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ABSTRACT Location-based authentication for Internet of Things (IoT) devices can be used to permit
activation and participation only to those devices that are in their predefined areas. It secures the devices from
being used elsewhere (e.g. misplacement or theft), and also secures the system by preventing non-authorized
devices from joining the network. However, absolute location is not required for such purposes; only whether
the device is within the designated ‘secure’ region or not matters, which we define as the secure region
detection problem. In this work, we propose SWORD, the first secure region detection scheme based on
channel state information (CSI) of Wi-Fi and deep one-class classification (OCC) technique. OCC can be
trained using data only from the inside of a secure region and no negative reference point is required, a critical
advantage considering that outside of a secure region is practically unbounded. Our real-world experiment
results show that SWORD can achieve 99.14% true-negative rate (TN, successfully rejecting devices not in
secure region) and an acceptable true-positive (TP) of 76.90% for practical usage. Furthermore, there is an
user-adjustable trade-off between TN and TP based on application requirement, and TP can be improved to
97.92% without a big loss of TN using simple automatic repeat mechanism.

INDEX TERMS Secure region detection (SRD), one-class classification (OCC), Wi-Fi, channel state

information (CSI), the IoT authentication.

I. INTRODUCTION

Imagination of Internet of Things (IoT) devices being used
ubiquitously in daily life has become a reality. The number
and diversity of IoT applications, devices, and users have
experienced enormous increase in recent years [1]. Conse-
quently, security of IoT devices in terms of both the physical
hardware and access to them has emerged as an important
issue [2]. However, the sheer diversity of IoT devices makes
generally-applicable and user-convenient security solutions
challenging.

Location-based authentication (LBA) is a compelling tech-
nique for IoT security that allows a device to be activated
or accessed only at a predefined location. It prevents devices
from being used elsewhere (e.g. theft, misplacement, manip-
ulation), and allows legitimate devices to access the sys-
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tem only from the correct location. However, absolute loca-
tion is not required for such purposes; only whether the
device is within the designated ‘secure’ region or not mat-
ters, which we define as the secure region detection (SRD)
problem.

Secure region detection would be an obvious task if
precise absolute location is given. However, practical and
precise indoor localization is challenging and expensive
(Section II-A). Existing approaches have various limitations
such as privacy concerns, complexity, number of devices
required to provide the desired coverage, accuracy, and
most importantly, the “amount of training process and data
needed” . For example, camera-based localization [3], [4] has
gained spotlight recently thanks to its high accuracy with
the development of computer vision and machine learning
techniques. However, considering the large number of IoT
devices, cost, scale, and privacy issues hinder their wide
practical use.
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Wi-Fi-based localization has been studied extensively dur-
ing the past two decades (e.g. pioneering work in [5]) with
acceptable accuracy in testbed settings. However, trilatera-
tion based techniques suffer low accuracy in practice due to
complexity of indoor wireless environments. Fingerprinting-
based methods can be accurate, but the biggest drawback
is that they require enormous learning data which is labor
intensive [6], [7]. It is not only a tedious task to collect
data from reference points ‘within’ the target region, but is
practically infeasible to collect corresponding negative data
since ‘outside’ of a target space is practically unbounded.

Our intuition is that secure region detection is a problem
that can be solved by knowing only whether the device is
inside the target area, and therefore, we can achieve both prac-
ticality and accuracy with far less data collection effort. With
this insight, we propose SWORD, a Secure, Wi-Fi and One-
class classification (OCC) based, Region Detection scheme.
SWORD achieves accuracy by extracting spatial features from
Wi-Fi CSI (which has 56 subchannel ! amplitude values as
opposed to a single channel RSS), and solves the problem
of unbounded learning data collection effort through OCC
(Section III).

We implement SWORD on commercial Wi-Fi NICs, and
evaluate its performance through real experiments to show
that SWORD achieves an excellent true-negative (TN) ratio
of 99.14%, which means non-authorized devices outside the
secure region are correctly rejected. This comes with an
acceptable true-positive (TP) of 76.9%, which can be aug-
mented with a few automatic retries to achieve 97.92% for
practical use. Furthermore, there is a fundamental trade-off
between TN and TP depending on user policy, and the param-
eter can be tuned based on application requirement.

The contributions of this paper are as follows;

o We define the new “secure region detection” problem,
and discuss how it can overcome the challenges of exist-
ing RF-based localization work by taking advantage of
its characteristics.

o We propose SWORD, a novel secure region detection
scheme. To the best of our knowledge, this is the first
work that uses one-class classification on Wi-Fi CSI to
solve the region detection problem using data only from
the target region without any negative reference data.

o We implement SWORD on a commercial Wi-Fi chip and
evaluate its accuracy through real world experiments.

The remainder of this paper is organized as follows.
Section II motivates this work by providing background and
related work. Then, Section III presents the design of our
proposed scheme SWORD. Section IV evaluates the SRD
performance of SWORD through real implementation and
experiments. Finally, we conclude the paper in Section V.

IThe IEEE 802.11 standard defines 64 subcarriers with 20MHz band-
width: 48 for data, 4 pilot, and 12 virtual. However, commercial Atheros
chip provides measurement from only 56 subcarriers. Intel allows 30.
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Il. BACKGROUND AND RELATED WORK

In this section, we first introduce the existing wireless
signal-based indoor localization research, and point out their
limitations. Then, the reason for using CSI data to charac-
terize Wi-Fi signal for spatial information will be described.
We present a preliminary study which shows how Wi-Fi CSI
performs with binary classification technique, and motivate
our work on one-class classification and why it should be
used.

A. WIRELESS SIGNAL-BASED INDOOR LOCALIZATION
Indoor localization has been an interesting research topic
especially since the emergence of IoT and smart mobile
devices [5], [8], [9]. Approaches based on wireless/RF signals
have gained the most popularity among them because they
do not require additional sensors such as IMU or camera,
and most IoT devices are already equipped with wireless
interfaces. Most RF-based localization techniques can be
categorized into trilateration /triangulation [10]-[12] and fin-
gerprinting [5], [13] methods, and latter has been regarded
relatively more accurate due to complex nature of indoor
wireless environments. However, several papers point out that
obtaining data for fingerprinting is labor-intensive [6], [7].
Thus, there have been many studies that attempt to improve
the accuracy of localization while reducing the effort required
to obtain training data.

In order to improve accuracy, Luo and Hsiao [14] aug-
mented Bluetooth low energy (BLE) beacons to a Wi-Fi-
based localization system at places where it is difficult to
distinguish Wi-Fi signals between two different reference
points. Then, received signal strength (RSS) of both the
Wi-Fi and BLE are used for fingerprinting to improve accu-
racy. Similarly, Tong et al. [15] also proposed to use BLE
to improve the accuracy of Wi-Fi-based system, but with
crowd-sourced BLE data instead of controlled fingerprinting.
Sun et al. [16] pointed out that constructing a sophisticated
wireless map using Wi-Fi is time-consuming, and proposed
a Gaussian process regression model to predict the spatial
distribution in uncorrected domains. Although this reduces
the fingerprinting effort, accuracy was sacrificed.

Machine learning techniques have been popular for indoor
localization as well. DeepFi [17] is a deep-learning-based
indoor fingerprinting system using Wi-Fi CSI, which uses
a four-layer neural network and a greedy learning algorithm
for training the model. ConFi [18] maps Wi-Fi CSI amplitude
data from 3 antennas as RGB image, and uses a convolutional
neural network (CNN) on that image for indoor localization.
More recently, Xun et al. [19] have also devised a method
using Wi-Fi CSI and a CNN, and divided a room into several
smaller subareas while training their CNN to overcome the
complexity problem.

Although the aforementioned papers either improve accu-
racy or reduce the effort in obtaining reference point (RP)
training data with the aid of prediction, machine learning,
or other sensors, a common problem with these methods in
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Secure Region

FIGURE 1. Example: secure region on a table (green grid area). An user
device can be unlocked only when in that region.

FIGURE 3. Experimental setup for binary classification of two tables.

the context of secure region detection is that RP information
outside the target area is still required for fingerprinting.
Obtaining radio signal information from RP outside the target
area is not impossible, but would be very labor intensive
and ambiguous in many cases since ‘outside’ is practically
unbounded. We fundamentally solve this problem by devis-
ing a method using one-class classification that does not
require information outside the target area for secure region
detection.

B. Wi-Fi CSI

RSS is one of the most widely used measure in wireless sys-
tems for various purposes such as ranging, localization, link
quality measurement, and routing due to its fundamental rela-
tion with physical distance [20]. For example, Heo et al. [21]
classified users as in- and outside of a room using RSS of
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Wi-Fi. However, it fluctuates significantly due to multipath,
fading, and occupants in the environment, and its granularity
is insufficient to capture delicate spatial information. Further-
more, it provides only a single feature (per AP) to accomplish
the classification task.

In this work, we aim to learn the features of a space using
Wi-Fi CSI data which has substantially more information
than RSS [22]. Modern Wi-Fi signals are transmitted through
multiple subcarriers (e.g. 56 with 20 Mhz bandwidth) using
OFDM modulation. Thus, CSI data (amplitude and phase?)
can be obtained from the channels experienced by each of
these 56 subcarriers, which can provide a multitude of more
temporally fine-grained information about the characteristics
of each location.

Regarding the spatial granularity of information, it is well
known that two channels measured at a distance greater than
half-wavelength are uncorrelated [23]. At Wi-Fi’s 2.4 GHz
band, half-wavelength is about 12 cm long. Therefore, to dis-
tinguish a target area from elsewhere with only the training
data obtained from the target area, the spatial granularity
of reference points must be at most 6 cm or less. To this
end, information about the target area is obtained at intervals
of 3 cm in our proof-of-concept implementation. This makes
it possible to learn a target space larger than half a wavelength
through the surrounding reference points.

C. PRELIM: BINARY CLASSIFICATION ON Wi-Fi CSI

Before investigating the feasibility of one-class classification
for secure region detection, we first need to confirm whether
Wi-Fi CSI captures sufficient information about the region
of interest to distinguish different regions. For this purpose,
we perform a preliminary region identification experiment
using a traditional binary classification technique. Note that
this is ‘not’ our proposal; our goal is to detect a secure region
using data only from the target region, without any negative
data, using one class classification, not binary classification.

First, we select two tables in an office room to obtain Wi-Fi
CSI data. On each table, we create an 18 x 18 cm? secure
region, and divide the region into a 6 x 6 grid of 3 x 3 cm?
units. We actually draw a 6 x 6 grid on each table and mea-
sure the Wi-Fi CSI at the vertices (reference points) of each
49 grid crossings (FIGURE 1). Then, we collect 500 Wi-Fi
CSI data samples per RP (each sample consists of 56 subcar-
rier amplitude values), which totals 49,000 samples (500 sam-
ples * 49 grid points * 2 tables). The data collected from
table A and table B are labeled 1 and 0, respectively, where
table A is regarded as the ‘secure region’. [llustration of the
experiment setup can be found in FIGURESs 1 and 3.

Using this dataset, we train a fully connected neural net-
work that classifies the two tables. We set up a total of two
hidden layers and one output layer. Each hidden layer has
16 and 8 nodes, and the activation function is leaky ReLU.
Then, we generate another test dataset of 1,000 samples by

2In this work, we have used only the amplitude because phase had more
variability. We plan to investigate the use of phase info in our future work.
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Target class [
Non-target class A

FIGURE 4. Deep one-class classification overview [26].

obtaining Wi-Fi CSI data from several internal points of the
secure region other than the vertices of the grid. Finally,
we use this test dataset as the input to classify tables.

The result turns out to be straight forward: it is possible to
distinguish the two tables with 100% accuracy (100% TP and
TN). This means that Wi-Fi CSI data contains enough infor-
mation to identify regions of interest. However, secure region
detection is not a balanced binary classification problem like
the previous table A vs. table B example. In a practical and
general SRD scenario, it is infeasible to get all data outside
the secure region; ‘all’ is undefined. This leads us to consider
one-class classification, which we explain next.

lll. DESIGN OF SWORD

This section presents the design of SWORD including
one-class classification and why it should be used, the struc-
ture of SWORD’s neural network, and how it removes outliers

using density-based spatial clustering of applications with
noise (DBSCAN) [24].

A. ONE-CLASS CLASSIFICATION (0OCC)

OCC is a machine learning classification technique that con-
ducts learning with only the data of the target class [25], [26].
Then, when a test input data is given, it is determined whether
the input corresponds to the target class or not. This method
of learning is very effective and convenient when there are
vast amount or types of outside classes available, or when the
information from outside classes cannot be fully covered. It
is widely used for abnormality detection because it can detect
various unknown or unpredictable classes.

To achieve this goal, each data sample X is transformed
and mapped into a feature vector space F using a kernel
function ¢, and OCC aims to find the smallest hypersphere
in the feature vector space JF that contains all of the training
data. This hypersphere is centered at point ¢ with a radius
R (which is found through the learning process), and OCC
expects that training data will be gathered in a somewhat
small hypersphere if they are similar enough to be grouped
into a single class. The process of obtaining the kernel func-
tion ¢ through a deep neural network is well documented in
the paper by Ruff et.al [26], and FIGURE 4 illustrates how it
works. We inherit this concept in our design in Section I1I-B.
After that, OCC classifies the new test data by determining
whether it is inside or outside the hypersphere.

Our idea is to apply this OCC technique on Wi-Fi CSI
data for secure region detection problem. However, using too

VOLUME 9, 2021

_--JTraining | _ _ _ _ _ _
/7 N

autoencoder

Wi-Fi Wi-Fi
CSI =—p Decoder CSI
data data

Weight
transfer
(initialization)

I

1

|

I

1

1

|

I

1

| Ixn vector
| training dataset
|

1

|

I

1

1

|

\

Wi-Fi
CS] =y
data

Feature
Vector

Kernel function

(W)

Feature
extraction

1
I
I
[}
1
I
1
[}
Ixnvector |
I
1
1
I
I
[}
1
I
I

1xn vector nx16x8 1x8 vector
N - o oo Jullyconnectedlayer', ___ _ _ _ _ _ _ ______
——--| Inference | - - - & - . .
I{ test dataset T 9 |
X o ! |
| Wi-Fi |
X Feature
CSI 1
! Feature Vector |
! data extraction \
|
[}
' Ixnvector nx16x8 1x8 vector 1
‘\ Fully connected layer 7

FIGURE 5. SWORD system overview.

many dimensions of data can result in not only prolonged
training time but also poor learning performance. Therefore,
we aim to extract only the core features from CSI data that
has sufficient information, and obtain a kernel function ¢ that
can transform the data into a new, more distinct vector space.
We expect to get an appropriate center point ¢ and a well
distinguishing hypersphere radius R through this process.

B. NEURAL NETWORK STRUCTURE OF SWORD
SWORD uses a deep neural network as the kernel function
to classify secure region. FIGURE 5 depicts an overview
of the SWORD system. Firstly, Wi-Fi CSI data is converted
into a vector of §-dimensional feature space F in order to
obtain a hypersphere with better classification performance.
As mentioned in Section III-A, a kernel function ¢ performs
this conversion, and the data passing through the kernel
are clustered around the center point c. To build this ker-
nel function, we use an autoencoder. The autoencoder is a
method of training a neural network whose input and desired
output are both training data to extract the key features of
that data. The autoencoder is divided into an encoder part
and a decoder part, and embeds feature information in a
hidden layer between the two parts. We create a hidden
layer with 16 nodes between the input layer and the encoded
layer, and the encoded layer has 8 nodes which represents
the 8-dimensional feature vector. Once the autoencoder is
trained, we convert the training data into feature vectors using
only the encoder part of the trained autoencoder. (The trained
encoder part acts as the kernel function.) Then, we set the
center point c as the center-of-mass of the transformed feature
vectors.

This process is based on the following intuition and expec-
tation;
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« Wi-Fi CSI data measured from the secure region will (most
likely) be clustered near the center point ¢ in the feature
space F.

« Wi-Fi CSI data measured outside the secure region will
(most likely) be beyond a certain distance R from the center
point ¢ in the feature space F.

If our expectation holds with high probability, we can draw
a hypersphere with distance R as the radius to distinguish
the inner versus outer points. To meet these expectations,
we additionally train the encoder part taken from the autoen-
coder to be a suitable kernel function. In the training phase of
the kernel function, the kernel’s initial weight follows that of
the learned autoencoder.
SWORD learns the following new objective function,

1 P 2
in - swi—cP+ 23w a
s S oo =i+ 2w,
= =

where W is the weight of the neural network, and the
added second term is the regularization term. Through the
first term, the neural network learns with the goal of getting
the x value converted through the kernel function ¢ as close
as possible to c in the feature space. Finally, it determines the
smallest hypersphere radius R that can contain as many data
points as possible.

In the inference phase, SWORD converts the newly entered
data point into the feature space F through the learned kernel
function ¢. Then, whether the feature vector is inside the
hypersphere or not determines whether the data point belongs
to the secure region or not.

The selection of radius R during the training process can
be tuned based on the application requirement and policy; If
‘R is more relaxed, higher TP rate is expected at the cost of
lower TN. On the other hand, if R is selected more tightly,
higher TN is expected at the cost of lower TP. Thus, there
is an inevitable trade-off depending on the tightness policy
for selecting R. Note that in the SRD scenario, TN is more
critical; devices outside the secure region should not be autho-
rized or activated while devices inside the secure region can
afford a few retries. Thus, we tune SWORD to train R such
that TN is higher than TP.

C. OUTLIER ELIMINATION

To use wireless signal for classification, it is necessary to
extract a feature set that can well represent the reference
point. However, Wi-Fi signal may have significant fluctua-
tions due to various reasons such as unstable wireless chan-
nel, external interference, and user movement. To cope with
these fluctuations, several methods have been proposed to
remove outliers using clustering [27]. In the case of Wi-Fi
CSI data, however, the signal appears in several clusters
and the exact number of classes is unknown. To address
this challenge, we remove outliers in Wi-Fi CSI data using
DBSCAN [24]. DBSCAN is one of the density-based algo-
rithms widely used for clustering which groups data points
gathered in high density into one class. DBSCAN has the
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FIGURE 6. Amplitude of Wi-Fi CSI values before and after outlier
elimination using DBSCAN.

advantage of finding clusters of geometric shapes, and it
is particularly useful when the total number of clusters are
unknown. In this work, DBSCAN is effective because the
CSI data shows a geometric shape with vectors of multiple
subcarriers.

DBSCAN uses two parameters, distance threshold € and
minimum number of peripheral data points minPts, as con-
trollable variables. If a data point has more than minPts
nearby data points at a distance less than e, these nearby
data points are grouped into the same cluster. This process
is repeated for all data points after which clustering is com-
plete and outliers have been identified. FIGURE 6 plots the
Wi-Fi CSI data before and after eliminating outliers using
DBSCAN. Each line represents the amplitude of each sub-
carrier for one received packet. Even when the measurements
were taken at the same location for a short period of time,
the figure shows that a non-negligible amount of outliers exist
in the Wi-Fi CSI data. These outliers can degrade learning
performance. DBSCAN helps in eliminating these outliers.

IV. EVALUATION

This section describes the experiment setup and methodol-
ogy, the training phase, and the evaluation of SWORD on SRD
performance.

A. EXPERIMENT SETUP AND METHODOLOGY

We use two laptops with Atheros 9380° Wi-Fi NICs to each
operate as an AP and a station, and collect CSI data using the
Atheros CSI tool* [28]. Then, we train SWORD on a separate
server with a GPU (RTX 2080 Ti) using tensorflow 2.05
The experiment environment is a regular office room, and we
installed the AP at a fixed location in the room (FIGURE 3).
Details of the setup can be found in TABLE 1.

3Supports IEEE 802.11a/b/g/n, 3-stream 11n MIMO, with PCle interface.
4 Available at https://wands.sg/research/wifi/AtherosCSI/

5 Available at https://www.tensorflow.org/
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TABLE 1. Experiment settings.

Measurement settings Value
Wireless chipset Atheros 9380
Number of { AP, station} {3,1}
Wi-Fi PHY 802.11n
Distance interval between RPs 3cm
Number of RPs 49
Measurement time per RP 1~2 seconds
Office Size 6.5 x 3.0 m?
Packet interval 10 ms
Number of inner testing point 8
Number of outer testing point 7

/0@

@
[T7el} 3 cm
Secure Region

A : Negative test points
. : Positive test points
= : Wi-Fi AP

FIGURE 7. Test data points used in the experiment: 8 inner points within
secure region, and 7 outer points.

First, we draw a 6 x 6 grid with 3 cm spacing on a table to
be defined as a secure region (table A in FIGURE 1). Then,
we place the antenna of the station at each vertex (reference
point) and measure the Wi-Fi CSI data for 100 received
packets which takes approximately 1~2 seconds. We get
the training dataset from a total of 49 vertices (reference
points) and train the SWORD. To evaluate the classification
performance of the trained SWORD, we select 8 non-vertex
points within the secure region to get positive samples, and
7 random locations in the room as negative samples to create
a test dataset. TABLE 7 shows the 8 inner points within the
secure region as well as the 7 outer points used for evaluation.

CSI data samples used for this evaluation are from a total
of 6,400 Wi-Fi packets. The collected data are organized as
follows. A total of 4,900 samples are for ‘training’, where
100 samples are measured at each of 49 references points
within the secure region. For ‘testing’, 1,500 samples are
used; 100 samples each from the 8 internal points within the
secure region (positive samples) and 7 external points outside
the secure regions (negative samples). The time taken to
measure each packet was approximately 10 ms. Data sample
from each AP is 56-dimension CSI amplitude vectors. We
concatenate the CSI amplitude vectors from three APs and
use them as input.

B. TRAINING PHASE

We first train the autoencoder using the data obtained from
49 reference points. Once the autoencoder has saturated,
the center point c is calculated. Then, we learn the kernel
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FIGURE 8. Performance of SWORD. Note that, since there are only
positive samples in the training dataset for OCC, TN/FP cannot be
measured during learning; thus, we control the TP.

TABLE 2. Sampled TP & TN of SWORD.
<« Higher security Faster authentication =
[ desired TP [ 70.53% [ 75.00% | 76.90% | 80.41% | 84.76%

TP 7225% | 76.50% | 78.63% | 81.50% | 84.00%
TN 99.43% | 99.14% | 99.00% | 98.00% | 96.00%

function to satisfy the objective function (Eq.1) using the
weights of the encoder learned earlier as the initial weights.
Once the center point and kernel are learned, training data
pass through SWORD again as an input to make a vector of
feature space JF. After that, a hypersphere is drawn with a
radius R from the center. Inner points of the hypersphere
are determined as positive, and outer points as negative
(FIGURE 5).

During the training process, the radius R of the hyper-
sphere can be adjusted based on user preference/policy with
an important trade-off in performance. Larger R will result
in more data points being identified as inside the secure
region, and thus TP increases while FP also increases (TN
decreases). Smaller R may falsely recognize points inside
the actual secure region as external points, resulting in lower
TP but higher TN (lower FP). It is therefore important to set
an appropriate radius R in the feature space based on the
application requirement.

Hyperparameter R can be adjusted based on the ‘desired
TP’. The R value is a distance on the vector space F and can-
not be designated as a specific number because the value has
no meaning in the actual physical space. However, we adjust
the ‘desired TP’ according to the desired performance, and
accordingly, the SWORD model automatically draws a circle
including the corresponding training data ratio. Therefore,
if only the ‘desired TP’ is specified in advance, the R value
is automatically determined. In addition, based on application
requirement and preference, this ‘desired TP’ can be adjusted
without any additional (re-)training of the SWORD model.

C. TEST RESULTS

Performance of SWORD is plotted in FIGURE 8. As shown
in FIGURE 8(a), TP and TN performance achieved by
SWORD can be adjusted by changing the ‘desired TP’ without
retraining the model. Furthermore, FIGURE 8(b) plots the
receiver operating characteristic (ROC) curve of the entire
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TABLE 3. TP & TN with repeated authentication attempts.

[ [ 1sftrial | 2" trial [ 3" trial | 4% trial [ 5% trial
TP [ 7690% | 93.07% | 97.92% | 99.38% | 99.81%
TN | 99.14% | 9844% | 97.74% | 97.04% | 96.35%

SWORD. From these results, an user can select a few ‘desired
TP’ samples and make a choice as shown in TABLE 2. For
example, we can focus on higher security by selecting the left
side of TABLE 2 for IoT device authentication in industrial
plants or at exhibition events where there is a risk of theft. On
the contrary, we can obtain higher user convenience by select-
ing the right side of TABLE 2 when, for example, placing a
smartphone on our own desk in the office or automatically
authenticating a device when entering our room at home.

In general, low FP (high TN) is considered more impor-
tant than high TP for secure region detection applications.
In consideration of this point, SWORD will sacrifice TP a
little to achieve 99+% TN. To this end, in our proof-of-
concept implementation, we select desired TP ratio of 75%,
which means 75% of the training samples comes into the
hypersphere when the learning process has saturated. Thus,
our final SWORD model shows a TN result of 99.14% and
TP of 76.9% when the desired TP is set to 75% (denoted as
‘desired operating point’ in FIGURE 8). This is the level that
was regarded as safe to be actually used by one of our industry
partners that motivated this research.

Automatically repeated authentication attempts can
increase the user’s experience even further. TABLE 3 shows
the results of these attempts. If the rate of re-authentication is
configured carefully and appropriately (since attackers may
also retry indefinitely, or launch denial-of-service attack),
allowing repeated authentication attempts can improve the
authentication success rate of legitimate devices (TP) suf-
ficiently for practical use in return for very slight increase
in probability of wrong judgment (TN). We recommend
allowing up to 3 retries, which correctly recognizes a device
to be inside a secure region with 97.92% probability while
still rejecting outside devices 97.74% of the time.

D. ADDITIONAL EXPERIMENT ON DIFFERENT SETUP

To validate whether the effectiveness of SWORD can be gen-
eralized in other environments, we have conducted additional
experiments using different setups, changing the location of
the secure region as well as the Wi-Fi APs. In these exper-
iments, we intentionally placed one AP to be non-line-of-
sight (NLOS) from the secure region while the other two APs
are in LOS. From these additional experiments with varying
locations of secure region and APs, we obtained an average
TN of 99.429% and TP of 71.625% when the desired TP
was set to 75%. These results are consistent with those in
Section I'V-C, which confirm that SWORD can work in other
environments as well.

V. CONCLUSION AND FUTURE WORK
Secure region detection enables practical and convenient
location-based authentication for security of IoT devices.
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This work proposed SWORD, the first secure region detection
scheme based on Wi-Fi CSI and deep one-class classifica-
tion, which addresses the problem of time-consuming data
collection outside the target region. We have shown that
spatial information can be inferred through deep learning
of Wi-Fi CSI data, and deep one-class classification can
effectively classify a secure region without any negative ref-
erence points. We have implemented SWORD on commercial
802.11n devices. However, our scheme can work with state-
of-the-art Wi-Fi standards (e.g. 802.11ax) as well. Our eval-
uation have shown that SWORD can correctly reject devices
outside the secure region with 99.14% accuracy while detect-
ing devices inside the secure region with 76.9%. There is an
user-adjustable trade-off between TN and TP, and higher TN
was the primary target metric for a security scheme while TP
can be improved to 97.92% at the cost of slightly higher FP
(2.26%).

The contribution of this work is in designing a method
that uses Wi-Fi CSI data on one-class classification to detect
secure region without requiring any negative data, and this is
clearly differentiated from existing research that could only
localize the region where reference point data was obtained.
We believe that this work will encourage future research on
the secure region detection problem for preventing loss and
intrusion of IoT devices. We plan to further improve accuracy
and precision through the use of phase or angle information
of Wi-Fi CSI, and also evaluate it on newer Wi-Fi standards
such as IEEE 802.11ac and 11ax.
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