dynamics and comparing the integral with the ana-
lytical energy.9

In Figure 4, Integrated energy calculated numerically from
a dynamics trajectory of hydrogen atoms in hydrogen mole-
cule is compared with the analytical energy curve (harmonic
form: E = ks(l − l0)2)/2. The time step used is 1 fs at a temper-
ature of 300 K. The temperature is set by assigning an initial
velocity of 1500 m/sec (0.015 Anstrom/fs) to one of hydro-
gens along the vector connecting them. As two atoms
approach each other, the numerical energy is higher than the
analytical energy when the bond length is longer than equi-
librium distance. The numerical value is lower when the

bond length is shorter than equilibrium distance. Howev
after atoms collide, the integration energy is higher than 
analytical energy when the bond length is shorter than eq
librium distance. Due to the assumption of harmonic form
energy, the numerical energy oscillates between maxim
and minimum bond distance. The situation is different fro
the result of reference 9, where the hydrogen atoms hav
bonding between them and the expression for analyt
energy is Morse form: E = Db (1 − e−a(b − b0)2).

Carbon Dioxide (CO2). A similar molecular dynamics
simulation of carbon dioxide is also performed.

In Figure 5, four vertical lines at 3.808, 5.385, 7.291, a
10.311 fs are determined from the analytical solution. F
CO2, 3.808 fs might be the maximum time step for prope
molecular dynamics. Onto this time step, the bond dista
normally oscillates between +0.12 and -0.12 Angstrom fro
the average distance (1.162 A) for molecular dynamics s
ulation. After 3.808 fs time step, the bond distance begins 
oscillate with much bigger amplitude until 5.385 fs where
the molecular dynamics completely breaks down to go fo
chaotic behavior. As one compares the eigenvalues of T
2 with the boundary values of Figure 3, the 5.385 fs calcu-
lated from theory is exactly matched for the time step of M
simulation. After this point (5.385 fs), the bond distance will
jump from a certain value to another without continuity.

The tracings of H2 and CO2 molecular dynamics simula-
tion agree very well with the analytical solutions. For H2, the
time step less than 1.823 fs is providing stable dynamics. Fo
CO2, 3.808 fs might be the maximum time step for prope
molecular dynamics.

Conclusion

In this study we have investigated the determination
proper time step in molecular dynamics simulation. Sin
the molecular dynamics is mathematically related to non
ear dynamics,11 the analysis of eigenvalues is used to expla
the relationship between the time step and dynamics.12

The tracings of H2 and CO2 molecular dynamics simula-Figure 3. MD orbit diagram of H2 molecule.

Figure 4. Numerical Integration of Energy from Molecular Dyna
mics of H2 Molecule, 1 fs Time Step. Integrated energy calculate
numerically from a dynamics trajectory of hydrogen atom
(squares) is compared with the analytical energy curve (circles)
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tion agree very well with the analytical solutions. For H2, the
time step less than 1.823 fs is providing stable dynamics. For
CO2, 3.808 fs might be the maximum time step for proper
molecular dynamics.

Although this results were derived for most simple cases
of hydrogen and carbon dioxide, we could quantitatively
explain why improperly large time step destroyed the molec-
ular dynamics. From this study we could set the guide line of
the proper time step for stable dynamics simulation in
molecular modeling software.
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