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ABSTRACT Fashion image analysis has attracted significant research attention owing to the availability
of large-scale fashion datasets with rich annotations. However, existing deep learning models for fashion
datasets often have high computational requirements. In this study, we propose a new model suitable
for low-power devices. The proposed network is a one-stage detector that rapidly detects multiple cloths
and landmarks in fashion images. The network is designed as a modification of the EfficientDet orig-
inally proposed by Google Brain. The proposed network simultaneously trains the core input features
with different resolutions and applies compound scaling to the backbone feature network. The bounding
box/class/landmark prediction networks maintain the balance between the speed and accuracy. Moreover,
a low number of parameters and low computational cost make it efficient. Without image preprocessing,
we achieved 0.686 mean average precision (mAP) in the bounding box detection and 0.450 mAP in the
landmark estimation on the DeepFashion2 validation dataset with an inference time of 42 ms. We obtained
optimal results in extensive experiments with loss functions and optimizers. Furthermore, the proposed
method has the advantage of operating in low-power devices.

INDEX TERMS Multiple-clothing detection, classification, object detection, landmark detection, single-
stage detector.

I. INTRODUCTION
Fashion image analysis has attracted significant attention in
the fields of image processing and computer vision. The
fashion industry is one of the world’s leading industries in
terms of the job market and generates revenues with an
annual growth of 8.4%. Revolution in computer vision is
reshaping fashion trends in the society. However, the fashion
image analysis is more challenging than the conventional
image analysis due to significant degrees of variations in
different styles, designs, and appearances. These variations
often make detection and clothing retrieving tasks compli-
cated and difficult. Classification, bounding box detection,
and landmark estimation further add to the limitations of
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fashion image analysis. The accurate clothing detection is
one of the performance measures for this analysis; however,
technical challenges, such as the availability of large datasets
and inference time, should be addressed.

To solve these problems, Huang et al. [1] and
Kiapour et al. [2] looked for informative regions by detecting
bounding boxes; Chen et al. [3] and Bossard et al. [4] detected
human joints. Liu et al. [6] presented the fashion landmark
concept, assuming that the clothing bounding boxes are fed
as prior information for both training and testing sets. Fashion
landmark detection is helpful to predict useful key points on
the human body. The pipeline first detects the human body
parts where the clothing regions are followed by synthesizing
the clothing on that part [5]. This model could perform robust
and discriminative representation for clothes. Liu et al. [7]
further proposed a deep fashion alignment (DFA) framework
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FIGURE 1. Examples of basic structures of a two-stage and single-stage detector. The two-stage detector
has high accuracy but slow speed, as it contains the region proposal stage, whereas in the single-stage
detector, the speed is high, but the accuracy is low due to imbalance of the foreground and background.

consisting of a three-stage convolutional neural network
(CNN). The DFA successfully refined the predictions of each
stage in the subsequent stages. However, both the approaches
reported by Liu, et al.were computationally expensive, which
made it limited for practice. Yan, et al., [8] based on the
Liu et al. DFA, proposed a deep landmark network, which
could jointly estimate the landmarks and the bounding boxes,
making it an applicable approach.

Object detection serves as the backbone of the fashion
image analysis; it helps understand what the image contains
and the location of this object. There are two different object
detectors, i.e., a two-stage detector and single-stage detec-
tor [11]. To design and choose one of these detectors, certain
factors must be considered carefully, such as localization,
inference speed, and accuracy. Most object detection tech-
niques are driven by region proposal methods [9] and region-
based convolutional neural networks (R-CNNs) [10]. The
two-stage detector identifies region proposals first, followed
by classification. The single-stage detector [13], [23] exe-
cutes both the region proposals and classification in parallel.
For example, the two-stage detector, Faster R-CNN [12], has
high accuracy and localization. In contrast, the single-stage
detector, such as YOLO, shows high inference speed [13].
These factors make the two-stage detector more flexible and
accurate than the single-stage detector, while the single-stage
detectors are more efficient and have faster inference time
than the former. Fig. 1 shows the basic structure of both the
single-stage detector and the two-stage detector.

Most previous clothing detection and landmark detection
studies have used the DeepFashion dataset, which had one

item of clothing with 4 to 8 landmarks per image. Neural
networks trained on such datasets cannot detect multiple
clothes in images. Instead, we used theDeepFashion2 dataset,
which includes more than 200,000 fashion images with anno-
tations for 13 different classes. Each of its classes has specific
keypoints with 294 unique landmarks.

Furthermore, we opted for a single-stage detector method
as more feasible in real-world scenarios. The proposed net-
work is an incremental improvement of EfficientDet by
Google Brain [14]. Our network uses less graphical process-
ing unit (GPU) resources, but has high inference speed and
high detection accuracy.

This research focuses on detection and classification of
multiple clothes. The main contributions of this study are as
follows:
• We propose a single-stage detector that performs
multiple clothing detection and landmark estimation
in a fashion image with several complex feature
attributes.

• This research was designed with a focus on solving
the trade-off problem between accuracy and speed. The
proposed method shows an accuracy of 0.686 mAP in
bounding box detection, 0.450 mAP in landmark esti-
mation task, and has a fast inference time of 42 ms in
a single GPU. This shows the best balance compared to
the existing methods.

• EfficientDet-based detectors are suitable for perform-
ing fashion image analysis in real-world applications
because they consume less resources and are efficient
with faster inference times.
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FIGURE 2. Illustration of exist model structure: a. FashionNet, b. Perception Network in Match R-CNN.

• This research can be a good example of training the
network by focusing on a specific domain and applying
computer vision to the real-world, and there is room for
use in subsequent fashion image analysis research.

Experimental results and analysis confirm the efficiency of
the proposed method.

The remainder of this paper is structured as follows.
Section II covers the related background work. Section III
describes the proposed method of detection and classification
of multiple clothes using a single-stage detector. Section IV
briefly explains the experimental setup. Section V describes
the results and analysis of the experiment. Finally, Section VI
presents the concluding remarks and suggestions for future
work.

II. RELATED WORK
This section presents the background work related to the
proposed method.

A. FashionNet
FashionNet [6] is a deep learning-based fashion image ana-
lyzer using a DeepFashion data set proposed by Liu in 2016.
The network is designed based on VGG-16 and predicts
landmark estimation and fashion attributes by modifying the
last layer. Fig. 2 (a) shows the model structure of the last layer
of FashionNet. The last convolution layer has three branches,
the first one capturing the entire clothing item’s global feature
while the second capturing the local feature for the expected
fashion landmark. The first and second branches’ outputs
are linked together to predict the clothing category attributes
together and model the clothing pair. The last branch predicts
the location and visibility of the landmarks. A key component
of the FashionNet is the landmark pooling layer in the sec-
ond branch that captures the landmark local feature. After
apprehending the landmarks’ visibility, perform max pooling
inside the region to obtain a local feature map. This local
feature map is stacked to form the final feature maps. This
is similar to the RoI pooling layer introduced in [12], but
it is meaningful to consider the interaction between fashion

landmarks by connecting local feature without treating the
pooled area independently.

FashionNet was meaningful because it used the first
largescale fashion dataset called DeepFashion to perform a
fashion image analysis and later contributed to the active
research of fashion image analysis. However, the DeepFash-
ion dataset has only the same number of landmarks for each
clothing category, which is not enough to characterize many
clothing categories. The Deepfashion dataset contains only
one clothing per image, so the FashionNet cannot perform
multi-clothes analysis.

B. MATCH R-CNN
Match R-CNN [18], proposed by Ge, is a fashion image
analysis network using the DeepFashion2 dataset. Designed
based on Mask R-CNN [39], it performs clothing detection,
landmark estimation, and clothing segmentation. It consists
of three networks called Feature Network(FN), Perception
Network(PN), and Matching Network(MN). FN extracts the
features and delivers the PN’s output feature map through
the RoIAlign proposed by [39]. Based on the feature maps
received from the FN, the PN performs three predictions:
landmark estimation, clothing detection, and segmentation.
Fig. 2 (b) shows the structure of the PN. For bounding boxe
and mask, it have the same structure as Mask R-CNN. Land-
mark estimation consists of a fully convolution network just
like a clothing segmentation. MN is a matching network to
learn the similarities of clothing as a network for clothing
retrieval. Match R-CNN has contributed to further research
as a guideline for performing fashion image analysis for
multiple clothing. However, because it is designed based on
the 2-stage object detector,Mask R-CNN, it is very inefficient
in terms of inference time and resource consumption. This
may limit the use of fashion image analysis in real-world
applications.

C. DFA FRAMEWORK
Liu et al. [7] presented a DFA framework with a fashion
landmark dataset of over 120,000 fashion images. Each image
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FIGURE 3. Overall network structure. It is based on EfficientDet-D1 and has 4 BiFPN layers because it has 1 coefficient. Feature maps of different sizes
are all eventually entered into the prediction head to carry out the prediction.

had eight correctly labeled landmarks. Furthermore, images
are separated into five subsets with respect to their ground-
truth position and visibility. These subsets include normal,
medium, and large poses; medium and large zoom-ins. Both
the spatial and appearance domains of these subsets show vast
variations (e.g., more than 30% images have large pose and
zoom-in variations). To overcome these limitations, the DFA
has three stages, wherein each stage refines the previous
stage’s predictions.

DFA deals with the full images and achieves better per-
formance with less computational expense than other models
such as DeepPose [21].

D. DeepMark
Sidnev et al. [24] presented a single-stage multiple-clothing
detector based on CenterNet for clothing detection and land-
mark estimation. CenterNet [25] performs detection by esti-
mating only one center point for each object. This assigns
an anchor only with the position of the center point, not the
box overlap, so only one anchor is used and the output has a
high resolution. The advantage of using a single anchor pre-
vents an imbalance between the positive and negative anchors
to reduce the training time. The backbone used a stacked
hourglass network and DLA-34 [40]. Hourglass network per-
forms well in the keypoint estimation task, but the network
is unsuitable for real-time inference because the network is
deep. DLA-34 achieved a good balance between speed and
accuracy.

However, DeepMark delivers directly from a backbone-
through single feature map to the prediction head. It is effi-
cient but does not take advantage of feature maps of various
sizes and resolutions through the feature pyramid network
(FPN). Using a structure called BiFPN, we assigned weight
for each feature map with different resolution and noted the
positive effects of this. The details can be found in Section III.

III. PROPOSED METHOD
Fashion image analysis should take advantage of the domain
of fashion’s features into account for scalability to the real
world. Therefore, when designing a fashion image analysis
network, we focused on the utilization of real applications.
This should be an appropriate balance between accuracy and
speed, and efficiency in terms of resource consumption. The
EfficientDet proposed byGoogle Brain achieved state-of-the-
art in the COCO dataset and is one of the best models to
meet these conditions. The low number of parameters makes
it efficient in terms of resource consumption, while at the
same time being fast inference and high accuracy. Based on
EfficientDet, we have modified the network globally to fit the
fashion domain, added a prediction head, and designed a loss
function for a new task called fashion landmark estimation.

This section details the overall network architecture, such
as the proposed model’s design direction, structure, and
parameter setting. This section is divided into subsections
describing the model, prediction head, loss function, and
training.

A. MODEL
Speed and accuracy have a trade-off relationship, making
it challenging to achieve high accuracy and functional effi-
ciency. Therefore, the model must be carefully designed to
maintain balances. EfficientDet [14] is a model that focuses
on two tasks to maintain the optimal balance between speed
and accuracy. We designed the network by modifying the
EfficientDet, paying attention to this point. Fig. 3 shows our
overall network structure.

We should first check if EfficientDet is suitable for spe-
cific work for fashion analysis only, i.e., fashion landmark
estimation. Chen et al. [16] achieved excellent performance
using a cascaded FPN to estimate key points from images
of various sizes. The subnetwork, GlobalNet, composed of
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FPN, solved the trade-off problem between high-resolution
and low-resolution feature maps using element-wise sum
after matching channels via 1 × 1 convolution operation.
MultiPoseNet [26] also achieved good results by matching
the number of channels after passing hierarchical CNN from
the feature map over FPN. However, estimating fashion land-
marks (294) with more keypoints than human key points (17)
can vary significantly depending on the resolution of the input
features. Therefore, there is a need to change the extent to
which the input features contribute to the output features.
Through the BiFPN structure using a cross-scale connection,
we give additional weights to the input feature map to change
the degree of contribution to the output feature map. This
approach significantly contributes to performance by learning
the importance of input features. The blue line in Fig. 3 is the
weighted connection, and the orange line shows upsampling.

O = 6i
wi

ε +6jwj
· Ii (1)

This equation describes fast normalized fusion, which
assigns weights. It is non-zero because it passes through the
ReLU, and an epsilon of 0.0001 is added.

Backbone used EfficientNet [27] with pretrained weights.
EfficientNet has an overwhelmingly smaller number of
parameters than networks such as ResNet [28] and
DenseNet [29], which are now widely used as feature extrac-
tors, but accuracy is also good. Hence, it is suitable for a
method that focuses on the balance between accuracy and
speed, and GPU resources can also be used efficiently. The
stacked hourglass network [30] and HRNet [31], which are
widely used in keypoints estimation, extract features with
good accuracy by maintaining high resolution, but they were
excluded from consideration because of insufficient speed.

B. PREDICTION HEAD
A prediction network has been designed to fit the fashion
image domain. Fig. 4 shows the overall structure of the
prediction network. It performs 3×3 convolution three times
for each task by inputting a feature map Pi that has gone
through BiFPN. Next, it adjusts the output channel by con-
volution with filter size 3, stride 1, and padding 1. Because
it is a single-stage detector with no region proposal module,
it uses nine anchors (of three sizes and three aspect ratios).
The DeepFashion2 dataset has 13 clothing categories and
294 unique fashion landmarks. Therefore, the class prediction
network’s final output channel is ca(number of classes ×
number of anchors).

The boundary box prediction network predicts four coor-
dinates (x1, y1, x2, y2) for regression, so it is 4a. Land-
mark prediction networks require a large number of
clothing landmarks to be estimated and should be care-
fully designed. First, the network estimates 294 landmarks
and then fine-tunes the estimated landmark coordinates
with an additional step of prediction, which is known
as offset. The output channel for landmark estimation is
2ka(number of landmarks× number of anchors), and the

FIGURE 4. Structure of the prediction network. Each network performs
classification, bounding box regression, and landmark estimation.
We estimate 294 landmarks for each positive anchor and two additional
offsets.

output channel for the feature map for offset(1x,1y) esti-
mation is 2ka.

C. LOSS FUNCTION
A single-stage object detector has a higher speed but worse
performance compared with the two-stage detector. The two-
stage detector uses the region proposal module to separate
the foreground and background to some extent. However,
the single-stage detector uses a predefined anchor or grid,
so it contains relatively large background areas. This creates a
problemwith class imbalance. Tominimize the disadvantages
of these single-stage detectors, we have employed the focal
loss proposed by RetinaNet [32].

Lcls = −αt (1− pt )γ log(pt ) (2)

Focal loss minimizes loss renewal by giving less loss to
the well-found case and maximizes loss renewal by giving a
large loss for difficult cases. The alpha value was 0.25, and
the gamma value was 2.

V =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2

α =

0, if IoU < 0.5,
V

(1− IoU + V )
, if IoU ≥ 0.5.

(3)

Lbbox = 1− IoU +
(px − gx)2 + (py− gy)2

cw2 + ch2
+ αV

Llandmark =

√
6n
i=1(yi − ỹi)

2

N
, v > 0 (4)

For bounding box regression, we use the complete IoU
loss [33]. The C-IoU loss considers all overlapping areas,
distances between center points, and aspect ratio. V is
an equation in which aspect ratio was designed invariant
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TABLE 1. Scaling configs for EfficientDet.

to regression scale, and alpha is the trade-off parameter,
intended to maintain consistency of aspect ratio only in the
bounding boxes that match well. We achieved better accuracy
than L1 and L2 loss used in most object detectors. Details are
given in Section IV. Fashion landmarks need to be predicted
more carefully than a bounding box or human keypoints.
L1 loss or smooth L1 loss is robust because of being less sen-
sitive to outliers than L2, but low errors are almost ignored.
Therefore, we designed the loss function in a sensitive but
not non-intuitive because of the large difference. Rooted
mean squared error is more intuitive than mean squared error
(MSE) while paying close attention to the appearance of the
outlier. v is the visibility of clothing landmarks. If visibility
does not exist, it is not reflected in the loss. For landmark
offset, the same equation as the landmark loss was applied.
The total loss was optimized by minimizing the four-loss
functions formulated as:

Ltot = Lcls + Lbbox + λsizeLlandmark + λoff Loff (5)

λsize = 0.1 and λoff = 1.

D. TRAINING
EfficientDet is configured from D0 to D7 according to the
coefficient so that lowering the value lowers the compu-
tational cost and decreases accuracy. In contrast, higher
GPU resource consumption implies lower speed but higher
accuracy. We have trained using two models, D0 and D1,
because we aim to achieve near-real-time inference speed.
Table 1 shows a detailed configuration of D0 and D1 models.

The input resolutions are 512 × 512, 640 × 640, and the
backbone network uses EfficientNet-B0, B1. The batch size
is 16, and the data augmentation only used flip. With the
learning rate of 1e−3 and the AdamP optimizer, we obtained
better results than using the common Adam. The training
was conducted using Nvidia Tesla V100 32GB GPU 3-way
system.

IV. EXPERIMENTS
This section presents the techniques used in the experi-
ment and their results. All experiments were performed on
the publicly available DeepFashion2 dataset, which contains
191,961 images in the training set and 32,153 images in the
validation set.

TABLE 2. Model performance based on EfficientDet-D0 and
EfficientDet-D1.

A. BACKBONE
Fashion landmark estimation is complex and difficult because
of the large spatial variation depending on the pose, occlu-
sions, and style. In a single clothing landmark estimation,
Lee et al. [15] tried to mitigate this using the global-local
embedding module using a Gaussian map. In multi-human
keypoints estimation, which is a similar task, Chen et al. [16]
proposed to localize easy keypoints using the FPNs called the
GlobalNet and then localize difficult keypoints through the
RefineNet. Although there was a problem of low resolution
when using FPN, it was solved element-wise using 1×1 conv
after upsampling.

As a result of the previous two cases, we evaluated the
feature extractor on the estimation of landmarks and key-
points. EfficientDet has models of different sizes, from D0
(faster and lighter) to D7 (larger and heavier). Among them,
we compared D0 and D1, which are low-scale models for
real-time inference. D1 has one additional level of BiFPN
compared with D0; it has a larger input resolution, and the
backbone uses EfficientNet-B1. Table 2 shows the results.

B. IoU LOSS
Most neural network-based object detectors typically perform
direct bounding box regression of the center point coordinate,
height, and width (xct , yct ,w, h) of the bounding box using a
loss function, such as MSE or L1/smooth L1.

smoothL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise,

(6)

For the anchor-based object detector, we estimate its offset
(xtop_left , ytop_left , xbottom_right , ybottom_right ). However, direct
estimation of the coordinate at each point of the bounding box
treats these points independently but does not consider the
integrity of the bounding box itself. Therefore, several studies
have focused on these problems. Recently, a new approach
with intersection-over-union (IoU) loss was proposed. IoU
is calculated by considering the area ranges of the predicted
bounding box and the ground-truth bounding box. The IoU
loss calculates the area of the predicted bounding box and the
ground-truth bounding box to track the 4 vertices coordinates.
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FIGURE 5. Example of the generalized IoU loss and distance/complete
IoU method. The generalized IoU considers only the intersection and
union between the ground-truth bounding box and the predicted
bounding box. The distance IoU and the complete IoU consider the
distance between the center coordinates. The complete IoU also
considers the aspect ratio.

The IoU has a scale-invariance character. Therefore, it can
solve the problem of increasing loss depending on a scale,
such as the L1 and L2 loss function, which are the previous
methods.

Generalized intersection-over-union (G-IoU) [34] loss
considers the smallest enclosing convex object area. The
method is to find a box of overlapping areas of the predicted
bounding box and the ground-truth bounding box. This new
box was proposed as a denominator to replace the denomina-
tor used in the previous IoU loss. The formula is as follows:

IoU =
|I |
|U |

,

Generalized IoU = IoU −
|C\(P ∪ G)|
|C|

, (7)

where I is the intersection between the predicted bounding
box and the ground-truth bounding box, and U is the union.
The distance intersection-over-union (D-IoU) loss [35] fur-
ther considers the distance between the center point of the
predicted bounding box and the center point of the ground-
truth bounding box. The formula is as follows:

Distance IoU = 1−IoU+
(px − gx)2 + (py− gy)2

cw2 + ch2
. (8)

The complete intersection-over-union (C-IoU) loss [33]
considers the overlapped area, the distance between center
points, and the aspect ratio simultaneously.

We have applied smooth L1 and the above three methods
to the proposed network. Table 3 shows the results. C-IoU
outperformed other methods in bounding box regression.

C. COORDINATES CONVOLUTION LAYER
Various studies have been conducted to extract better image
features. For example, the CNN performance was improved
by adding several feature channels before the convolution
step.

TABLE 3. Performance results according to the loss function.

FIGURE 6. Coordinates convolution layer. The method is to add x, y
coordinate and radius channels to the image and reflect them in the
feature map.

Liu et al. [36] achieved good performance using a simple
method. They experimented with basic data on coordinate
transformation problem but could not obtain good results with
general CNN. The workaround is the coordinate convolu-
tion, which adds coordinate information to the input image
and adds it to the input channel. Fig. 6 shows this process.
This method can achieve good performance by adding a few
parameters and translation equivariant characteristics with-
out impairing the speed. Hence, this approach can improve
performance while minimizing the negative effect on the
performance of existing models.

Coordinates are important features in fashion landmark
estimation and bounding box regression. We added the radius
channel and x, y coordinates before the imagewas input in the
backbone network. Using this simple technique, we improved
performance.

D. OPTIMIZER
Most object detection methods based on neural networks
use the Adam optimizer. Adam’s step size is not affected
by gradient rescaling, and step size is bound even if the
gradient grows, so any objective function allows for a stable
descent for optimization. In addition, the step size can be
adapted by referring to the previous gradient size. However,
Adam is less normalized in L2 regularization because of
its dependence on learning rate and weight decay. To solve
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FIGURE 7. Definition of the DeepFashion2 dataset. It has 13 classes and different landmarks for each class. The number of landmarks in all classes is
294. The dataset contains the class name, bounding box coordinates, and landmark coordinates.

TABLE 4. Results of applying the coordinates convolution (CoordConv)
layer to the complete IoU model.

this problem, AdamW proposed by Loshchilov et al. [37]
reflected the weight decay in the weight update equation so
that the learning rate and weight decay were independent.
In addition, they further proposed the AdamWR optimizer by
adding a technique called a warm restart, which increases the
learning rate in the middle of training and provides a chance
to escape from the steep local minimum by creating a large
weight update.

Moreover, Adam had scale-invariance in the normaliza-
tion, wherein the weight of deep neural network was met
with momentum, and the weight norm increased rapidly,
causing the cumulative weight norm to slow the convergence
of the descent. Recognizing that the cause of these problems
is in normalized momentum-based-gradient descent, AdamP
proposed by Heo et al. [38] eliminated the cumulative weight
norm using the projection.

We conducted the experiment by applying Adam,
AdamWR, and AdamP to our network. We obtained the best
results using AdamP.

V. RESULTS
To verify the performance of the proposed method, another
similar method the performance comparison with DeepMark

and Match R-CNN was carried out. The mean average pre-
cision (mAP) was measured and compared for landmark
estimation and bounding box regression. The inference time
was also compared. In addition, this section shows examples
of our test result images.

A. DeepFashion2 DATASET
In this research, DeepFashion2 dataset was used to train the
proposed model. The DeepFashion2 dataset was compiled by
Liu et al. in 2019 [18] with multipurpose benchmarks. These
multipurpose benchmarks are clothing detection, landmark
estimation, segmentation, and retrieval. DeepFashion2 fills
the DeepFashion dataset gap as it contains multiple clothing
items per image with rich annotations. The dataset contains
more than 200,000 fashion images with 191,961 training
samples and 32,153 testing samples.

B. COMPARISON WITH PREVIOUS METHODS
Our proposed method achieved the best results using the
GPU system with three Nvidia Tesla V100 32 GB graphics
card after training the model for 80epochs on the Deep-
Fashion2 Challenge training set (191,961 images) with a
batch of 48 images. We used EfficientDet MS COCO pre-
trained model for object detection as the checkpoint, and we
have performed experiments with the EfficientNet backbone
network.

Table 5 shows the results of the mAP comparison in the
bounding box regression and landmark estimation between
the DeepMark, Match R-CNN, and the proposed method.
Match R-CNN in the DeepFashion2 paper shows good land-
mark estimation accuracy as a two-stage detector. However,
Mask R-CNN, the base network of Match R-CNN, shows
44.4M parameters and 116 ms of the inference time. For
Match R-CNN, the inference time would have increased
further because of the addition of a landmark estimation
network. In comparison, the number of parameters in the net-
work proposed in this paper is only 7.3M, and the inference
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TABLE 5. Results of performance comparison with the existing methods.

FIGURE 8. Result of the proposed model. Demonstrations were conducted on images of different sizes and categories.

time is 42ms, which is much more efficient. The DeepMark-
DLA34 backbone can be a good choice to solve the trade-
off problem between accuracy and speed, but our proposed
model is better in terms of accuracy. It has a lower accuracy
than the result of the DeepMark-Hourglass backbone, but it
performs much better in terms of inference time. Our method
can be a best choice from the perspective of the balance of
accuracy and speed without any image preprocessing. More-
over, the proposed method is suitable for low-power devices
and real-time fashion image analysis.

C. EXAMPLE OF THE PROPOSED METHOD
This subsection describes the test result images using our
trainedmodel. Tests were conducted usingNvidia Tesla V100
32 GB single GPU and tested for random categories, includ-
ing the images with single or multiple clothes. Fig. 7 shows
the test results of the proposed network. Good results were
achieved not only in single-clothing images but also in
multiple-clothing images. However, we have confirmed that
the results of the landmark estimation task are not good if the
occlusion of clothing in the image is severe or too small.

Because there are few cases of fashion image analysis
studies for multiple-clothing images, our result images can
be a good reference in subsequent research.

VI. CONCLUSION
Herein, we proposed an approach as an adaptation of Effi-
cientDet for the multiple-clothing detection and fashion

landmark estimation. Focusing on the balance between infer-
ence time and accuracy, we have proposed a method that
analyzes fashion images almost in real time on low-power
devices. In addition, a new bounding box regression loss
function, a different optimizer, and a strategy called coor-
dinate convolution have been applied to the vanilla solu-
tion to increase the accuracy, which may be considered in
other fashion image analysis models. The proposed method
obtained an accuracy of 0.686mAPbox and 0.450mAPpt with
an inference time of 42 ms on the DeepFashion2 validation
set for the two tasks, i.e., clothing detection and fashion land-
mark estimation. The proposed method is fast and accurate
without image preprocessing. In a single stage, it performs
efficient category classification, bounding box regression,
and landmark estimation in parallel. Our proposed approach
can contribute to future research on fashion images.
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