
Received December 31, 2020, accepted January 10, 2021, date of publication January 20, 2021, date of current version January 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3053087

Context-Aware File I/O Management
System for Mobile Devices
JAEHWAN LEE , SANGHYUCK NAM , SUHWAN KWAK, AND SANGOH PARK , (Member, IEEE)
School of Software, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Sangoh Park (sopark@cau.ac.kr)

This work was supported in part by the Chung-Ang University Graduate Research Scholarship, in 2019, and in part by the National
Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under Grant 2020R1A2C1005265.

ABSTRACT Mobile devices such as smartphones and tablets have becomewidespread, and studies are being
conducted to improve the convenience of smartphone users. The I/O performance is considered an important
factor affecting the quality of the smartphone user experience. Therefore, methods for retaining applications
with a high launch frequency in the main memory, improving the I/O stack of the smartphone operating
system, and a new file system for improving the I/O performance have been actively studied. However,
there is no information sharing system between the I/O stacks in a smartphone operating system. Existing
studies suffer from limitations in improving the file I/O performance because the upper- and lower-layer
information of the I/O stack was not considered simultaneously. In this paper, we propose a context-aware
file I/O management system (CAFIO) for analyzing context information collected from various layers of
the I/O stack and sharing them between the layers. CAFIO collects smartphone application usage patterns
and combines them with the lower-layer I/O information to improve the launch speed and I/O latency of an
application. CAFIO exhibits average improvements of 26% in application launch time and 45% in cache hit
ratio, as well as a read speed 63% faster than that of existing file I/O management systems.

INDEX TERMS Mobile environments, storage management, file systems management, storage hierarchies,
context-aware, pattern recognition.

I. INTRODUCTION
With the development and widespread use of smartphones,
users are spending more time using such devices. The share
of smartphones in the total mobile phone market is 81%
according to statistics from 2019 [1], and users use their
smartphones an average of 3 hours and 14 minutes per
day. In addition, users typically install dozens to hundreds
of applications, and smartphone applications are equipped
with more functionalities to improve user convenience. As a
result, mobile applications have increased in size and require
an increasing number of I/Os to execute an application.
Therefore, as the numbers of features and application sizes
increase, so does the number of resources that must be
fetched from storage. Because it is important for the system
to respond quickly to smartphone users, providing users with
a fast system response through a high I/O performance is

The associate editor coordinating the review of this manuscript and

approving it for publication was Renato Ferrero .

necessary. Thus, studies on optimization of various parts of
the file I/O layer have been proposed.

Android smartphones, which account for a high share in
the smartphone market, use a Linux kernel-based operating
system and an ext4-based file system. However, the ext4 file
system was developed for desktop systems, not mobile
systems such as smartphones. Furthermore, the I/O stack
structure and I/O scheduler of the Linux kernel used in
Android do not consider patterns such as the frequency of
application launches. They are suitable for a typical mul-
titasking desktop environment with a fair allocation of the
I/O time to a large number of applications. Unlike a desk-
top environment, a smartphone environment does not use
a large number of applications concurrently, and the user
can only interact with one application at a time. There-
fore, the existing I/O scheduler is unsuitable for a smart-
phone environment. Moreover, ext4 was developed for use in
hard disk drives, and it does not consider the characteristics
of NAND flash memory used as a permanent smartphone
storage [2], [7].

16556 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7748-3587
https://orcid.org/0000-0002-9570-8284
https://orcid.org/0000-0002-1832-3532
https://orcid.org/0000-0003-4459-4843


J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

The number of applications installed on smartphones has
gradually been increasing, although applications that are fre-
quently used or that have long foreground times only account
for a small portion of them [8]. According to these char-
acteristics, studies have been proposed to analyze and keep
frequently used applications in the main memory to improve
the application launch time. Not all applications remain in
the main memory owing to the limited resources available.
In studies on improving the I/O stack to upgrade the perfor-
mance of a permanent storage device [9], [11], an improved
I/O scheduler and a new file system suitable for smartphone
storage have been proposed. Because these studies only con-
sider individual parts of the I/O stack, the improvement of the
overall file I/O performance is limited.

In this paper, we propose the use of a context-aware file
I/Omanagement system (CAFIO) that analyzes the frequency
of application launches of a smartphone and shares the
analyzed information between the layers of the I/O stack.
CAFIO improves the application launch, execution speed,
and I/O latency through file caching, reorganized sequen-
tial write, file level readahead, and I/O scheduling priority
configurations based on analyzed context information such
as the launch frequency of an application. The remainder of
this article is organized as follows. In section II, we examine
the existing Linux kernel I/O stacks, file I/O managements,
features, and limitations of the existing file system used in a
smartphone environment.We then introduce the proposed file
I/O management system CAFIO in Section III and describe
the performance evaluation methods along with the results
in comparison with the existing system in Section V. Finally,
in section VI we provide some concluding remarks and direc-
tions for future research.

II. BACKGROUNDS
A. ANDROID AND THE STANDARD I/O SCHEDULER
Android is a collection of a mobile operating system, mid-
dlewares, and core applications for mobile platforms such
as smartphones and tablets. It is based on a modified Linux
kernel suited for Android’s mobile environments. Android
is composed of 5 representative layers; application layer,
android framework and runtime layers for application execu-
tions, C/C++ library layer for system components, and the
linux kernel layer. The Android’s Linux kernel is responsible
for the core parts of the operating system such as process
management, memory management, networking, and device
drivers. It operatesmostly similar to the original Linux kernel,
with additional functionalities such as energy management
and swap operations specific for mobile platforms.

Android applications are written in Java or Kotlin, which
are compiled into bytecode running on the Android run-
time. The Android runtime converts the Android applica-
tion bytecode into native instructions and executes it. Each
Android application runs as a virtual machine instance of the
Android runtime. When a user or a system service launches
an application, it creates a new process for the application

if the application is not running. The application process is a
process of the Linux kernel, and generally, multiple processes
can be created when one application is executed.

File I/Os requested by Android applications are delivered
to the Linux kernel through system calls of the process.
As shown in Fig. 1, file I/O requests sent to the Linux
kernel are delivered to Virtual File System (VFS), actual
file system implementation, page cache, block I/O sched-
uler, and block device driver in order. VFS is a layer that
abstracts the actual file system implementation such that
it allows applications to access different file systems in
the same way. The page cache temporarily stores data for
file I/Os into memory. The file system converts file I/O
requests into block I/O requests and delivers them to the block
I/O scheduler. The block I/O scheduler rearranges block
I/O requests according to the algorithms (e.g. CFQ, deadline,
NOOP) in consideration of performance and load balancing.
There is no difference in core code between the block I/O
scheduler implemented in Android’s Linux kernel and the
block I/O scheduler of the original Linux kernel. In addition,
they both use the Completely Fair Queueing (CFQ) algorithm
by default. CFQ manages block I/O for each process, and
assigns a time slice to the block I/O queue for each process so
that each process has the same block I/O processing oppor-
tunity. However, it is not suitable for mobile environment
due to the nature of CFQ that processes I/O of the fore-
ground/background process fairly. In a mobile environment,
since the responsiveness of the application being used by the
user is most important, I/O schemes taking this into account
are necessary.

FIGURE 1. Context information from each layer of I/O stack.

VOLUME 9, 2021 16557



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

B. RELATED STUDIES
Various studies have been conducted to improve the per-
formance of a file I/O for application responsiveness and
user experience in smartphones. To this end, I/O scheduling
schemes for the Linux kernel [9], [14] were proposed. These
studies mitigate the data transfer delay caused by incorrect
dependencies of I/O operations [9] or prioritizing I/O requests
from applications currently in the foreground [14].

In a study [15] on improving responsiveness through
I/O optimization for smartphones, the authors analyzed the
I/O characteristics of mobile applications and proposed a
modified version of complete fair queueing-based block I/O
scheduler which set more weights for read requests. Another
study [16] on optimizing I/O stack of smartphones proposed
techniques to minimize unnecessary journaling and random
writes that can occur on smartphone file systems. The authors
analyzed the I/O characteristics of SQLite, which takes part
in Android and widely used among mobile applications.

It is reported in that more than 80 applications are installed
on a smartphone on average [8], out of which less than
50 applications account for more than 50% of the total num-
ber of application launches, and less than 10 applications
account for more than 50% of the total foreground time.
In other words, only a small number of applications are
frequently used. Studies [17], [19] have been proposed for the
frequency analysis of open applications residing in the main
memory.

However, the aforementioned studies have attempted to
improve the performance only within one layer of the
I/O stack. This acts as a limitation in improving the overall
performance of the system I/O. A performance improvement
by sharing context information between layers has yet to
be considered. The context information that can be obtained
from each layer of the I/O stack is shown in Fig. 1. Firstly,
in the Android framework layer, context information such
as an application launch and an application foreground and
background execution status can be obtained. Secondly, Con-
text information such as an access offset and access patterns
for each file can be obtained in the virtual file system (VFS)
layer. Lastly, in the block layer, context information such as a
block device offset for applying an I/O, and an access pattern
of a block device can be obtained. Information that can be
acquired is only consumed within each layer. The limitation
that the information cannot be transferred and utilized in other
layers is due to the Linux kernel design, which is focused on
modularization and abstraction of the I/O stack.

The formerly stated problems prevent the VFS layer from
recognizing outside contexts such as whether the process cur-
rently accessing a file belongs to the foreground application
or to a frequently used application. Moreover, it is not possi-
ble to receive information in the block layer regarding which
file a block request belongs to, which process requested the
block, or within which offset a block is located logically
in the file. It becomes difficult to improve the I/O perfor-
mance when it is difficult to share information between the
layers of the I/O stack. For example, an improvement of the

I/O performance with the block readahead is negligible for
blocks related to infrequently used applications or files, even
if the readahead scheme is proven effective.

A context-awareness of operating systems is introduced
with the emerging of smartphones. Context-awareness in
this kind of area includes utilizing smartphone sensing data,
user’s application usage data, and operating system generated
data to optimize the system’s resource management. The
early concepts of context-awareness on operating systems
were proposed [20], [22] for saving energy consumption of
smartphones. The concept was applied on memory manage-
ment [17] and I/O management [14] later. However, to the
best of our knowledge, no research has yet been attempted to
improve performance of I/O by combining context informa-
tion from inside and outside the operating system and sharing
them between I/O stacks.

In this paper, we propose a file I/O management system
that can share the context information collected from each
layer of the I/O stack. By utilizing the information sharing
between the I/O stack layers, the smartphone application
usage pattern, file I/O information, and block I/O information
can be combined to enhance the performance of the file I/O.

III. CAFIO: CONTEXT-AWARE FILE I/O MANAGEMENT
SYSTEM
In this paper, we propose CAFIO, a context-aware file
I/Omanagement system. The architecture of CAFIO is shown
in Fig. 2. The context information manager collects context
information generated from the Android Framework layer
and the Linux kernel I/O stack. The context information
analyzer analyzes the information collected from the context
information manager and generates information that is uti-
lized by CAFIO sub-modules. The virtual file system to file
descriptor (VFS/FD) mapper allows the Android framework
layer and the Linux kernel I/O stack layers to share the
context information. The context-aware readahead conducts
a file readahead based on the analyzed context information,
and the context-aware cache queue determines the cache
priority to increase cache hit ratio according to the context
information. Context-aware defragger improves the read per-
formance with the analyzed context information by sequen-
tially storing frequently used small-sized files in a storage
device. The completely fair queue with context-awareness
(CFQ-CA) minimizes the response time of the application
currently in the foreground by prioritizing I/O requests related
to the application being used in the foreground.

A. CONTEXT INFORMATION MANAGER
The FileContext information collected for each application
uid in the context information manager is shown in Table 1.
This information is collected as indicated in Algorithm 1.
Here, collectFileOpen is called by the Linux kernel’s VFS
when a file is opened, and this procedure increases the
read count statistics by one. In addition, collectFileRead
and collectFileWrite are called when file reads and writes
are performed, respectively. When called, collectFileRead

16558 VOLUME 9, 2021



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

FIGURE 2. Architecture of context-aware file I/O management system.

TABLE 1. Definition of FileContext .

and collectFileWrite save the current timestamp to decide
whether the minwait time has passed from the last read or
write. minwait is the Linux kernel’s I/O request timeout
value in seconds, which is 5 [23]. Since reads and writes
on a large file can be burst-called for a short period of time
and are proportional to the size of the file, the nread and
nwrite of infrequently used large files should not grow. There-
fore, the minwait is defined to prevent collectFileRead and
collectFileWrite from increasing nread and nwrite, respec-
tively, if they are called before the minwait has passed. For
CAFIO to adapt to dynamically changing file access patterns,

the nread and nwrite are measured as weekly cumulative
values.

B. CONTEXT INFORMATION ANALYZER
The context information analyzer analyzes information on
cache priorities and sequential file reads using FileContext
information that is collected from the context information
manager. The context-aware readahead and the context-aware
defragger use the sequential read information to optimize the
file read performance. Cache priority information is utilized
by the context-aware cache queue to improve the hit ratio
of high-priority caches. When an application uid reads a
file inodeid in the context information analyzer, the corre-
sponding FileContext information is added to historyuid . The
historyuid is a list of FileContexts that manages the files
accessed by the application uid . Files that are accessed by
an application are classified into hot , warm, and cold files
according to the nread and nwrite. The nread and nwrite
represents the file access frequency. The upper-third of the
most frequently read files are classified as read hot files,
the middle third are read warm, and the lower third are read
cold . The same applies to the write hotness of a file with
nwrite.

VOLUME 9, 2021 16559



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

Algorithm 1 Collecting File Usage Information of an
Application
1: procedure collectFileOpen(inodeid)
2: stat ← FileContext of inodeid
3: stat.nread ++
4: end procedure
5: procedure collectFileRead(inodeid)
6: stat ← FileContext of inodeid
7: timestamp← current time
8: if timestamp− stat.lastread ≥ minwait then
9: stat.nread ++

10: end if
11: stat.lastread ← timestamp
12: end procedure
13: procedure collectFileWrite(inodeid)
14: stat ← FileContext of inodeid
15: timestamp← current time
16: if timestamp− stat.lastwrite ≥ minwait then
17: stat.nwrite++
18: end if
19: stat.lastwrite← timestamp
20: end procedure

When an application process reads a file in the Linux ker-
nel’s virtual file system (VFS), the onFileRead operation of
Algorithm 2 is executed by the context information analyzer.
Since the file operation occurs when a user runs an appli-
cation and the usage data needs to be applied, the proposed
analyzer is executed online. File read pattern information is
also collected for readahead tasks over multiple sequential
files. If an application uid shows a sequential read pattern
over multiple files, context-aware readahead preloads the
file’s contents into the page cache. The context information
analyzer collects the file read patterns from (a) a hot file,
(b) a file not most recently used, (c) a frequently accessed
file, and (d) a file whose size is smaller than Sreadahead .
Condition (a) is required, as indicated in line 19, to reduce the
data collection overhead. Condition (b) is required because
of the possibility that contents of the most recently read file
remain in the main memory. Lines 2–4 are executed to check
condition (b). If a file inodeid is the last file read by the uid ,
the context information analyzer excludes the file from the
collection target. Condition (c) is required because there is
little benefit for a file that is accessed intermittently. Even
if the file is read in advance, it is likely to be discarded
without being used. Accordingly, lines 5–7 are executed to
exclude the file that reads again after minwait from the last
read. Finally, as represented in lines 8–10, condition (d) is
for multiple file readaheads because the readahead size of
the operating system is Sreadahead . The maximum readahead
size Sreadahead is 512 KB, which is the maximum I/O size of
Android’s Linux kernel. When the currently read file inodeid
is determined as the information collection target for sequen-
tial reads, FileContext of the currently read file is appended to

Algorithm 2When a File Is Read by an Application
1: procedure isTraceTarget(stat, timestamp)
2: if the last element of historyuid is stat.inodeid then
3: return false
4: end if
5: if timestamp− stat.lastread ≥ minwait then
6: return false
7: end if
8: if sizeof stat.inodeid ≥ Sreadahead then
9: return false
10: end if
11: return true
12: end procedure
13: procedure traceFileRead(uid , inodeid)
14: stat ← FileContext of inodeid
15: timestamp← current time
16: if the file of inodeid is hot file then
17: if isTraceTarget(stat, timestamp) is true then
18: tr ← last element of historyuid
19: append stat to tr .nextfc
20: end if
21: end if
22: stat.lastread ← timestamp
23: append stat to historyuid
24: end procedure

the nextfc list, as shown in lines 18 and 19; this nextfc belongs
to the file that the application has most recently read. In other
words, it is recorded in the last file read for which the current
file inodeid is read next.

Using the updated historyuid , the cache priorities for each
file are analyzed. The analyzed information is used in the
context-aware cache queue to apply a priority-based file
cache management policy. The file cache priority is deter-
mined as high, normal, or low according to Table 2. A file
belongs to the high-priority cache group if it is determined
to be a readhot file or writehot file. A file belongs to
the normal priority cache group if it is determined to be a
readwarm file or a writewarm file. The other files belong
to the low-priority cache group, which are read and write
cold files. Files belonging to the high-priority cache group
accumulate their cache hit counts to rcachehit andwcachehit .
These hit counts are used for CHScoreinodeid , the normalized
cache hit ratio of inodeid to compare the intra-group priori-
ties. It is obtained using (1), by dividing the read and write hit
count of a file inodeid by the largest read and write hit count

TABLE 2. Cache priorities for file.

16560 VOLUME 9, 2021



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

amount all files, respectively. Therefore, the absolute hit
count rcachehitinodeid and wcachehitinodeid together becomes
a normalized value CHScoreinodeid between 0 and 2.

CHScoreinodeid=
rcachehitinodeid
max
∀iid

(rcachehitiid )
+

wcachehitinodeid
max
∀iid

(wcachehitiid )

(1)

C. VFS/FD MAPPER
The VFS/FD mapper tracks the I/O on the Android frame-
work and Linux kernel. It maps a file descriptor (fd) of an
application process to a VFS entry of the Linux kernel. It also
creates an I/O tag to track which application issues a file I/O
request, or which application is related to which block I/O.

D. CONTEXT-AWARE READAHEAD
Context-aware readahead reads a file with a high access prob-
ability into the memory in advance to enhance the cache hit
ratio of the file. There are single file readaheads and multiple
file readaheads. A single file readahead reads a portion of
or all of the data over a single file, as shown in Fig. 3 (a),
whereas a multiple file readahead reads a portion of or
all of the data over multiple files, as shown in Fig. 3 (b).
If the size from the current position to the readahead
position is smaller than the maximum readahead size
Sreadahead as well as the next sequential read infor-
mation in FileContext.nextfc, a multiple file readahead
is applied. A single file readahead is conducted for
the other cases. The maximum readahead size per file
is 512KB.With the Linux kernel’s cache policy, context-aware
readahead will cache readahead data in memory as long as the
memory allows. When the cache space runs out, the cache is
evicted according to the priority of CFQ-CA.

FIGURE 3. Single and multiple file readaheads.

E. CONTEXT-AWARE CACHE QUEUE
The context-aware cache queue manages the file page cache
according to Table 2, which is the cache priority analyzed

by the context information analyzer. The pages of a file are
inserted into three types of cache queues, as shown in Fig. 4,
according to the priority of the file. For example, if a file’s
priority of a page is tagged to be high, then the page would be
inserted to the priority queue. The caches of high-priority files
are managed by a priority queue to provide a fast response.
In the case of normal priority, it is managed by the least
recently used (LRU) queue that is deployed in the existing
system. Files with low priority are managed in the simplest
way regardless of their order using the first-in first-out (FIFO)
queue to achieve lower management overhead. Upon a cache
replacement, caches from the FIFO queue, where the cache
of the lower priority files is kept, are first evicted. Therefore,
the caches with a high access probability are kept in the main
memory as much as possible.

FIGURE 4. Context-aware cache queue for high, normal, and low
priorities.

F. CONTEXT-AWARE DEFRAGGER
In a mobile operating system environment such as Android,
it has been reported [26] that the probability of fragmentation
occurring in a single file is low; however, these observations
have a limitation in that the fragmentation of inter-files has
not been considered. For instance, let us assume that there is a
multiple file readahead taskwith the files shown in Fig. 5. The
I/O for readahead on files 1-3 and 5 can be reduced if those
files are consecutively located than separated; thus, the read
performance can be improved if files 1–3 and 5 are read
in advance as a sequential file access pattern. The existing
studies cannot conduct a defragmentation, i.e., a sequential
relocation of those files, as such studies cannot detect that
access to file 4 is different from that of the other files.
Context-aware defragger reads multiple files at the same time
when conducting multiple file readaheads and then performs
defragmentation that relocates the related files sequentially

FIGURE 5. Context-aware defragment for multiple file readaheads.

VOLUME 9, 2021 16561



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

to improve the I/O performance. Context-aware defragger
selects readahead candidates using FileContext.nextfc and
supports as many files to be stored sequentially as possible in
the storage device using the bulk transfer function, as shown
in Fig. 5. A bulk transfer is conducted for multiple-file reada-
head targets without write operations.

G. CFQ-CA
CFQ-CA is a scheduling module designed to prioritize
I/O requests from applications currently in the foreground.
It replaces the existing Linux I/O scheduler. In the VFS/FD
mapper, the block I/O request of the application running in
the foreground and the block I/O request running in the back-
ground are tagged and delivered to CFQ-CA. The weights
for the weighted round robin of CFQ-CA are set according
to the background/foreground state of application the process
belongs to. In order to improve the application responsiveness
for users, the weight for the foreground I/Os is set to higher
than the weight for the background I/Os. Each process is
added to its priority weight in the weighted round robin.

IV. IMPLEMENTATION
The CAFIO’s components exist across Android Framework
layer and each I/O stack of Linux kernel. A mechanism to
communicate between user space and kernel space is required
to implement CAFIO. Therefore, the linux netlink mecha-
nism is used to share data between the user space components
and the kernel space components.

The VFS/FD mapper in kernel space combines the file
descriptors of an application process and its corresponding
inode in VFS. When each of open(), read(), and write() is
called, its related inode and process uid is collected by the
VFS/FD mapper. These two data are then sent up to the
CAFIO’s context information manager. The memory over-
head of VFS/FDmapper is the sum of those two data for every
uid-inode pair. Each data is represented by an 8-byte variable
on 64-bit architecture so that the memory overhead of each
data pair is 16 bytes on the actual implementation.

The FileContext is created for each accessed file.
In order to create and access FileContext structure effi-
ciently, the hashmap is implemented in CAFIO. Therefore,
a FileContext structure is accessed with its key, which is its
inodeid . On the other hand, the FileContext(s) are managed
as a list when accessed through its nextfc field. The nextfc
field is a linked list of FileContext of read files right after
this file. In the actual implementation on arm64 architecture,
each field of FileContext data structure is a 64-bit variable
such that the memory overhead of FileContext is 64 bytes.

V. PERFORMANCE EVALUATION
A. ENVIRONMENTAL SETUP
To evaluate the performance of CAFIO proposed in this
paper, the launch time, cache hit ratio, and read speed of
the target applications are measured and compared with
those for the existing Android system. As a target device
to be used for performance measurement, a Google Nexus

6P is selected. In addition, a Google Pixel 3 device is
used to confirm the performance evaluation results with
other mobile devices. The detailed specifications are shown
in Table 3 and 4, respectively.

TABLE 3. Target device specification - Google Nexus 6P.

TABLE 4. Target device specification - Google Pixel 3.

The target applications for performancemeasurement were
selected from the top five popular applications for each cat-
egory in the Google Play Store. The full list of applications
is shown in Table 5. The total execution of applications A–T
is defined as a single test run. In each test run, the launch
sequence of 20 applications is permuted randomly such that
the measured performance of an application is not affected
by the predetermined sequence of the application launches.
A command to terminate all applications as well as invalidate
the caches is explicitly used in the Linux kernel between each
test run such that the caches remaining between test runs do
not affect the other results.

The file I/O footprints of target applications was mea-
sured and shown in Table 6. Each application was executed
10 times independently, such that each footprint value is a
mean of 10 independent measures. The average number of
files an application accesses, the number of reads and writes
an application requests, and the total volume of reads and
writes during the execution were measured to validate the
experimental results.

The test method used to measure the launch time, cache hit
ratio, and read speed of an application is as follows. The appli-
cation launch time is the time from when the user launches an
application to when the application is displayed on the screen.
The cache hit ratio represents the cache hit ratio for all I/Os
generated during the measurement of the launch time of the
application. The read speed is the average speed of all read
requests issued by the target application during its launches.

16562 VOLUME 9, 2021



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

TABLE 5. Tested package set for target platform.

Each experimental result is a mean of 10 test run outputs. It is
also possible to measure the read speed with real-world data
in which user interactions are recorded. However, collecting
the vast amount of user-application interaction data is out
of the scope of our research, and the footprints in Table 6
shows that there are diverse form of reads exist in application
launches. The launch sequence of applications A-T for each
test run is permuted randomly such that the measured perfor-
mance of an application is not affected by the predetermined
sequence of the application launches.

TABLE 6. File I/O footprints of tested package set.

B. EVALUATION RESULTS
The application launch time results are shown in Fig. 6. The
overall launch time of the applications was improved by an

FIGURE 6. Average launch time of each application.

average of 26.4%. A performance degradation was observed
at −11% and −3% for applications D and L, respectively,
whereas an average 30% improvement was observed for the
other applications. The result exhibits a trend in the improved
performance of Android+CAFIO.

The cache hit ratio of the applications is shown in Fig. 7.
An average of 45.4% improvements in cache hit ratio is
observed from the result. The application K is shown to be the
most positively affected one when using CAFIOwith an aver-
age improvement ratio of 330.4%. Applications that showed a
high hit ratio already on Android were not improved as much
as the others since there was not enough room to improve.
Application C showed the least performance improvement in
the cache hit ratio, and application G showed performance
degradation by 0.7%.

FIGURE 7. Average cache hit ratio of each application.

The read performance measurements of the application file
are shown in Fig. 8. The read speed of applications P and Q
could not measured because the time spent on read operation
was too short. On average, CAFIO showed a performance
improvement of 63.1%, with applications B and L show-
ing 7.83- and 2.47-times faster read speeds than that of the

VOLUME 9, 2021 16563



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

FIGURE 8. Average read speed of each application.

existing system, respectively. Applications C, D, K, S, and T
showed a performance degradation on average of 17.5%.

If either the portion of one of hot, warm, cold file increases,
the overall result would close to the case in which all of
the files are hot, warm, or cold. Then, the performance
improvements would be lessened to the stock Android sys-
tem. Therefore, we measured the performance on different
hot/warm/cold ratios to confirm the hypothesis. The average
launch time of applications A-T is shown in Fig. 9. The ratio
of 1:1:1 is observed to be the most effective ratio than others.

FIGURE 9. Average launch time of applications for different
hot/warm/cold ratios.

To confirm the CAFIO’s performance improvements in
other devices, we conducted the same experiments on Google
Pixel 3 device and compared the results to that of Google
Nexus 6P. As shown in Table 4, the Pixel 3 device has larger
RAM with faster flash storage. The performance measure-
ments are shown in Fig. 10.

The average application launch time improvement
was 7.6%, which is lesser than the Nexus 6P. However,
the cache hit ratio showed higher improvements than CAFIO
on Nexus 6P device. This is mainly because Pixel’s RAM
with higher capacity can cache more relevant data than

FIGURE 10. Average improvement ratio on different devices.

Nexus 6P. The read speed improvement ratio is shown to be
less than Nexus 6P case. The Pixel 3 device is equipped with
high performance storage than Nexus 6P device. Therefore,
there was less room for improvement on Pixel 3 device.
The positive improvement ratio on both devices means
that the experimental results can be confirmed such that
CAFIO generally improves the I/O performance.

C. DISCUSSION
The performance measurement results of application launch
time, cache hit ratio, and read speed have the tendency to be
improved using CAFIO. When launching application, pro-
cessing and networking can occur as well as file I/O such that
some applications do not benefit from CAFIO’s optimiza-
tions. Various applications of each category were selected
from app store for generality. Therefore, for most cases,
the proposed CAFIO improved the file I/O performance by
enabling context-awareness between each I/O stack. Despite
the improvements in cache hit ratio or read speed for the case
of applications D and L, their launch time performance was
not improved as shown in Fig. 6. These can be the case where
processing and networking heavily affect the launch time of
an application.

The cache hit ratio of application G decreased compared
to the existing system as shown in Fig. 7. These degradations
were due to the characteristics of the applications, which issue
fewer read requests of the files, more I/Os over the network,
or exhibit random file read patterns. Because CAFIO does
not apply caching for a random file I/O, the cache hit ratio
decreased. However, CAFIO allocates more resources for
sequential file access caching instead of random file access
caching. Therefore, CAFIO showed an overall performance
improvement for all other cases. The readahead of CAFIO
was proven to be effective through this cache hit ratio mea-
surement.

The degraded performance is also observed in Fig. 8.
This is due to the CAFIO’s optimization scheme through
context-awareness does not apply for random file I/Os.

16564 VOLUME 9, 2021



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

Therefore, in case of small sized random I/O dominated
application, only the read speed can be degraded while in the
opposite case the performance can be dramatically improved.
Because applications B and L entailed a large number of small
reads, the number of I/O requests can be reduced through the
context-aware defragmentation of CAFIO, thereby dramati-
cally improving the read performance.

Despite the empirical results in Fig. 9 that the ratio
of 1:1:1 is the most effective than others, the impact of vary-
ing ratio may depend on the workload of other applications.
This is because the ratios can be infinitely divided and testing
all possible workloads for all ratios is practically not possible.

VI. CONCLUSION
As the use of smartphones has increased and smartphones
with various functions have been released, the capacity
and launch time of their applications have also increased.
However, because smartphone users are sensitive to the
application launch time, it is important to decrease this
time. Various studies have attempted to improve the
I/O performance on each layer of the I/O stack; how-
ever, such studies have limitations in improving the per-
formance because they consider only a single part of the
I/O stack, such as improving the I/O scheduler or developing
a new file system suitable for the smartphone’s permanent
storage device.

In this paper, we proposed CAFIO, a file I/O management
system that can share information from each part of the
I/O stack to the other parts of the stack. The application
launch frequency was analyzed, and the information was
utilized for file caching, readahead, and I/O priority con-
figurations. A performance evaluation with various types of
applications showed that the performance improved by an
average of 26% in terms of the application launch time, 45%
in the cache hit ratio, and 63% the read speed compared to
the existing file I/O management system.

In the future, we aim to address the performance degra-
dation caused when a random I/O is not cached. We also
aim to extend our research to collecting real-world data on
user-application interactions. In addition, it is necessary to
study a method for improving both the network I/O and
the file I/O owing to the highly dependent characteristics of
smartphone devices.

REFERENCES
[1] S. Kemp. (2019). Digital 2019: Global Digital Overview.

Accessed: May 19, 2020. [Online]. Available: https://datareportal.
com/reports/digital-2019-global-digital-overview

[2] C. Lee, D. Sim, J. Hwang, and S. Cho, ‘‘F2FS: A new file system for
flash storage,’’ in Proc. 13th USENIX Conf. File Storage Technol., 2015,
pp. 273–286.

[3] K. Lee and Y. Won, ‘‘Smart layers and dumb result,’’ in Proc. 10th ACM
Int. Conf. Embedded Softw., 2012, pp. 23–32.

[4] J. Han, S. Kim, S. Lee, J. Lee, and S. J. Kim, ‘‘A hybrid swapping scheme
based on per-process reclaim for performance improvement of Android
smartphones (August 2018),’’ IEEE Access, vol. 6, pp. 56099–56108,
2018.

[5] J. Kim, C. Kim, and E. Seo, ‘‘ezswap: Enhanced compressed swap scheme
for mobile devices,’’ IEEE Access, vol. 7, pp. 139678–139691, 2019.

[6] J. Kim and H. Bahn, ‘‘Analysis of smartphone I/O characteristics—Toward
efficient swap in a smartphone,’’ IEEE Access, vol. 7, pp. 129930–129941,
2019.

[7] J. Kim and H. Bahn, ‘‘Maintaining application context of smart-
phones by selectively supporting swap and kill,’’ IEEE Access, vol. 8,
pp. 85140–85153, 2020.

[8] H. Ahn, M. E. Wijaya, and B. C. Esmero, ‘‘A systemic smartphone usage
pattern analysis: Focusing on smartphone addiction issue,’’ Int. J. Multi-
media Ubiquitous Eng., vol. 9, no. 6, pp. 9–14, Jun. 2014.

[9] S. Kim, H. Kim, J. Lee, and J. Jeong, ‘‘Enlightening the I/O path: A holistic
approach for application performance,’’ in Proc. 15th USENIX Conf. File
Storage Technol., 2017, pp. 345–358.

[10] S. S. Hahn, S. Lee, I. Yee, D. Ryu, and J. Kim, ‘‘Improving user experience
of Android smartphones using foreground app-aware I/Omanagement,’’ in
Proc. 8th Asia–Pacific Workshop Syst., Sep. 2017, pp. 1–8.

[11] S. Han, S. Lee, I. Yee, D. Ryu, and J. Kim, ‘‘Fasttrack: Foreground
app-aware I/O management for improving user experience of Android
smartphones,’’ in Proc. USENIX Annu. Tech. Conf., 2018, pp. 15–28.

[12] M. Ju, H. Kim, M. Kang, and S. Kim, ‘‘Efficient memory reclaiming for
mitigating sluggish response in mobile devices,’’ in Proc. IEEE 5th Int.
Conf. Consum. Electron., Sep. 2015, pp. 232–236.

[13] C. Wu, C. Ji, L. Shi, C. J. Xue, B. Huang, and Y. Wang, ‘‘Dynamic merg-
ing/splitting for better responsiveness inmobile devices,’’ inProc. 5th Non-
Volatile Memory Syst. Appl. Symp. (NVMSA), Aug. 2016, pp. 191–202.

[14] S. J. Prasath, ‘‘Android application context aware I/O scheduler,’’ Ph.D.
dissertation, School Comput. Inform., Decis. Syst. Eng., Arizona State
Univ., Phoenix, AZ, USA, 2014.

[15] D. T. Nguyen, ‘‘Improving smartphone responsiveness through I/O opti-
mizations,’’ in Proc. ACM Int. Joint Conf. Pervas. Ubiquitous Comput.,
New york, NY, USA, Sep. 2014, pp. 337–342.

[16] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, ‘‘I/O stack optimization for
smartphones,’’ in Proc. USENIX Annu. Tech. Conf., 2013, pp. 309–320.

[17] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, ‘‘Fast app launching
for mobile devices using predictive user context,’’ in Proc. 10th Int. Conf.
Mobile Syst., Appl., Services, 2012, pp. 113–126.

[18] P. R. Jelenkovic and A. Radovanovic, ‘‘Least-recently-used caching with
dependent requests,’’ Theor. Comput. Sci., vol. 326, nos. 1–3, pp. 293–328,
2004.

[19] S.-H. Kim, J. Jeong, and J.-S. Kim, ‘‘Application-Aware Swapping for
Mobile Systems,’’ ACM Trans. Embedded Comput. Syst., vol. 16, no. 5,
p. 182, 2017.

[20] K. Ariyapala, M. Conti, and C. Keppitiyagama, ‘‘ContextOS: A context
aware operating system for mobile devices,’’ in Proc. IEEE Int. Conf.
Green Comput. Commun., Aug. 2013, pp. 976–984.

[21] D. Chu, A. Kansal, J. Liu, and F. Zhao, ‘‘Mobile apps: It’s time to move
up to CondOS,’’ in Proc. 13th USENIX Conf. Hot Topics Oper. Syst., 2011,
p. 16.

[22] N.Vallina-Rodriguez and J. Crowcroft, ‘‘ErdOS:Achieving energy savings
in mobile OS,’’ in Proc. 6th Int. workshop, 2011, pp. 37–42.

[23] blk-timeout.c. [Online]. Available: https://elixir.bootlin.com/linux/v5.7.4/
[24] When 2MB Turns Into 512KB. Accessed: Jun. 20, 2020. [Online].

Available: https://kernel.dk/when-2mb-turns-into-512k.pdf
[25] H. Kim and D. Shin, ‘‘Optimizing storage performance of Android smart-

phone,’’ in Proc. 7th Int. Conf. Ubiquitous Inf. Manage. Commun., 2013,
pp. 1–7.

[26] S. S. Hahn, ‘‘Improving file system performance of mobile storage systems
using a decoupled defragmenter,’’ Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2017, pp. 759–771.

JAEHWAN LEE received the B.S. degree in com-
puter engineering from the School of Computer
Science and Engineering, Chung-Ang University,
Seoul, South Korea, in 2015, where he is currently
pursuing the Ph.D. degree in software engineer-
ing.

His research interests include mobile operating
systems, embedded systems, and Linux systems.

VOLUME 9, 2021 16565



J. Lee et al.: Context-Aware File I/O Management System for Mobile Devices

SANGHYUCK NAM received the B.S. and M.S.
degrees in computer engineering from the School
of Computer Science and Engineering, Chung-
Ang University, Seoul, South Korea, in 2017 and
2020, respectively. He is currently pursuing the
Ph.D. degree in system software engineering.

He was a Research Engineer with CreativeSoft,
Seoul. His research interests include mobile sys-
tems, Linux systems, and context-aware systems.

SUHWAN KWAK received the B.S. degree from
the Division of Media Software, Sungkyul Univer-
sity. He is currently pursuing the master’s degree
with the School of Computer Science and Engi-
neering, Chung-Ang University.

His research interests include mobile embedded
systems, cyber physical systems, and autonomous
vehicle systems.

SANGOH PARK (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the School of
Computer Science and Engineering, Chung-Ang
University, in 2005, 2007, and 2010, respectively.

From 2012 to 2017, he worked as a Senior
Researcher of Global Science Experimental Data
Hub Center, Korea Institute of Science and Tech-
nology Information. He was a Research Professor
with the School of Computer Science and Engi-
neering. Since 2017, he has been working as an

Associate Professor with the School of Computer Science and Engineering,
Chung-AngUniversity. His research interests include embedded systems, big
data systems, cyber physical systems, and Linux systems.

16566 VOLUME 9, 2021


