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Abstract: Human pose estimation and tracking in real-time from multi-sensor systems is essential for
many applications. Combining multiple heterogeneous sensors increases opportunities to improve
human motion tracking. Using only a single sensor type, e.g., inertial sensors, human pose estimation
accuracy is affected by sensor drift over longer periods. This paper proposes a human motion
tracking system using lidar and inertial sensors to estimate 3D human pose in real-time. Human
motion tracking includes human detection and estimation of height, skeletal parameters, position,
and orientation by fusing lidar and inertial sensor data. Finally, the estimated data are reconstructed
on a virtual 3D avatar. The proposed human pose tracking system was developed using open-source
platform APIs. Experimental results verified the proposed human position tracking accuracy in
real-time and were in good agreement with current multi-sensor systems.

Keywords: human pose estimation; detection; tracking; multi-sensor; heterogeneous sensor; sensor
fusion; lidar sensor; inertial sensor

1. Introduction

Many studies have investigated accurately estimating and tracking three-dimensional
(3D) objects in real-time using single or multiple sensor systems [1–3]. Tracking 3D human
motion has made significant progress recently due to advanced object tracking sensor
availability, and has become a useful technique in various applications, such as human–
computer interaction (HCI), activity recognition, virtual reality, fitness training, healthcare,
and rehabilitation [4]. Significant milestones have been achieved for tracking human pose
using depth, inertial, vision, light detection and ranging (lidar) sensor systems, and more
recently, heterogeneous multi-sensor systems [5].

In particular, vision-based human motion tracking has been widely studied. Full body
3D pose reconstruction from single view images is difficult and suffers from the ill-posed
problem, compared with two-dimensional or 3D pose estimation from multiple views.
Additional constraints on kinematics and movement are typically employed to resolve
inherent ambiguity in monocular images [6].

Depth sensors have become widespread due to ease of use, availability of open-
source tools and communities, such as Microsoft Kinect, that automatically infer 3D joint
positions from single depth data. Depth sensors convert depth data into RGBZ data,
which helps detect human joints [7] and extract rotational information from the skeletal
structure. However, the methods suffer from occlusion [8]. Although multiple depth
sensors strategically positioned in the environment [9] can reduce body occlusion, they
cannot fully compensate for it.

Inertial sensors, also known as inertial measurement units (IMUs), are commonly
rigidly attached to an object to help track or estimate position and orientation informa-
tion [10]. IMU sensors have been applied to a greater number of application areas, including
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pose estimation for robotics, autonomous vehicles [11], and human motion tracking [1]
and visualization [12]. However, although IMU sensors are accurate over short periods,
they suffer from occlusions and drift over longer periods [13], and hence, are commonly
combined with other sensors.

Three-dimensional lidar sensor applications have expanded dramatically over the
last few decades [14], including robotics, autonomous vehicles, HCI, and human pose
detection and tracking. Lidar sensors provide wide angle and long distance laser scan
data as intensity point clouds. Point cloud data are denser at near distance and sparser
as distance increases. Long distance data are not usually affected by lighting conditions,
hence the data can be very accurate. However, human detection and tracking remains
challenging in lidar data, particularly when the tracked person or object is too near or too
far from the lidar sensor. Lidars are often employed as single sensors [15] or fused with
other sensors, such as IMUs [2,16] and/or vision sensors [17].

The proposed system provides a more feasible and robust system for human pose
estimation with accurate detection, tracking, and reconstruction on a virtual avatar using
multiple sensors (Lidar and IMUs) on an open-source platform. Figure 1 shows the
proposed system workflow and Figure 2 shows an overview for pose tracking.

Point Clouds Orientation

Data Processing

Data Fusion 

Reconstruction on 3D Avatar 

[Open-source]

6DoF Pose

Lidar
Heterogeneous

Multi-sensors
IMUs

Human Detection

(Octree-based)

[Open-source]

Quaternion Data

Skeleton 

Construction

Human Tracking

3D Position 
Position and Orientation

(Vector-based) 

One-time

Height and 

Body Joints 

Estimation

Algorithm 1
Update Skeleton

Figure 1. Proposed system workflow.



Sensors 2021, 21, 2340 3 of 15

The proposed system proceeds as follows.

• Detect human body information from background lidar data using Octree based
change detection

• Estimate human height and skeletal parameters
• Track position and orientation using multiple heterogeneous sensors and
• Reconstruct human motion on a 3D Avatar.

(a) (b) (c)

Figure 2. Proposed human tracking system overview: (a) Heterogeneous sensing experimental setup,
(b) Detected user in lidar data and skeleton construction, (c) Reconstruction on 3D Avatar.

The remainder of this paper is structured as follows. Section 2 discusses related studies
on human pose tracking. Section 3 details the proposed heterogeneous multi-sensor system
for human pose estimation and tracking, and Section 4 evaluates the proposed system
experimentally. Finally, Section 5 summarizes and concludes the paper.

2. Related Work

Many previous studies have proposed IMU-based human motion tracking techniques
and methodologies. IMU tracking provides accurate orientation when the sensors are
attached to a rigid body from the object of interest. However, occlusion and drift occur
for continuous measurement over long periods. Filippeschi et al. [18] discussed inertial
sensor issues and advantages, then compared five IMU tracking techniques for motion
reconstruction on human arm motion with a commercially available motion tracking
system as ground truth. Fuyang et al. [19] discussed IMU-based approaches’ strengths
and weaknesses.

Qiu et al. [20] proposed a multi-sensor fusion methodology to address challenges
from pedestrian dead reckoning. They fused Xsens IMU sensor and Vicon optical motion
capture system data to obtain 3D orientation and position, and employed an extended
Kalman filter to minimize errors induced from magnetic disturbance. Li et al. [21] pro-
posed an optical–inertial data fusion scheme to provide resistance for optical human body
joint data and rectify error accumulated in inertial data, providing long term drift-free
operation. Jilliam et al. [22] proposed distance transformation and principal component
analysis based human pose estimation using multi-view systems comprising multiple
depth cameras. Multi-point cloud video sequences were used to represent the human body
external surface, limited to known human body proportions. Yan et al. [23] proposed a
hierarchical optimized Bayesian sensor fusion framework to calculate voxel occupancy
probability and hence realize a markerless human motion tracking system, and compared
their results against marker-based motion capture systems.

Three-dimensional human pose tracking and estimation generally employs vision,
IMU, or heterogeneous sensor fusion based methods. Although vision systems are widely
used to capture joint positions, they have major limitations related to occlusion and illumi-
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nation changes. IMU-based motion capture systems can acquire accurate bone segment
orientation, but poorly estimate joint positions and suffer from sensor drift. On the other
hand, heterogeneous sensor fusion methods can effectively combine the two modalities
to provide greater reliability. Huang et al. [19] discussed several vision, IMU, and sensor
fusion methods for 3D human pose tracking.

Charles et al. [24] proposed a real-time motion capture-system with no optical mark-
ers to fuse multi-view camera and IMU data by integrating position, orientation, pose,
and acceleration. Pons-Moll et al. [25] proposed inverse kinematics and von Mises-Fisher
sampling optimization to limit orientation cues from IMU and low dimensional manifold
images cues on an inverse kinematic model. Trumble et al. [3] proposed a 3D convolution
neural network self-learning technique to fuse volumetric and IMU data. Bone orientations
acquired from IMU sensors were converted to bone joint position by adding forward kine-
matics, and then joint positions obtained from both sources were fused at the end of the
network by fully connected layers. Marcard et al. [26] proposed a single hand-held camera
and set of IMUs optimization techniques to jointly optimize vision and IMU data on a sta-
tistical body model. However, they optimized their model overall frames simultaneously,
limiting its application for offline systems. Some recent works focused on human posture
detection and classification in the healthcare system by integrating machine learning and
deep neural network with multisensory data fusion for posture recognition [27–29].

Ziegler et al. [2] proposed a system where a mobile robot equipped with a laser range
finder followed a person wearing an IMU suit. They obtained accurate body postures
by using the range finder to measure distances between the robot and the person’s legs,
correcting for IMU drift. However, the requirement for a moving robot and laser range
finder limited scan area makes this approach impractical for indoor use. Cheng et al. [30]
proposed a multi-sensory fusion method open-source platform for human motion tracking,
using time-of-arrival based distance ranging to correct sensor drift, and a geometrical
kinematic model and maximum entropy Kalman filter for sensor fusion.

3. Materials and Methods

We used a multi-sensor system to gather human motion data for pose estimation,
tracking, and reconstructing on a 3D avatar, comprising a single lidar and 10 IMU sen-
sors. 3D lidar data were used to track human body position, and IMUs data to estimate
orientation and position for each joint during human movement.

3.1. Heterogeneous Multi-Sensor Setup

Figure 3a shows the multi-sensor system setup employed for the experiments. The li-
dar sensor was placed at a fixed location, and IMU sensors were placed on 10 bone joints.
Laser rays depicted in the figure represent the lidar vertical field of view (FoV). The pro-
posed system extends our preliminary work [31], which employed a similar number
of IMU sensors but two lidar sensors placed perpendicularly to track human position.
A unique position tracking estimation technique is achieved in the preliminary work. Since
slight inclination occurs in mounting the first lidar (L1 in [31]) on the ceiling, the posi-
tion estimation differs.

The maximum range for human body tracking is 14–17 m [32], depending on the
lidar sensor specification and working environment. Figure 3b shows human detection
scenarios at different distances using a lidar sensor. We used a 32 channel lidar sensor with
55 m range and ±1.5–5 cm accuracy. Lidar accuracy varies with distance from the sensor,
being somewhat better within 1–15 m (±1.5 cm). Therefore, the proposed setup ensured
the lidar was well within the best operating range for the indoor environment (4× 8 m),
with a human motion tracking area of 1.5–6.5 m distance (full tracking range in the x axis =
5 m), as shown in Figure 3a (green lines).
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Figure 3. (a) Proposed multi-sensor system setup, (b) Human body tracking at different distance in
indoor environment by 3D lidar.

3.2. Height Estimation and Skeleton Parametrization

User height and bone joint locations for skeletal construction were computed before
tracking the user in real-time. The user stood at optimal distance (1.5 m) from the lidar
(Figure 3a) to ensure their full body was within the lidar FoV. The lidar vertical FoV is 90°,
hence the user needed to be at least 1 m from the lidar for accurate height estimation—the
optimal distance would be 1.5 m. In the preliminary work, the user needs to stand within
the two lidars’ collective FoVs to estimate the height since the previous lidar specification
has a 30° vertical FoV.

User height must be set manually for commercially available IMU sensor bodysuits
for the calibration process [13,19], whereas the proposed approach estimates height from
lidar point cloud data. The procedure for initial skeleton bone joints estimation was similar
to the preliminary study approach [31], except for the height estimation.

Two different point cloud datasets, P, were acquired during calibration to detect the
user from lidar data. The reference set, Pr, excluded the user, providing the background
data; whereas the other point cloud, Pf , included the user in the FoV. We compared Pr and
Pf using an Octree-based point cloud change detection algorithm [33] that filtered point
cloud data (Pt) corresponding to the user (see Figure 2b).

Actual height Ah estimation in the preliminary work required estimating the lidar
slope m arising from employing two lidar sensors with slight inclination. However, the cur-
rent setup included only a single lidar and hence m was not required. Ground point
g(x, y, z) was estimated by computing Pt centroid c(x, y, z) for the x and z components,
and the y component was maxy = max(y) ∈ Pr, i.e.,

g(x, y, z) = g(cx, Pr(maxy), z).

Therefore, actual height can be expressed as

Ah = |(gy)− (Pt(maxy))|,

The estimated Ah gives the user actual height with an accuracy of ±2 cm. Ah is the
baseline for constructing the user’s skeleton.

Figure 4 shows the skeleton structure with 15 segments (b1 to b15) and 16 connecting
joints parameters. It also shows the estimated height of a user (real height of the user
is 172 cm) and skeleton construction for the data shown in Figure 3b. Detailed skeleton
parameterization and construction is given in [31].
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Ah=172 cm Ah= 174 cm Ah= 173 cm

Figure 4. Actual height estimation and skeleton construction at different distances.

3.3. Heterogeneous Pose Tracking

The above process is an initial step for calibration and configures the human skeleton.
Next is a pose tracking process for locating bone joints and segments’ position and orienta-
tion in each heterogeneous sensors (Lidar and IMUs) frame in real-time. The conventional
usage of IMUs in motion tracking is to estimate the relative movement of the attached
bone segment in terms of position and orientation. In proposed work, the position and
orientation of 10 bone segments are estimated using a vector-based method from 10 IMU
sensors. The sensors must be calibrated before capturing tracking data to avoid incorrect
estimation and reduce sensor drift, otherwise leading to bone segment misalignment and
mismatching for the avatar in real-time. The calibration routine has one step with an
attention pose.

We considered each joint position to be a unit vector in the direction parallel to the
respective bone axis in the attention pose. The orientation in the form of quaternion from
the IMU sensor is multiplied to the unit vector to update the joint position. The vector-
based bone joint position and orientation estimation is given in the Algorithm 1. Figure 5
shows the vector-based pose estimation from the IMU sensors and more detail is discussed
in [31]. Parallelly, the position from the lidar data was estimated by detecting the user
point cloud in real-time by using a similar step as discussed above in Section 3.2 for the
continuous point cloud frames.

Update Bone segment

Updated Bone Joint

Position and Orientation Update Skeleton Human Movement

Figure 5. Vector-based right leg bone joint position and orientation estimation.
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Algorithm 1: Vector-based position and orientation estimation in real-time.
Inputs:
• Full body skeleton joints position (pj = x, y, z) constructed from the lidar sensor;
• Orientation data (in our case quaternion) from the inertial sensors;
Output:
• Updated full body skeleton;
while (Stop_tracking) do

Step-1: Pelvis joint estimation;

(a) Initialise vector parallel to respective bone axis direction.
In our case- qv = (0, 0, 0, 1); (vector in quaternion form, qv=(w,x,y,z));

(b) Rotate qv by multiplying respective bone segments orientation
from attached IMUs ;

rv = bi(q)× qv × (bi(q)−1) ;
where bi = b12, b11 and b15, b14 in reverse order as shown in Figure 4;

(c) Updating respective skeleton joints position-
puj = pj + r̂v × bslength;

where r̂v is rotated vector,pj is its respective parent joint,
puj is update for all lower body joints position, and bslength is respective bone segment length;

(d) Find pelvis joint from updated joints from Step-1;

if (Rh > Lh) then
Repeat step-1 ;
In (a) only change is qv = (0,−1, 0, 0), in (b) compute only bi= b0
and (c) updated only pelvis position puj ;

end

if (Rh >= Lh) then
Repeat step-1 ;
In (a) only change is qv = (0, 1, 0, 0), in (b) compute only bi= b0
and (c) updated only pelvis position puj;

end

Step-2: Lower body joints estimation;
Repeat step-1 in reverse order to update lower body
bone joints using pelvis joint. i.e., bi = b11, b12 for right leg
and bi = b14, b15 for left leg;

Step-3: Upper body joints Estimation;
Repeat step-1 in reverse order to update upper body
bone joints using pelvis joint.
i.e., bi = b1, b2, b3, for torso and head;
bi = b2, b4, b5, b6, for Right shoulder, upper and lower arm;
bi = b2, b7, b8, b9, for Left shoulder, upper and lower arm;

end

The skeleton base joint (pelvis) position was tracked from the point cloud using the
Passthrough filter algorithm [34]. The estimated position from the point cloud was fused
with the estimated position of the IMU sensor to correct occlusion and drift over time.
The synchronization of sensor data is of prime importance [35]. The data from the IMU
sensors are acquired and subjected to calculation at the rate of 60 frames per second, while
the data from the lidars are at the rate of 10 frames per second. Therefore, the data are not
naturally synchronised. However, since the lidar data are used to constantly compensate
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the drift in IMU, the compensation is applied by interpolating 6 frames of lidar data against
IMU frames. The final estimated position and orientation were then reconstructed on the
3D avatar to visualize real-time tracked human motion.

4. Evaluation

This section discusses experimental evaluations to verify the proposed multi-sensor-
based human motion tracking system feasibility and robustness. We conducted experimen-
tal evaluation as use cases, namely skeleton construction and height accuracy, real-time hu-
man tracking and reconstruction. Further, we demonstrate its feasibility and effectiveness
by comparing proposed multi-sensor pose tracking with other multiple fusion methods.

4.1. Experimental Setup

Figure 6 shows the experimental setup. We captured user pose ground truth data using
a Leica Disto meter [36] from markers placed on bone joints (Figure 6b) simultaneously
with data from the proposed heterogeneous multi-sensor tracking system.

Offdist

Laser Disto meter

(a) (b)

Figure 6. Experimental setup: (a) heterogeneous multi-sensor and Leica Disto meter setup for
accuracy evaluation, and (b) Indoor experimental setup.

We employed Ouster OS-0 lidar and Xsens IMU sensors for the proposed heteroge-
neous multi-sensor framework. OS-0 offers 32-channel laser scanning with ±90° vertical
and 360° horizontal FoV. The sensor scans the environment in 3D at 10 or 20 Hz with mul-
tiple horizontal resolution options (512, 1024, and 2048), generating 1,310,720 points per
second with range is 55 m. Lidar accuracy ±1.5–5 cm, whereas the Disto meter generates a
single-shot 3D position with accuracy ±0.2 cm and range up to 300 m. The Disto meter
also provides desktop software [37] to transfer and visualize captured 3D point positions.
We considered Disto meter data as ground truth due to its greater accuracy.

Figure 6a shows that the offset distance between Disto meter and lidar position is
compensated in y and x axis directions o f fdist by 22 and 14 cm, respectively, since generated
skeleton bone joint positions were estimated at the human body’s coronal plane, whereas
the Disto meter provides 3D positions for markers placed above the human body surface.

Xsens MTW IMU sensors were used to capture bone segment orientations. These are
small, lightweight, and wireless inertial sensor 3D motion trackers manufactured using
MEMS technology, returning 3D orientation, acceleration, angular velocity, static pressure,
and ambient magnetic field intensity at 60 Hz. The orientation from the sensors are directly
used for the bone rotation estimation, since the sensors have a built-in filtering method
and give a dynamic orientation accuracy of 0.75° RMS (Roll/Pitch) and 1.5° RMS (Yaw).
The IMU motes themselves are synchronised by the master controller of the commercially
available Xsense sensor suite by 10 µs. The proposed work inherits this feature from the
Xsense sensor suite without any modifications. IMU sensors offer orientation in the form of
quaternions, Euler angles, and Axis-angles. Only 3D orientation in the form of a quaternion
was considered for the proposed work. Real-time full body position and orientation were
estimated using the 10 IMU sensors attached to human body segments.
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The open-source platform Point Cloud Library [34] in C++ was employed to process
and visualize point cloud data from the lidar. We developed a 3D avatar model combining
multiple parametric ellipsoids using an open-source visualization toolkit [38] in C++
to visualize tracked human motion on the 3D avatar in real-time. Thus, the proposed
heterogeneous multi-sensor system software application was built on an open-source
platform and remains open-source.

4.2. User Height and Skeleton

To evaluate human pose tracking accuracy, it is important to evaluate the user height
and joint position accuracy used to construct the corresponding skeleton structure. Realistic
human motion tracking depends strongly on user height bone segment length estimation
accuracy. User height was estimated following the proposed method in Section 3.2 at
different distances and compared against known user height (ground truth). Table 1 shows
user height estimation had mean error ± 1.58 cm, considering inherent lidar sensor error.

Table 1. User height estimate accuracy from lidar data at different distances.

Sl. No. 1 2 3 4 5 6 7 8 9 10 11 12

Distance (m) 1.25 1.51 1.75 2.04 2.28 2.54 2.90 3.20 3.82 4.50 5.35 5.92
Height (cm) 171 170 169 173 174 175 166 168 171 167 173 168

Mean error (cm) 1.58

Skeleton reconstruction accuracy using the estimated height was evaluated for single
attention pose joint positions (Figure 6b). Head height was considered as the standard
measurement proportion for skeleton joint construction. Figure 7 shows that individual
joint position errors compared with ground truth were always <4 cm, with mean error in
the attention pose <2.5 cm. Therefore, mean height and skeleton joint position error were
insignificant and, therefore, had a minimal effect on human pose tracking.

Er
ro

r 
[c

m
]

Skeleton Joints

Skeleton Joints Position Error in Attention Pose

Figure 7. Skeleton reconstruction accuracy from lidar data against ground truth in attention pose.

4.3. Pose Tracking and Reconstruction

We evaluated the proposed human pose tracking method performance against ground
truth data from the Disto meter as discussed in Section 4.1. Figure 8a shows that the
user performed an activity requiring significant position movement in the pelvis and
right leg for this evaluation: walking from the start position (KP-1), sitting on the chair
(KP-6), and then moving to a small table (KP-11) and placing their right foot on the table.
We checked the proposed method accuracy against ground truth for two joints: pelvis and
right foot position for this scenario.
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KP-1 KP-6 KP-11

(a)

(c)

(b)

[c
m
]

[cm]

[c
m
]

Figure 8. (a) Activity scenario for human key pose tracking, (b) pelvis and right foot position
trajectory tracked using the proposed system, (c) real-time user key poses reconstructed on 3D Avatar.

Figure 8b depicts the key poses and continuous frame positions tracked using the
proposed method. The position estimation error, i.e., RMSE relative to ground truth, for the
pelvis is 2.82 cm and foot is 2.42 cm, which are both well within 3 cm. Figure 9 shows that
pelvis Euclidean distance error at KP-6 and right foot position at KP-11 exceed 5 cm due to
significant positional movement.

0
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3

4

5

6

KP-1 KP-2 KP-3 KP-4 KP-5 KP-6 KP-7 KP-8 KP-9 KP-10 KP-11

Er
ro

r
(c

m
)

KEY POSES

WALK-CHAIR-TABLE

Pelvis Foot

Figure 9. Accuracy for selected pelvis and right foot key poses.

4.4. Comparison with Other Methods

This section compares the proposed method with similar work using closed-loop
position tracking for drift error analysis. Figure 10a shows the closed-loop path considered
to analyze drift error in pelvis joint position. One complete loop from start to end position
comprises ∼36 m, and we tracked continuously for four rounds (Figure 10b), i.e., ∼145 m.
We recorded the position value after each round, and the ground truth was computed at
the start position during initial calibration. Figure 10b shows position drift in IMU tracked
data increased in the 3rd and 4th trails.
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Start
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]
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Figure 10. (a) Closed loop trajectory path, (b) inertial measurement units (IMU) only and multi-sensor
system position data trajectory.

Table 2 compares Euclidean drift error for IMU-only and proposed multi-sensor
tracking against ground truth. IMU-only tracking achieved RMSE drift = 32.25 cm,
whereas proposed multi-sensor tracking achieved RMSE drift = 10.75 cm, which is well
within the acceptable range.

Table 2. Drift error for IMU-only and proposed multi-sensor system against ground truth position.

Trails IMU Only (cm) Multi-Sensor (cm)

1 6.4339 9.1725
2 13.9382 12.5533
3 43.0608 11.6600
4 45.4884 9.1796

Ziegler et al. [2] used a similar lidar and IMU sensor combination for human position
tracking in an outdoor environment, and achieved drift error <20 cm for a single 300 m
loop. Li et al. [21] used optical and IMU sensors to track human motion in an indoor
environment, tracking five trials for IMU-only and fused data. They compared absolute
position drift between IMU-only and fused data without ground truth, achieving ∼120 cm
in the x and z axis directions and ∼2 cm in the y axis direction. These results are reasonably
consistent with the outcomes reported here. Table 3 compares the proposed system setup
with those used by Ziegler et al. and Li et al.

Figure 11 shows the closed-loop walking single trail data (Figure 10) reconstructed
in real-time on the virtual 3D avatar, constructed as a combination of multiple parametric
ellipsoids using VTK. The reconstruction is realistic and reasonably accurate.

Further, to verify the experimental setup of the proposed system in this paper, we
compare it with the other two [2,21] multi-sensor experimental setup. A simple summary
of system setup is shown in Table 3.

Finally, to demonstrate the reconstruction accuracy of human motion tracking on a
virtual 3D avatar. The results from closed-loop walking single trail (as shown in Figure 10)
data are reconstructed in real-time on the virtual 3D avatar. As mentioned earlier, the avatar
model built using a combination of multiple parametric ellipsoids using VTK. The sequence
of walking steps reconstructed on the 3D avatar demonstrated in Figure 11. The results
show that the reconstruction is realistic and reasonably accurate.
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Figure 11. Human pose reconstruction on 3D avatar.

Table 3. Comparison of human motion tracking system setup.

Li et al. [21] Zielger et al. [2] Our Proposed System

Position tracking
sensor

HTC VIVE
2 Base station
6 Trackers

Mobile robot equipped with
SICK LMS laser ranger Ouster OS0 Lidar sensor

Inertial sensor Perception Neuron
17 IMUs

Xsens MVN
17 IMUs

Xsens Awinda
10 IMUs

Experiment setup Indoor Environment Outdoor Environment Indoor Environment

3D model Self developed
Skeleton model

Xsens provided
Skeleton model

Self developed
Skeleton and Avatar model

Open-source
platform No No Yes

Drift accuracy ∼120 cm in x and z
∼2 cm in y <20 cm <11 cm
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5. Discussion and Conclusions

The experimental setup for the proposed system was more feasible and flexible
concerning sensor locations than previous approaches. Consequently, human pose tracking
with heterogeneous multi-sensors was reasonably accurate and within the acceptable range.
The proposed multi-sensor system achieved better estimated height and joint position
accuracy, and overall better human motion tracking. Preliminary work achieved position
tracking accuracy ±3–5 cm using two perpendicular lidars, and 10 IMU sensors; whereas
the proposed system achieved accuracy <±3 cm using a single lidar and similar number
of IMU sensors. Height and skeleton estimation was minimized and improved using the
single lidar sensor due to improved horizontal resolution and vertical FoV.

We used a simple calibration where the user started from an attention position for both
lidar and IMU. Skeleton construction enabled automatic derivation for different human
height sizes, and vector-based position estimation helped estimate pelvis position using
lower body orientation, which would be an effective approach for many applications. Mo-
tion reconstruction on the 3D avatar was realistic, due to pelvis position being continuously
corrected for occlusion and drift using lidar data. The proposed system could be adopted
for real-time pose-tracking applications, such as human–computer interaction, activity
recognition, virtual reality, fitness training, healthcare, and rehabilitation. We selected
open-source and freely available software and platforms to allow users to use and modify
the code.

Future studies will consider ways to improve the current system, including tracking
multiple human motions in real-time, estimating independent bone segment movements
(e.g., head, shoulder, and both hip bone segments) without sensors attached, by considering
orientations from parent bone segment data. More accurate joint position tracking could
be achieved by tracking each absolute joint position with the lidar.
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