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ABSTRACT RPL, the standard IPv6 routing protocol for low-power and lossy networks in the emerging
Internet of things (IoT), is designed mainly for efficient many-to-one data collection scenarios where
the majority of the traffic flows from embedded devices to a gateway. Although RPL does support
root-to-node downwards routing and peer-to-peer (P2P) communication, its P2P performance is inefficient
and unsatisfactory due to excessively high churn and bottlenecks in the P2P path. However, P2P routing
is important for machine-to-machine communication where nodes in IoT applications communicate with
one another and control devices beyond simply collecting data. In this work, we propose a neighbor-graph-
based RPL (NG-RPL) that significantly improves P2P routing performance. By including additional routing
information when a packet passes through the root node for the first time in a P2P communication, NG-RPL
finds efficient P2P routes opportunistically, when available, without significant overhead. We implement
NG-RPL in Contiki-NG and evaluate its performance through extensive Cooja simulations. Results show
that NG-RPL reduces routing churn, which improves packet reception ratio, round-trip time, and energy
usage of P2P communication compared to standard RPL.

INDEX TERMS Low-power and lossy network (LLN), peer-to-peer (P2P), routing protocol, RPL, IPv6,
machine-to-machine (M2M) communication, Internet of Things (IoT).

I. INTRODUCTION
With the development of embedded devices and low-power
wireless networking technology, the Internet of things (IoT) is
coming close to reality. In IoT, numerous sensors and devices
are connected to the Internet to provide useful information
and convenient services. The applications of IoT are endless.
For example, a smart home may connect surveillance cam-
eras, TV, HVAC, and lighting system to work autonomously
depending on the environment dynamics and user context,
and also to allow remote control access to the users. In a smart
factory, status of the facilities may be monitored periodically
to predict failures in advance, or to detect a leakage of toxic
gas and trigger an alarm.

RPL is the IETF standard IPv6 routing protocol for
low-power and lossy networks (LLNs) in IoT [1], [2], and
is designed considering the resource constraints of embed-
ded devices [3]–[6]. It enables standard IPv6 networking in
low-power wireless multihop networks by forming a mul-
tihop routing tree rooted at a single LLN border router
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(LBR, a.k.a. root/sink/gateway), and each node finds the best
upward path to reach the LBR according to a given criteria.
Therefore, it is optimized for many-to-one data collection
scenarios. However, in numerous IoT application use cases,
it is also necessary to support downwards routing and P2P
communication among nodes in the network. For example,
a smart-home user may wish to turn on their air conditioners
from outside, or a gas detection sensor may need to send its
signal immediately to an alarming device.

RPL does support downwards routing to each node from
an LBR, and also peer-to-peer (P2P) communication between
two embedded devices. However, downward routes are con-
structed as a reverse of upward, and RPL does not have a
separate mechanism for P2P routing. Instead, it is achieved
naturally and transparently through the upward and down-
ward routing as a result of basic IPv6 address-based forward-
ing. Due to this reason, its P2P performance is inefficient and
unsatisfactory with excessively high churns and bottlenecks
in the P2P paths.

To address this problem, this article proposes neighbor
graph based RPL (NG-RPL) which supports more efficient
P2P routing within RPL opportunistically. In NG-RPL, each
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node piggybacks its neighbor information in addition to par-
ent information in a regular RPL DAO message sent to the
root, and the root constructs and maintains a network graph
based on this. Then, whenever P2P traffic passes through the
root node, the root calculates an optimal P2P path based on
the neighbor graph and informs the corresponding source and
destination nodes if a better path is available. This notification
can be piggybacked into the data traffic if frame size permits,
or can be sent separately in a RPL DAO-ACK message.
Subsequently, the source and destination nodes use this opti-
mal P2P path to send and receive data via source routing.
The intermediate nodes located within this P2P path does not
need to be aware of this path; a regular IPv6 forwarding of
source-routed datagram will suffice.
NG-RPL uses shorter paths for P2P traffic, which not

only reduces end-to-end latency and number of transmissions
(and thus energy), but also improves packet transmission
reliability by reducing congestion in the network. NG-RPL is
backward-compatible in the sense that initial P2P communi-
cation will always work in the same way as the standard RPL,
and a shorter P2P path will be used if and only if the root can
calculate one based on the neighbor graph information it has
gathered. If no such path exists (e.g. due to insufficient neigh-
bor graph information, or too many non-NG-RPL nodes),
NG-RPL will operate just like the standard RPL. Forwarding
of source-routed messages is no different from standard IPv6.
The overhead of NG-RPL is in sending additional neighbor
information, but this is not significant since it utilizes the
extra space within regular DAO messages.

Furthermore, since NG-RPL root knows the whole
neighbor graph information in addition to parent-child rela-
tionships in theDODAG topology, it has a pleasant side-effect
of having sufficient information to load balance the routing
tree. Load imbalance is an important and challenging problem
in RPL, and has been studied in several prior work [7]–[11].
Based on centralized neighbor graph information, NG-RPL
balances the routing tree by recommending each node to
select an alternative parent, if necessary, through DAO-ACK
messages.

We implement NG-RPL on Telosb [12] platform using
Contiki-NG [13], and evaluate it through extensive simu-
lations in various scenarios and topology using the Cooja
simulator [14]. We show that NG-RPL outperforms the
standard RPL in terms of P2P path length (route churn),
packet delivery reliability (PRR), latency, and the num-
ber of transmissions (energy). The proposed method aims
to improve performance not only in P2P scenarios, but
also for data collection and downwards routing (or mixed)
scenarios.

The remainder of this article is structured as follows.
Section II provides a background and motivation for
NG-RPL. The proposed protocol, NG-RPL, is presented in
Section III, and Section IV evaluates the performance of
NG-RPL and compares it against the standard RPL. Section V
provides a brief related work on RPL and P2P routing in LLN.
Finally, Section VI concludes this article.

II. BACKGROUND AND MOTIVATION
This section first provides a brief background on RPL, and
how downwards routing and P2P communication is per-
formed in RPL.We also briefly introduce how source-routing
is done in standard IPv6, and how this is used in RPL for
downwards and P2P communication. We then motivate our
work by discussing the problem in RPL’s P2P routing that
this article is tackling.

A. RPL BASICS
RPL is a distance-vector routing protocol that constructs a
multihop routing tree rooted at a single LBR (a.k.a. root)
by forming a destination-oriented directed acyclic graph
(DODAGs) between nodes [1], [2]. When a new node joins a
RPL network, it selects a parent node (default route) based on
the DODAG information that it receives from its neighbors
through DAG information object (DIO) messages [15]. An
objective function (OF) [16]–[18] defines the metric and
criteria that a node uses to select a parent within an RPL
instance. Once a parent node is selected, the node sends
destination advertisement object (DAO) messages to the root
of DODAG to notify the next hop information. The node will
also start transmitting DIOmessages to advertise itself and its
position in the DODAG so that other nodes can join or update
their information.

Both the DIO and DAOmessages will be sent periodically1

to adapt to network dynamics, and DAO messages allow the
root of the DODAG to have a complete up-to-date view of
the parent-child route information of the network.Whether an
intermediate node in the path from a node to the root updates
its routing table based on a DAO message depends on the
downwards routing mode of the RPL instance.

B. DOWNWARDS ROUTING IN RPL
RPL provides two modes of support for downwards routing:
storing& non-storing [1], [20]. Storing mode is analogous to
how traditional IP routers work; each node stores the next hop
information towards the nodes in its subtree. It has the advan-
tage of smaller packet overhead and intuitive IP forwarding
behavior at the cost of requiring significant memory for
the routing table in resource constrained embedded devices.
A node closer to the root requiresO(N) routing table entries in
the worst-case corresponding to the total size of the network.

In contrast, nodes in non-storing mode do not store route
information other than its parent’s, and only the root main-
tains the whole topology information. When a packet is
routed downwards, source-routing method is used starting
from the root and root node only. Despite the increased
and variable packet overhead for IPv6 header options due
to source-routing (which adds the whole path informa-
tion in the header), non-storing mode is more popular in
LLNs [21] because of its advantage of requiring constantO(1)

1The actual timing of periodic transmission is implementation dependent,
where DIO transmission is usually governed by the Trickle timer algo-
rithm [1], [19], and DAO may be transmitted based on either a Trickle or
a constant timer interval.
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FIGURE 1. Nodes A, G, and H can communicate with one another. The
blue lines show the RPL’s P2P communication path. The solid and dashed
lines correspond to operating in non-storing and storing modes,
respectively. The red dotted line shows the expected P2P communication
path of NG-RPL.

memory in embedded nodes. For this reason, we focus on the
non-storing mode RPL in our design.

C. PEER-TO-PEER ROUTING IN RPL
RPL does not have a separate mechanism for peer-to-peer
routing. Instead, it is achieved naturally and transparently
through the upward and downward routing as a result of basic
IPv6 address-based forwarding. A packet sent to another peer
will naturally move upward first towards the root, and then
move downward again when it encounters a node that has
an entry corresponding to the destination address present
in its routing table. Thus, the P2P communication perfor-
mance depends on the operational mode described earlier. In
non-storing mode, that node must be the root node, whereas
in storing mode, the node can be any common ancestor node
of the two peers within the routing tree. For example, Figure1
illustrates an example scenario in which nodes A and B com-
municate in a P2P fashion. A packet sent from node A will
first traverse up the tree, and then down to node B, where the
turning point is node F in storing mode (blue dashed arrow,
path A–E–F–H–B) and the root node in non-storing mode
(solid blue arrow, path A–E–F–Root–F–H–B).

D. THE PROBLEM
The problem is apparent from the preceding example (fig1);
RPL’s P2P communication is inefficient due to path length
longer than necessary. From A to B, storing mode requires
4 hops (blue dashed arrow, path A–E–F–H–B) and non-
storing mode requires 6 hops (solid blue arrow, path A–E–
F–Root–F–H–B), despite a better path with 3 hops (dotted
red arrow, path A–G–H–B) exists. This is because RPL does
not provide a separate mechanism for efficient P2P route
construction; it simply recycles the upward and downward
routing paths. Therefore, resulting P2P path is longer than
necessary, and this is called the routing churn [22]. High
routing churn not only increases end-to-end latency, but also
the number of link transmissions and thus energy usage.
Furthermore, increased number of transmission will intensify
contention in the wireless channel, and may cause network

FIGURE 2. Source-routing header format.

congestion especially at the turning point nodes of a P2P
path which could become a bottleneck. This adds a heavy
burden to nodes closer to the root, and excessive workload to
the root especially for RPL in non-storing mode. Therefore,
inefficient P2P communication in non-storing mode RPL
must be resolved.

E. IPv6 SOURCE ROUTING
Source-routing is a method where the source (sender) can
specify a complete routing path through which the packet
passes through the network. Source-routing header (SRH)
follows the format of IPv6 type 0 routing header (RH0) [23]
as shown in fig2. Obviously, source routing can be initi-
ated only by a node with complete path information, such
as the RPL root in non-storing mode. RPL inevitably uses
source-routing in non-storing mode (since LLN nodes do not
have route information other than its parent), where the root is
responsible for creating and attaching SRH when downward
or P2P routing is needed.

For example, consider the solid blue line in fig1 where
node A and B are communicating with each other. When a
packet sent fromA reaches the root, the root attaches SRH and
forwards the packet to node F . At this point, the SRH has a
Segment Left value of 2, and the addresses of nodes H and B
in the Addresses field in fig2. Subsequently, it sets the next
destination address of the packet to node H and puts the
existing destination node F back into Addresses. It sends the
packet with Segment Left 1 and Addresses (F,B) to Node H ,
and H will act similarly. When the packet reaches node B,
it confirms that Segment Left is 0 and destination address is
B, and then accepts the packet. Reverse direction (from node
B to A) will also work in a similar way.

III. NG-RPL DESIGN
The key idea ofNG-RPL is that the root node gathers neighbor
information of all nodes via regular RPL DAOmessages, and
constructs a network graph based on this information. Then,
in the event of P2P communication between nodes, the root
can identify more efficient P2P paths beyond the constraints
of using the existing upward and downward paths with only
the parent information. Shortest P2P path is calculated oppor-
tunistically using the Floyd–Warshall algorithm [24] when
P2P traffic passes through the root. This is possible because
the LBR where the RPL root resides has more memory
and processing power than the embedded LLN nodes. This
section describes the design details of NG-RPL.

A. DAO MESSAGE WITH NEIGHBOR INFORMATION
The root of a RPL instance creates and manages a network
graph that identifies the link connectivity of all nodes in
its DODAG. For this purpose, the LLN nodes participating in
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FIGURE 3. RPL DAO and DAO-ACK message format within ICMPv6 packet.

the RPL instance piggybacks neighboring node information
into regular RPL DAO messages that it sends to the root
periodically. In our implementation, neighbor information
is inserted as an option in the Option(s) field of a DAO
message (fig 3a), which includes the number of neighboring
nodes, node addresses, and their respective link states. Node
addresses are compressed using the standard 6LoWPAN pre-
fix compression method [25], [26], and link states can be any
metric that the RPL instance uses in its OF [16]–[18] to select
parents. In our implementation, each node’s IPv6 address
is compressed down to 2-byte IEEE 802.15.4 short address,
and we have used expected transmission count (ETX) [27]
as the link metric,2 thus using 4-bytes per neighbor entry.
6LoWPAN compression of IPv6 addresses allows the
additional overhead in DAO messages to be manageable,
and 6LoWPAN fragmentation [25] allows large number
of neighbor information to be sent without any extra
mechanism.

B. SHORTEST P2P PATH CALCULATION
When a P2P packet arrives at the root node; that is, when
the root receives a packet from a node in its DODAG and
identifies (by referring to its routing table) that it is destined
to another node in its DODAG, the root will calculate and
search for a shorter direct P2P path between the source
and destination of the packet. We use the Floyd–Warshall
algorithm [24] to calculate this shortest path. The reason
for using this algorithm (instead of another shortest-path
algorithm such as Dijkstra’s or Bellman–Ford) is that one
calculation can identify the shortest path for all node pairs,
and thus we can reduce the frequency of path calculation.
Instead of re-calculating the path(s) for every P2P packet
(or source-destination pair) it receives, it can be done only
when there is new or updated information in a DAOmessage.
Path calculation can also be ‘rate-limited’ with a time interval
and a threshold in link state changes so as to reduce the
computation burden on the root node.

C. PEER-TO-PEER SOURCE ROUTING HEADER (PSRH)
NG-RPL introduces a new IPv6 header option, the P2P
source-routing header (PSRH), which is similar in format to

2ETX considers asymmetric links via bi-directional link PRR, and can be
measured through IPv6 neighbor discovery protocol.

the standard IPv6 source-routing header (SRH). Other than
the source and destination, any intermediate node receiving
a packet with PSRH recognizes PSRH as SRH and performs
the same action as done for SRH. The root is responsible for
attaching a PSRH, just like the SRH in non-storing mode of
RPL, and adds extra P2P path information between the source
and destination. In other words, PSRH includes the routing
path information that can go downwards from the root node to
the destination (same as in the existing SRH), followed by the
P2P path information that allows sending messages directly
from the destination node to the source node.

As an example, consider fig1. When A sends a P2P packet
to B for the first time, the packet will first go up the tree to
the root via E and F just like the standard RPL in non-storing
mode. Then, the root node generates and attaches a PSRH
if it can calculate a shorter path between B and A. In this
example, there is a shorter 3-hop path between node A and B
through G and H (dotted red line). Thus, the PSRH will have
a path from the root to B, and also a path from B to A, which
would be;

{Root → F → H → B→ H → G→ A}.

This packet will naturally traverse down the tree from the
root to B based on standard IPv6 source-routing, just like the
standard RPL, but will be received by B with three remaining
addresses unused. Upon receiving this message, node B now
knows a shorter path to A, and will record this in its routing
cache entry for A. Subsequently, when node B sends a packet
to node A (e.g. an end-to-end ACK or a response message
back to A), this shorter path can be used using a SRH or
PSRH. Furthermore, when node A receives a packet from B
with SRH or PSRH, it can extract the P2P path information in
the reverse direction and use it for shorter and more efficient
P2P communication. Note that if there is no PSRH, nothing
changes from the standard RPL and IPv6.

In our implementation, PSRH has the same format as
SRH (fig2), but adds three extra routing information in the
existing Reserved and Addresses fields of SRH. In addition
to the original Segments Left value and Addresses in the
source route from the root to the destination, (1) Addresses
field is extended with the path from the destination to the
source. PSRH also adds, (2) the number of nodes in the
P2P path from destination to source, and (3) the num-
ber of nodes in the whole Addresses field which includes
the path from the root to the destination and then to the
source. These information allow nodes to distinguish PSRH
from SRH, and enable shorter and more efficient P2P route
between the two end nodes. Finally, although we men-
tioned ‘root/destination/source’ in this description for ease
of understanding, PSRH would work for any three node
trios.

D. PARENT ASSIGNMENT FOR LOAD BALANCING
SinceNG-RPL root has a complete neighbor graph of the net-
work, it has sufficient information to recommend parents to
the nodes. This centralized view allows NG-RPL to construct
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a better routing tree than the distributed selections made
independently by each RPL node. Of course, the definition
of ‘better’ may depend on the application and scenario, and
various metrics can be used for selecting a recommended
parent such as the number of nodes in the subtree or amount
of forwarding traffic. In our implementation, we chose ‘load
balancing’ as our criteria where an alternate parent is recom-
mended if it meets the following three conditions: (1) rank is
less than or equal to the current parent’s rank, (2) link ETX is
less than or equal to the current parent’s ETX, and (3) subtree
size is smaller than that of the current parent by more than
my subtree size plus 2. First two are same as what RPL with
OF0would do in a distributed way, andwe need them to avoid
contradiction; We’re adding (3) for load balancing.

To notify each node of this recommendation,NG-RPL uses
DAO-ACK messages. A RPL root receives DAO messages
periodically from all nodes participating in its DODAG, and
updates its routing table based on this information. Then,
it sends a DAO-ACK message back to the originator indi-
cating that it has received the DAO successfully. In our
implementation, we have added the recommended parent
information as a new option in the Option(s) field of the
existing DAO-ACK format (fig3b) to maintain backward
compatibility. If a standard RPL (non-NG-RPL) node receives
this option, they will simply ignore it. If an NG-RPL node
receives a recommended parent, it is reflected in the parent
selection process.

E. DISCUSSION-RPL STORING-MODE
Our description ofNG-RPL design so far was implicitly based
on the non-storing mode RPL. We have described the use of
source-routing and SRH, how root receives neighbor infor-
mation via DAO messages and calculates shortest P2P paths,
and how P2P packets are forwarded within the network more
efficiently. However, this was just to simplify the explanation
and deliver our key ideas clearly. Although NG-RPL would
benefit more in non-storing mode RPL since all P2P traffic
passes through the root, there is nothing that stops NG-RPL
from working with the storing mode. The only change is
that all non-leaf nodes will perform the same actions as the
root. If RPL is used in storing mode, this implies that the
LLN nodes have sufficient memory to store O(N ) routing
table. Intermediate nodes in RPL storing mode will receive
DAO messages from nodes in its subtree, and will be able
to store neighbor information and calculate P2P paths within
its subtree, if they exist (if both the source and destination
are in its subtree). Furthermore, source-routing and SRH are
IPv6 features; it is required in non-storing RPL, but it works
regardless of whether RPL is used in storing or non-storing
mode. Thus, source-routing and PSRH will also work in
storing-mode of RPL.

IV. EVALUATION
In this section, we evaluate the P2P communication perfor-
mance of NG-RPL, and compare it against the standard RPL
through extensive simulation study with varying number of
nodes and two different locations of the root.

A. IMPLEMENTATION & SIMULATION SETUP
We implement NG-RPL on Contiki-NG (release v4.5) [13],
an open-source cross-platform embedded operating system
for IoT devices that includes IPv6, 6LoWPAN, RPL, and
many other standard protocols for low-power wireless net-
working. Contiki-NG was released in 2017 as a fork of
Contiki-OS [28]. RPL-lite, an implementation of RPL stan-
dard in Contiki-NG, is an evolution of ContikiRPL [29]
in Contiki-OS where it has simplified and carefully rede-
veloped only the core and stable functions. By removing
complex logic such as support for multiple RPL instances,
multiple DODAGs, and storing mode, RPL-lite has a smaller
code footprint and better performance than ContikiRPL. In
our evaluation, RPL-lite is used as the standard RPL, and
NG-RPL is implemented as an enhancement to RPL-lite
and IPv6 in Contiki-NG. We have made our implementation
publicly available as open source.3

For the simulations, we use the Cooja simulator [14] with
COOJA mote and TmoteSky as the embedded platforms.
Multi-Path Ray Tracer Medium (MRM) is used to model the
lossy environment since it better reflects the real wireless
channel by modeling reflection, refraction, diffraction, and
fading [14]. Six different topologies are used where 25, 49,
and 100 nodes are placed 200 meters apart in a square grid
layout, and the root node is placed either at the center or the
corner of the grid.

We simulated a P2P scenario in which each node (source)
is assigned a random destination node, and sends one hundred
P2P request packets at 5 second intervals. First packet of
each source node was given a 0∼4999 ms jitter to avoid
synchronizing effect between all pairs. Upon reception of a
request packet, the destination node replies by transmitting
a response P2P packet back to the source node. Using this
setup, we compare the performance of RPL,NG-RPLwithout
the load balancing (LB) feature, and the complete NG-RPL
with LB.

The following metrics are used for our evaluation;
• Number of traversed hops on the P2P path between the
source and destination nodes.

• Round-trip time (RTT) for the source node to receive the
response packet after sending the request packet.

• Packet reception ratio (PRR) is the ratio of the number
of response packets received by the source node to the
number of request packets sent by the source node.

• Number of transmissions is the total number of packet
transmissions for each simulation run, including link
retransmissions.

B. EVALUATION RESULTS
NG-RPL has improved the overall P2P routing performance
compared to the standard RPL. This can be seen from the
following simulation results.

First of all, we look at the average number of hops tra-
versed by the P2P packets from each source node to their
destination, since this is the first key measure that we aimed

3https://github.com/StaySharp0/contiki-ng/tree/ng-rpl
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FIGURE 4. Average number of traversed hops with varying number of
nodes and two different root positions.

to reduce; the ‘routing churn’. In other words, instead of
recycling the upward and downward routes of RPL for P2P
communication, our goal is to use shorter and more direct
P2P paths for more efficient operation with reduced number
of transmissions, reduced latency, and less contention at the
bottlenecks resulting in improved reliability.

fig4 plots this result with varying number of nodes
(25, 49, 100) and two different root positions (‘center’ or
‘corner’ of the grid topology network). In the figure, the dif-
ference may look small for 25-node network with root at the
center since the network is small and shallow to begin with;
P2P paths are∼2 hops on average, and there is notmuch room
for improvement. However, if we move to the 100-node net-
work, the improvement is apparent and significant. When the
root is at the center, average of ∼5 hops reduces to ∼3 hops,
and when the root is at the corner (deeper network), average
of 11.58 hops reduces to 4.32 hops, a 58.29% reduction.
Significant reduction in P2P path length will not only reduce
latency, but also the number of link transmissions which
will reduce energy usage on embedded low-power devices.
It will also reduce contention on the wireless channel, and
there will no longer be serious bottlenecks since P2P paths are
direct without turning points, which will improve reliability.

fig5 plots the PRR of all end-to-end P2P transactions,
again with varying number of nodes and two different root
positions. NG-RPL (with or without LB) clearly improves
PRR significantly compared to RPL, especially in a larger
and deeper topology. Specifically, PRR increases by only
2.64% on the 25-nodes (96.8%→99.44%) because the
PRR of RPL was good and there is not much room for
improvement. However, on the 100-node corner topology,
PRR increase by a huge 56.29%, almost 4x improvement
from unusable (19.80%) to reasonable (76.09%). This owes
to the shorter P2P paths without bottlenecks which reduces
the total number of link transmissions and contention in
the wireless medium. The load balancing feature does pro-
vide a little extra improvement of 2.2% (73.89%→76.09%).

FIGURE 5. PRR with varying number of nodes and two different root
positions.

FIGURE 6. Average RTT of all P2P pairs with varying number of nodes and
two different root positions. (Note the y-axis for RPL on 100-nodes,
corner).

However, the real advantage and benefit from load balancing
would be seen for upward data collection scenarios rather
than P2P scenarios since we have balanced the tree in terms of
parent-rank-subtree sizes, not in terms of P2P path or traffic
load.

fig6 plots the RTT results for RPL and NG-RPL, and it
shows that NG-RPL achieves significantly better RTT than
RPL. For example, on 100-node centered-root topology, RTT
reduces from 958.25 ms to 507.08 ms, a 47.08% decrease.
For the 100-node corner topology, the reduction is much
more significant due to excessive congestion at the bottleneck
nodes. This is an obvious and expected outcome considering
the reduction in the number of hops traversed by the P2P
packets (fig4) thanks to shorter direct P2P paths.

The load balancing feature allows NG-RPL to construct a
more balanced routing tree structure than the standard RPL.
This can be seen visually in fig7 which depicts the routing
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FIGURE 7. Logical routing topology constructed by RPL and NG-RPL for
100-node grid topology network where the root is at a corner.

topology of RPL and NG-RPL for the 100-node network
when the root is in the corner. RPL has an unbalanced
topology with first-level subtrees of sizes 56, 35, and many
1∼2s. On the other hand, NG-RPL forms first-level subtrees
with sizes 10, 12, 21, 33, 16, and a few 1s, reducing the
maximum subtree size from 56 to 33. It also reduces the
standard deviation of the all subtree sizes from 8.91 to 5.84,
and average subtree sizes from 7.96 to 6.97 for all nodes
(excluding the leaf node which has no subtree nor children).
In terms of number of immediate children nodes, NG-RPL
reduces the maximum from 7 to 2 (excluding the root), and
average from 1.72 to 1.40 (excluding the leaf). These results
confirm that NG-RPL’s parent recommendation is in action,
and does improve the balance of the DODAG tree structure.
This can lead to performance improvement especially for
upward/downward traffic scenarios rather than P2P scenarios
since NG-RPL balances the tree by adjusting the routing
parent-child relationships and P2P traffic in NG-RPL uses
direct path through neighbors.

To verify that the reduced number of average traversed
hops in fig4 lead to reduction in total number of link transmis-
sions, we plot fig8. At a first glance, surprisingly, the numbers
did not reduce much, only by 19.65% for the 100-node corner
case. This was less than expected since the number of hops
traversed by P2P traffic reduced by 58.29% (fig4). After
careful investigation, the reason turned out to be that the P2P
packets in RPL had longer end-to-end path than NG-RPL, but
the packets were often lost early in the path and did not add to
transmission counts for latter part of the path. For example,
if RPL and NG-RPL each had 11-hop and 5-hop P2P path
respectively, but if RPL’s P2P packet got lost after 5-hops
where as NG-RPL’s packet made it all the way through,
then the total number of transmissions will look similar. In
our 100-node corner-root RPL simulations, large number of
packets were lost at nodes 80 and 69 due to queue overflow
(symptom of congestion) which had subtree sizes of 55 and
44, respectively. After knowing this fact, fig8 makes more
sense; it can be understood as proportional to the product of
fig4 and fig5. Thus, we can say that NG-RPL does reduce the
number of transmissions for a P2P packet that is successfully

FIGURE 8. Total number of link transmissions during P2P data transfer,
with varying number of nodes and two different root positions. Ideally,
this should be significantly reduced for NG-RPL compared to RPL since it
is proportional to the P2P path length in fig4. However, the reduction is
small due to early drops (mainly due to queue overflow) in RPL case. It
can be understood as proportional to the product of fig4 and fig5.

delivered, and therefore it is more efficient in terms of energy
usage per P2P transactions.

Finally, regarding the extra overhead added by NG-RPL,
the most significant would be the increase in DAO message
size due to added neighbor information. It has increased
from 46 bytes to 77.32 bytes, an 68% increase on average.
However, this still fits within the 127 byte MTU limit of
IEEE 802.15.4, and the number of DAO messages is usually
much smaller compared to the number of data messages
which means that the cost can be amortized by the amount
of data traffic. DAO-ACK size has also increased due to
parent recommendation for load balancing, but only slightly
from 4 bytes to 4.16 bytes, on average. This is because, once
the routing tree is (roughly) balanced, parent recommenda-
tion is no longer needed. Furthermore, when we calculate
the average size of SRH/PSRH, it actually decreased from
48.56 bytes to 31.39 bytes. This is because, except for the
first P2P packet that passes through the root, following sub-
sequent P2P packets can use a much shorter path with smaller
SRH/PSRH.

V. RELATED WORK
Prior to the standardization of RPL in 2012, several reac-
tive routing protocols based on ad-hoc on-demand distance
vector (AODV) have been proposed to provide any-to-any
routing support in LLNs. Examples of these protocols include
LoWPAN-AODV [30], NST-AODV [31], LOAD-ng [32],
and TinyAODV [33]. These protocols have simplified the
original AODV, and optimized it to account for the resource
constraints, lossy wireless links, and network dynamics of
LLNs and their embedded devices. However, the flooding
nature of route request/response messages still had huge
network overhead, and this was an inevitable cost to allow
generic on-demand any-to-any routing. If the traffic pattern
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of the application can be known a priori (e.g. many-to-one
data collection), then a different approach such as RPL can
be more efficient. Of course, RPL had to sacrifice the P2P
performance to achieve this efficiency.

In RPL, Bacceli et al. [34] proposed P2P-RPL to improve
the P2P performance of RPL, which uses route messages to
create optimized P2P paths. The performance of P2P-RPL
was validated in testbed experiments, and had been submitted
as an experimental document in RFC6997 [26]. Later, exten-
sive simulation studies were conducted for P2P-RPL using
NS-3 simulators [35]. However, P2P-RPL has the problem of
low response rate for route requests, and its broadcasting of
route messages can easily congest the network. In addition,
it is not backward compatible in the sense that P2P commu-
nication would not work when the network contains nodes
that do not understand P2P-RPL messages or ignore them in
their policy.

Zhao et al. proposed ER-RPL [36], which reduces such
route message overhead of P2P-RPL and improved relia-
bility by adding geographical location to DIO messages.
In contrast to P2P-RPL which requires all nodes to search
for paths, ER-RPL explores only a subset of nodes based
on geographic location information. Thus, ER-RPL can
find a near optimal routing path in terms of energy-saving
and reliability. However, having geographic location infor-
mation in resource constrained LLN devices is a costly
requirement if not impractical, and it focuses only on stat
networks.

Farooq et al. proposed ERPL [37] which has a mechanism
to forward packet directly without upward routing if the
destination node is a direct neighbor to the source node or
a direct neighbor to the parent nodes of the source node.
ERPL achieves an effect similar to multicast DAO (MDAO)
messages through DIO, without the need to transmit addi-
tional MDAO messages. However, in order to benefit from
this feature of ERPL in P2P communication, the destination
node must be a direct neighbor node among the parent nodes
of the source node. For example, The packets generated from
node A in fig1 cannot benefit from ERPL if nodes B, H, or C
are the destinations.

VI. CONCLUSION
IoT applications in which low-power and low-cost devices
communicate with one another are becoming essential ele-
ments of our lives. RPL, the IPv6 standard routing protocol
for LLN, is one of the key enablers for data collection in
IoT, but with less than satisfactory P2P performance. To
address this shortcoming, this work proposed NG-RPL that
improves the performance of P2P communication in RPL
by constructing a shorter P2P routing path opportunistically,
when available, without significant overhead.We have imple-
mented NG-RPL in Contiki-NG embedded operating system
for IoT, and demonstrated an average performance improve-
ment of 20.55% in PRR, 38.09% in RTT, and 12.50% in
energy consumption compared with RPL on the 49-node
topology.
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