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Abstract: In this paper, we present a coarse-to-fine convolutional neural network (CF-CNN) for
learning multilabel classes. The basis of the proposed CF-CNN is a disjoint grouping method that first
creates a class group with hierarchical association, and then assigns a new label to a class belonging
to each group so that each class acquires multiple labels. CF-CNN consists of one main network and
two subnetworks. Each subnetwork performs coarse prediction using the group labels created by the
disjoint grouping method. The main network includes a refine convolution layer and performs fine
prediction to fuse the feature maps acquired from the subnetwork. The generated class set in the
upper level has the same classification boundary to that in the lower level. Since the classes belonging
to the upper level label are classified with a higher priority, parameter optimization becomes easier. In
experimental results, the proposed method is applied to various classification tasks to show a higher
classification accuracy by up to 3% with a much smaller number of parameters without modification
of the baseline model.

Keywords: deep learning; convolutional neural network; image classification

1. Introduction

Since AlexNet won the 2012 ImageNet Large Scale Visual Recognition Challenge
(ISLVRC) with a quantum jump in the sense of recognition performance [1], various
types of deep convolutional neural network (CNN) models have been proposed for many
applications including feature extraction, image enhancement, computer vision, medical
imaging, and network security, to name a few [2–8]. Most deep neural networks adopt a
CNN model because of its localization property using efficient computation and end-to-end
learning ability that can detect various features from the input image. Recently, CNN-based
deep learning research has tended to scale up the network to solve nonlinear problems
[9–14]. In general, the CNN-based methods scale up the depth of layers [9–12] and the
number of filters in each layer [14,15].

Simonyan et al. stacked several convolutional filters to increase the depth while
decreasing the size of feature map by increasing the size of pooling or stride [9]. The deep
CNNs exhibited superior performance, and have been widely adopted with the control
of the feature map size. Residual network introduced by He et al. adopted the concept
of shortcut connections between residual units for residual learning to solve the gradient
vanishing problem [16,17] in the deeper network architectures [11,12]. Zagoruyko et al.
experimented on the relationship between the depth and width of the residual network in
various ways to improve the performance, and then proposed the wide residual network
(WRN) with a wider channel and reduced depth [14]. They also used the dropout method
to prevent overfitting caused by many parameters [18].

PyramidNet gradually increases the dimension of feature maps with zero-padded
shortcut connections to preserve the deep network architecture [15]. However, it is difficult
to optimize parameters if the number of parameters of the network indefinitely increases.

To solve these problems, hierarchical deep CNN algorithms have been proposed to
classify many classes into several categories by grouping related classes and then classifying
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them using the CNN for each category. This method can improve the overall network
performance by classifying a relatively small number of classes corresponding to each
category. Wu et al., proposed CF-DRNet to classify five classes of diabetic retinopathy.
CF-DRNet consists of a coarse network that determines the presence of diabetic retinopathy
and a fine network of four severity grades of diabetic retinopathy. Finally, the grade of
diabetic retinopathy is determined using the aggregation module [8]. Yan et al. proposed a
hierarchical deep CNN (HD-CNN) model to classify categories and a sub-deep-CNN is
applied to each category [19]. This method consists of (i) shared layers to extract low-level
features that are shared across all subnetworks, (ii) a coarse category CNN to divide similar
classes into a category, and (iii) an independent subnetwork for fine classification in each
category. The final classification is performed based on weighted averaging by combining
the coarse predictions obtained from the lower layer and the fine predictions obtained
from each subnetwork. However, in this method, the number of required subnetworks
is proportional to the number of categories and each subnetwork requires pretraining.
Zhu and Bain proposed a branch convolutional neural network (B-CNN). B-CNN adds a
subnetwork that performs coarse prediction while the main network performs both fine and
coarse predictions from each subnetwork, and finally, obtains the classification result using
the weight loss function [20]. Verma et al. proposed a three-stage hierarchical Yoga data set,
and successfully validated the hierarchical data set by using a network similar to B-CNN
except with a single fully connected layer [21]. Kim et al. proposed a hierarchical network
model by grouping the weights of the network with high correlation with the class [22].
As a result, the proposed network structure is suitable for a distributed machine learning
environment with a significantly reduced number of parameters while maintaining a
similar performance. Figure 1 illustrates the network structure for classification with a
hierarchical structure.

Figure 1. Network structure and hierarchical structure label illustrations. (a) SplitNet [22], (b) HD-
CNN [19], (c) B-CNN [20], (d) our CF-CNN, and (e) hierarchical structure label.

In this paper, we present a hierarchical learning method, called coarse-to-fine convolu-
tional neural network (CF-CNN). Figure 1d shows the concept of the proposed network.
CF-CNN consists of a main network for fine classification and subnetworks for coarse
prediction of classes. To predict a fine class, the last feature map of each subnetwork is
used together with the last feature map of the main network through the refine convo-
lution layers. Since a subnetwork of CF-CNN has a lower depth layer than the main
network, the gradient vanishing problem can be alleviated in the learning process. The
refine convolution layer fuses feature maps generated from subnetworks for coarse pre-
diction. The feature map created from the subnetwork serves as a guide for the main
network to perform finer classification. More accurate network parameter information
is shown in Tables 1–7. In the experimental results section, we show that the proposed
method can be applied to various CNN-based multilabel classification problems with
an improved performance over existing methods. Our code will be made available at
https://github.com/dkskzmffps/CF-CNN.

https://github.com/dkskzmffps/CF-CNN
https://github.com/dkskzmffps/CF-CNN
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Table 1. Structure of the CF-VGG-16 model for CIFAR 100 dataset. Since the CIFAR image is very
small, the last max-pooling layer of VGG-16 was not used.

CF-VGG-16

Layer Name Output Size Block Structure
Block Numbers

Baseline Main Coarse1 Coarse2

Conv1 32× 32 3× 3, 64
3× 3, 64 1 1

Maxpool 16× 16 2× 2 1 1

Conv2 16× 16 3× 3, 128
3× 3, 128 1 1

Maxpool 8× 8 2× 2 1 1

Conv3 8× 8
3× 3, 256
3× 3, 256
3× 3, 256

1 1

Maxpool 4× 4 2× 2 1 1

Conv4 4× 4
3× 3, 512
3× 3, 512
3× 3, 512

1 1 1

Maxpool 2× 2 2× 2 1 1 1

Conv5 2× 2
3× 3, 512
3× 3, 512
3× 3, 512

1 1 1 1

Refine layer 2× 2
3× 3, 512
3× 3, 512
3× 3, 512

1

fc1 4096 1 1

fc2 4096 1 1 1 1

fc3 Classes
number 1 1 1 1

Table 2. Structure of the CF-ResNet model for CIFAR-10 and CIFAR-100 datasets.

CF-ResNet

Layer Name Output Size Block Structure
Block Numbers 164-Layer (326-Layer)

Baseline Main Coarse1 Coarse2

Conv1 32× 32 3× 3, 16 1 (1) 1 (1)

Conv2 32× 32
1× 1, 16
3× 3, 16
1× 1, 64

18 (36) 18 (36)

Conv3 16× 16
1× 1, 32
3× 3, 32

1× 1, 128
18 (36) 18 (36) 6 (6)

Conv4 8× 8
1× 1, 64
3× 3, 64

1× 1, 256
18 (36) 18 (36) 6 (6) 6 (6)
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Table 2. Cont.

CF-ResNet

Layer Name Output Size Block Structure
Block Numbers 164-Layer (326-Layer)

Baseline Main Coarse1 Coarse2

Refine layer 8× 8
1× 1, 64
3× 3, 64

1× 1, 256
2 (2)

Average pooling 1× 1 8× 8 1 (1) 1 (1) 1 (1) 1 (1)

fc
Classes
number 1 (1) 1 (1) 1 (1) 1 (1)

Table 3. Structure of the CF-Pre-ResNet model for CIFAR-10 and CIFAR-100 datasets.

CF-Pre-ResNet

Layer Name Output Size Block Structure
Block Numbers 326-Layer (1001-Layer)

Baseline Main Coarse1 Coarse2

Conv1 32× 32 3× 3, 16 1 (1) 1 (1)

Conv2 32× 32
1× 1, 16
3× 3, 16
1× 1, 64

36 (111) 36 (111)

Conv3 16× 16
1× 1, 32
3× 3, 32

1× 1, 128
36 (111) 36 (111) 6 (6)

Conv4 8× 8
1× 1, 64
3× 3, 64

1× 1, 256
36 (111) 36 (111) 6 (6) 6 (6)

Refine layer 8× 8
1× 1, 64
3× 3, 64

1× 1, 256
2 (2)

Average pooling 1× 1 8× 8 1 (1) 1 (1) 1 (1) 1 (1)

fc
Classes
number 1 (1) 1 (1) 1 (1) 1 (1)

Table 4. Structure of the CF-Wide-ResNet-28layer model for CIFAR-10 and CIFAR-100 datasets.

CF-Wide-ResNet-28layer

Layer Name Output Size Block Structure
Block Numbers k = 10 (k = 12)

Baseline Main Coarse1 Coarse2

Conv1 32× 32 3× 3, 16 1 (1) 1 (1)

Conv2 32× 32
3× 3, 16 × k
3× 3, 16 × k 4 (4) 4 (4)

Conv3 16× 16
3× 3, 16 × k
3× 3, 16 × k 4 (4) 4 (4) 1 (1)

Conv4 8× 8
3× 3, 16 × k
3× 3, 16 × k 4 (4) 4 (4) 1 (1) 2 (2)

Refine layer 8× 8
3× 3, 16 × k
3× 3, 16 × k 1 (1)

Average pooling 1× 1
3× 3, 16 × k
3× 3, 16 × k 1 (1) 1 (1) 1 (1) 1 (1)
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Table 4. Cont.

CF-Wide-ResNet-28layer

Layer Name Output Size Block Structure
Block Numbers k = 10 (k = 12)

Baseline Main Coarse1 Coarse2

fc
Classes
number 1 (1) 1 (1) 1 (1) 1 (1)

Table 5. Structure of the CF-PyramidNet model for CIFAR-10 and CIFAR-100 datasets.

CF-PyramidNet

Layer Name Output Size Block Structure
Block Numbers 110-Layer (200-Layer)

Baseline Main Coarse1 Coarse2

Conv1 32× 32 3× 3, 16 1 (1) 1 (1)

Conv2 32× 32
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 200
N = 36
12 (30)

α = 200
N = 36
12 (30)

Conv3 16× 16
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 200
N = 36
12 (30)

α = 200
N = 36
12 (30)

α = 133
N = 12

6 (6)

Conv4 8× 8
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 200
N = 36
12 (30)

α = 200
N = 36
12 (30)

α = 133
N = 12

6 (6)

α = 67
N = 6
6 (6)

Refine layer 8× 8
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4
2 (2)

Average pooling 1× 1 8× 8 1 (1) 1 (1) 1 (1) 1 (1)

fc
Classes
number 1 (1) 1 (1) 1 (1) 1 (1)

Table 6. Structure of the CF-ResNet and CF-Pre-ResNet model for ILSVRC 2012 dataset.

CF-ResNet and CF-Pre-ResNet

Layer Name Output Size Block Structure
Block Numbers 152-Layer

Baseline Main Coarse1 Coarse2

Conv1 112× 112 7× 7, 64 1 1

Average
pooling 56× 56 3× 3 1 1

Conv2 56× 56
1× 1, 64
3× 3, 64
1× 1, 256

3 3

Conv3 28× 28
1× 1, 128
3× 3, 128
1× 1, 512

8 8 4

Conv4 14× 14
1× 1, 256
3× 3, 256

1× 1, 1024
36 36 6 6

Conv5 7× 7
1× 1, 512
3× 3, 512

1× 1, 2048
3 3 3 3
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Table 6. Cont.

CF-ResNet and CF-Pre-ResNet

Layer Name Output Size Block Structure
Block Numbers 152-Layer

Baseline Main Coarse1 Coarse2

Refine layer 7× 7
1× 1, 512
3× 3, 512

1× 1, 2048
2

Average pooling 1× 1 7× 7 1 1 1 1

fc
Classes
number 1 1 1 1

Table 7. Structure of the CF-PyramidNet model for ILSVRC 2012 dataset.

CF-PyramidNet

Layer Name Output Size Block Structure
Block Numbers 200-Layer

Baseline Main Coarse1 Coarse2

Conv1 112× 112 3× 3, 64 1 1

Average pooling 56× 56 3× 3 1 1

Conv2 56× 56
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 300
N = 66

3

α = 300
N = 66

3

Conv3 28× 28
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 300
N = 66

24

α = 300
N = 66

24

α = 286
N = 13

4

Conv4 14× 14
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 300
N = 66

36

α = 300
N = 66

36

α = 286
N = 13

6

α = 177
N = 9

6

Conv5 7× 7
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4

α = 300
N = 66

3

α = 300
N = 66

3

α = 286
N = 13

3

α = 177
N = 9

3

Refine layer 7× 7
1× 1, Dk
3× 3, Dk

1× 1, Dk × 4
2

Average pooling 1× 1 7× 7 1 1 1 1

fc
Classes
number 1 1 1 1

Figure 2 shows the effect of the CF-CNN network structure on the CIFAR-100 dataset [23]
compared with two standard preactivation ResNets with 326 layers and 1001 layers [12].
In CF-CNN, we have two subnetworks with 56 layers and refine the layers to preactivate
ResNet with 326 layers and ResNet-1001, respectively, with an accuracy of 78.02% and
80.36%. The proposed CF-CNN has an accuracy of 80.77%. As a result, CF-CNN structure
effectively improves the performance by adding a small number of layers instead of simply
increasing the depth of the network.
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Figure 2. Comparison with the CIFAR-100 dataset.

2. Coarse-to-Fine Convolutional Neural Network

The hierarchically structured approach first divides multiple classes into several
categories by grouping related classes, and then performs fine classification in each category
using the CNN [19,22,24]. As a result, classification performance is improved at the cost of
additional subnetworks and the corresponding learning method for each class group [19].
Although this approach may reduce the computational load, the classification accuracy is
not preserved [22,24]. To solve that problem, the CF-CNN has the main network for fine
classification and subnetworks for coarse classification. The proposed method uses the
predicted class scores obtained from the baseline CNN model to group the classes, which
belong to each label in the upper level with similar class scores to obtain new labels in the
lower level. The created group label of each level is used as a classification label of each
subnetwork, and both coarse and fine labels of each network are simultaneously trained.

2.1. Loss Function for CF-CNN

Figure 1d shows the architecture of the proposed CF-CNN. Given the group labels
for the hierarchical structure, the labels in each hierarchical level are simultaneously
trained by using the main and subnetworks. All feature maps of the last convolution
layer in each subnetwork are used to predict fine classes via the refine layer. To obtain
hierarchically structured group labels, we adopt disjoint grouping regularization proposed
by Kim et al. [22]. Let xi ∈ Rd represent the input data instance, yi ∈ {1, ...., C} the class
label, and C the total number of classes. Given M training samples, D = {xi, yi}

M
i=1, and

corresponding class scores, S = {xi, si}M
i=1, obtained by the pretrained deep CNN, the goal

of the disjoint grouping method is to obtain hierarchical multilevel labels Ql =
{

xi, yl
i

}M

i=1
for coarse classification at subnetworks.

The class score vector, denoted as si ∈ RC, is obtained by applying the softmax
function to the deep CNN result, where C can be considered as the dimension of the class
score. Let yl

i ∈
{

1, ..., Gl
}

and Gl represent the label and number of groups at the l-th

hierarchy level, respectively. The label of the first level, that is y1
i , is equal to the original

class label yi. To train the CF-CNN, we define the loss function as
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min
W

L

∑
l=1
L
(

W , x, yl
)

, (1)

where L
(

W , x, yl
)

represents the cross-entropy loss of hierarchically structured group
labels at hierarchy level l ∈ {1, ..., L} on the training data, L is the total number of hierarchy
level, and W is the weight parameters of a network.

2.2. Disjoint Grouping Regularization

To obtain hierarchically structured group labels, we use the same disjoint grouping
regularization, which was originally proposed by Kim et al. to divide classes belonging
to the upper level group into lower level groups satisfying the disjoint property [22].
As shown in Figure 1a, Kim proposed a disjoint grouping regularization method to make
the hierarchical network model by splitting the layers of the network. Kim’s method creates
a block diagonal weight matrix that belongs to a highly related class group by expressing
the weights corresponding to each layer as a matrix. Since only the diagonal components
assigned to the class group are learned during the learning process, the regularization
process forces reducing the number of parameters to obtain a parallel model structure for
distributed learning. On the other hand, we use this regularization with class scores from
the pretrained model to generate hierarchical labels. Therefore, each class has a label having
a hierarchical structure, and lower level classes have the same classification boundary with
the upper level group.

Given the number of groups, denoted as K, let i represent the class belonging to
the upper level label G, then the binary variable pg

ki indicates whether class i is assigned
to a group k, k = 1, ..., K, or not. The disjoint group assignment vector of dimension
K, denoted as pg

k , indicates whether the classes in the upper level label g are assigned
to group k. Since our goal is to create a hierarchical label without duplication between
classes, we assume that there is no overlap between groups, which results in ∑ K

k=1 pg
k = 1K,

where 1K is the K vector of ones. Let sg be the class scores belonging to label g, the proposed
disjoint grouping method minimizes the combination of three objectives functions as

min
p
GD

(
sg, pg

k

)
+ λOGO

(
pg

k

)
+ λBGB

(
pg

k

)
, (2)

where λO and λB represent regularization parameters.

2.2.1. Disjoint Group Assignment

To apply the gradient descent optimization method, we change the binary variable
pg

ki to real variables in the range [0, 1] with constraint ∑ K
k=1 pg

k = 1K. We use the softmax
function to reparametrize pg

ki with unconstrained variables zki.

pg
ki =

ezki

K
∑

k=1
ezki

. (3)

The objective function to create a class group satisfying the disjoint property is as follows.

GD

(
sg

mean, pg
k

)
= ∑

k<j

(
Cg

∑
i=1

sg
i,mean pg

ki�
Cg

∑
i=1

sg
i,mean pg

ji

)
, (4)

where i ∈ {1, ..., Cg} represents a class belonging to upper level group g, Cg is the total
number of classes in group g, and sg

i,mean is the class score mean vector of the i class
obtained from the pretrained baseline model. Kim’s method aimed to learn the diagonal
weight matrix using the feature assignment vector and the class assignment vector, whereas
the proposed method aims to group the classes to satisfy the disjoint property using the
class score.
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2.2.2. Orthogonal Property

If we assume that there is no overlap between the groups, the group assignment vector
should be orthogonal, i.e., pg

k � pg
j = 0, ∀i 6= j. The group assignment vectors obtained by

Equation (4) also exhibit orthogonal properties but add a regularization term to obtain
better results.

GO

(
pg

k

)
= ∑

k<j
pg

k � pg
j . (5)

2.2.3. Group Balance

The group assignment vector obtained by Equations (4) and (5) may assign most
classes to one group. In an extreme case, all classes can be assigned to one group. To avoid
that problem, we add a regularization term to control balance between groups. The corre-
sponding regularization term is defined as

GB

(
pg

k

)
=

K

∑
k=1

(
Cg

∑
i=1

pki

)2

. (6)

Figure 3 shows the effect of the group balance regularization. Each color bar represents
the group k, and the width of the bar represents the class ratio belonging to each group
k. With large λB, the corresponding groups have similar ratio. On the other hand, if λB
is small, the group ratio may be flexible. However, a very small λB makes almost all the
classes belong to one group.

Figure 3. Effect of group balance regularization. The bar graph shows group assignment results for
different values of λB with K = 4.

Figure 4 shows the result of creating a hierarchical label using the CIFAR-10 [23]
dataset with 10 classes. To obtain the class score, we use the preactivation ResNet model [12]
and parameters λO and λB are, respectively, set to 1 and 10−5. In each subnetwork,
the group labels at each level are used to predict coarse labels, and the feature map of
the last convolution layer of each subnetwork is combined with the feature map of the
convolution layer of the main network. The combined feature map is fused through a
refine convolution layer and used for fine prediction.

Figure 4. Result of the hierarchical structure label generation on the CIFAR-10 dataset.
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3. Experimental Results

In this section, we evaluate the performance of the proposed CF-CNN. For the ex-
periment, we tested the proposed method on various classification models including
ResNet [11], WideResnet [14], preactivation ResNet [12], and PyramidNet [15] as the base-
line models. The classification performance was evaluated on the CIFAR-10, CIFAR-100
[23], and ImageNet datasets [25]. Since the CIFAR-10, CIFAR-100, and ImageNet datasets
contain the same number of data for each class, the method for the imbalance data problem
[6,26] was not considered. In addition, in this experiment, data augmentation methods
such as color transformation, geometric transformation, rotation, and contrast transforma-
tion were not used in order to focus on checking the performance difference between the
proposed model and the baseline model [27–29].

Both CIFAR-10 and CIFAR-100 have 50,000 training and 10,000 test images. CIFAR-10
contains 10 classes and CIFAR-100 has 100 classes. In the training process, basic data
augmentation such as horizontal flipping and padding as much as 4 pixels around the
image and random cropping of 32×32 image were applied. Each model was trained
using stochastic gradient descent (SGD), to which Nesterov momentum was applied for
400 epochs. The learning rate starts from 0.1 and decays by a factor of 10 at 150, 250, and
300 epochs. The batch size was 128. When training PyramidNet and CF-PyramidNet, the
initial rate was 0.25, which decayed by a factor of 10 for every 120 epochs. The batch size
was 64.

The ImageNet dataset includes 1000 classes and consists of one million training images
and 50,000 validation images. For the experiment, we used 200 epochs to train each model,
starting with a learning rate of 0.05 and decaying by a factor of 10 at 60, 90, and 120 epochs.
The batch size was 64. The size of the image used for training and testing is 224 × 224.
The learning process of the proposed CF-CNN consists of four steps: (i) training the baseline
model using 90% of the training dataset; (ii) computing the class score of the remaining
10% of the training dataset using the trained network; (iii) generating multilabels using the
disjoint grouping method; (iv) training the CF-CNN on the training dataset.

Table 8 shows results of classification using the baseline model and hierarchical struc-
ture labels obtained by various grouping methods. Manually divided hierarchical labels
were generated using the method proposed by B-CNN and the number of classes for coarse
1 and coarse 2 were 8 and 20, respectively. In the case of the Random method, classes in
the upper group were randomly selected and divided into 5 groups to form a hierarchical
structure. The groups in each level had the same number of classes. For experimentation
of the clustering method and the proposed method, we used the class score obtained from
the pretrained baseline model. The clustering method used the k-means clustering method,
and classes belonging to the upper group were divided into 5 groups using the k-means
clustering method. For the disjoint grouping method, we set parameters λO and λB to 1
and 10−5, respectively.

Table 8. Best classification accuracy according to the grouping method on CIFAR-100. (M), (R), and
(C) denote manual, random, clustering, respectively.

Network Model Number of Labels Accuracy

Resnet-326 (baseline) 100 75.05
CF-Resnet-326 (M) 8, 20, 100 76.04
CF-Resnet-326 (R) 5, 25, 100 76.14
CF-Resnet-326 (C) 5, 25, 100 76.38
CF-Resnet-326 (Proposed) 5, 25, 100 76.85

The second column, called ‘Number of labels’, indicates the number of labels at each
level including the number of labels used for coarse 1, coarse 2, and fine classification,
respectively. The label used for fine classification represents the original label. The classifi-
cation accuracy was evaluated using the CIFAR-100 dataset. When a hierarchical structure
is created using the k-means method and the disjoint group method, classes with similar
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characteristics form groups. When learning a subnetwork using such a group label, it shows
better performance than the random grouping method or the manual grouping method be-
cause it is easier to find the optimal parameter in the process of fine prediction in the main
network. The proposed method shows better performance than the k-means clustering
method because it has stronger intergroup disjoint properties than the k-means method.

Tables 9–11 respectively summarize the classification accuracy for CIFAR-100, CIFAR-
10, and ILSVRC 2012 datasets by applying the proposed method to various deep-learning
models. B-CNN used the VGG-16 model as the baseline model [9]. HD-CNN adopted the
NIN model [30], which doubled the number of filters in all convolutional layers in Table 9,
and used VGG-16 model in Table 11. In Tables 9 and 11, SplitNet used WideResnet-16
(k = 8) and ResNet-18x2 models [22]. The rest of the models except for WideResNet used a
bottleneck structure, detailed parameter information is shown in Tables 1–7. The parameter
k of the WideResnet model represents a widening factor. In Pyramidnet, α and N represent
the widening factor and the total number of blocks, respectively. In the proposed method,
each subnetwork and main network have different parameter values for feature map fusion.
Dk of Pyramidnet represents the channel dimensions of the k-th block. Dk is defined as

Dk =

{
16 if k = 1

[Dk−1 + α/N] if 2 ≤ k ≤ N + 1.
(7)

Table 9. Classification results using various classification models and grouping labels on the CIFAR-
100 dataset

.

CIFAR-100

Network Model Number of Labels Accuracy

HD-CNN 9, 100 65.64
B-CNN 8, 20, 100 64.42
VGG-16 100 63.04
WideResnet-16 (k = 8) 100 75.74
SplitNet 100 76.04
ResNet-164 100 74.84
ResNet-326 100 75.05
Pre-ResNet-326 100 78.02
Pre-ResNet-1001 100 80.36
WideResnet-28 (k = 10) 100 80.75
WideResnet-28 (k = 12) 100 81.48
PyramidNet-110 (α = 200) 100 81.98
PyramidNet-272 (α = 200) 100 84.36
CF-VGG-16 5, 25, 100 65.11
CF-ResNet-164 5, 25, 100 77.01
CF-ResNet-326 5, 25, 100 76.85
CF-Pre-ResNet-326 5, 25, 100 80.77
CF-Pre-ResNet-1001 5, 25, 100 82.09
CF-WideResnet-28 (k = 10) 5, 25, 100 82.38
CF-WideResnet-28 (k = 12) 5, 25, 100 82.67
CF-PyramidNet-110 (α = 200) 5, 25, 100 82.57
CF-PyramidNet-272 (α = 200) 5, 25, 100 84.94

In the proposed CF-CNN structure, the subnetwork for classifying each group label
was created using the same layer structure used in each deep-learning model. Num-
ber of labels represents the number of group labels obtained using the disjoint grouping
method, and represents the number of classes classified in coarse1, coarse2, and fine image
classification, respectively. When compared with ResNet-326 in Table 9, CF-ResNet-164
performs better with a significantly smaller number of parameters. Likewise, compared
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with Pre-ResNet-1001, CF-Pre-ResNet-326 performs better with a much smaller number of
parameters for CIFAR-10 and ILSVRC 2012 datasets.

Table 10. Classification results with various classification models and grouping labels on the CIFAR-
10 dataset.

CIFAR-10

Network Model Number of Labels Accuracy

HD-CNN − −
B-CNN 2, 7, 10 88.22

SplitNet − −
Pre-ResNet-326 10 95.87

WideResnet-28 (k = 10) 10 95.83

WideResnet-28 (k = 12) 10 95.67

PyramidNet-272 (α = 200) 10 96.7

CF-Pre-ResNet-326 2, 4, 10 96.09

CF-WideResnet-28 (k = 10) 2, 4, 10 96.48

CF-WideResnet-28 (k = 12) 2, 4, 10 96.49

CF-PyramidNet-272 (α = 200) 2, 4, 10 96.3

Table 11. Classification results with various classification models and grouping labels on the ILSVRC
2012 dataset.

ILSVRC 2012

Network Model Number of Labels Accuracy

HD-CNN 84, 1000 76.31

B-CNN - -

SplitNet 1000 75.1

ResNet-18x2 1000 74.42

ResNet-152 1000 77.0

Pre-ResNet-152 1000 77.8

PyramidNet-200 (α = 300) 1000 79.5

CF-ResNet-152 100, 487, 1000 78.4

CF-Pre-ResNet-152 100, 487, 1000 78.7

CF-PyramidNet-200 (α = 300) 100, 487, 1000 80.4

4. Conclusions

In this paper, we proposed a multilevel label augmentation method using a disjoint
grouping method. We also proposed coarse-to-fine convolutional neural network (CF-
CNN) to learn the generated multilevel label with a smaller set of network parameters.
Multilevel labels created by the disjoint grouping method have a hierarchical structure and
have the same classification boundary between levels. The CF-CNN has a subnetwork to
simultaneously learn multilevel labels. In the experimental results, the proposed method
was applied to various classification models. As a result, the proposed method shows better
performance than existing models with a much smaller number of parameters, without
requiring structural changes of the building blocks constituting the network.
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