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Abstract: Electromagnetic responses are generally controlled electrically or optically. However,
although electrical and optical control allows fast response, they suffer from switching or tuning
range limitations. This paper controls electromagnetic response by mechanical transformation. We
introduce a novel kirigami-inspired structure for mechanical transformation with less strength,
integrating a shape memory alloy actuator into the kirigami-inspired for mechanical transformation
and hence electromagnetic control. The proposed approach was implemented for a reconfigurable
antenna designed based on structural and electromagnetic analyses. The mechanical transformation
was analyzed with thermal stimulus to predict the antenna geometry and electromagnetic analysis
with different geometries predicted antenna performance. We numerically and experimentally
verified that resonance response was thermally controlled using the kirigami-inspired antenna
integrated with a shape memory alloy actuator.

Keywords: electromagnetic control; kirigami-inspired; mechanical transformation; thermal actuator;
shape memory alloy; reconfigurable antenna

1. Introduction

Electromagnetic control changes radio frequency (RF) component characteristics by
controlling high-frequency alternating current. RF components and devices can be con-
trolled to manipulate their mode change, allow reconfigurability, transform the shape
transformation(s), etc. This reconfigurability can have multiple functions for a single
component and reduces the number of components required for the RF system, increasing
system gains and saving energy. Control is an active study topic in wireless communication,
satellite communication, radar, and remote sensing, and RF components include sensors,
filters, metasurfaces, and antennas [1–6].

Electromagnetic control can be achieved using electrical, optical, or magnetic meth-
ods [7,8]. An electrical component, such as pin [1–6] or varactor [6,9,10] diodes, have been
widely employed to switch and control RF component operation. However, the required
number of electronic components increases proportionally with the number of unit cells in
a periodic structure, which can considerably impact the final cost, and also increases elec-
tromagnetic interference; a serious issue arises when designing electronic component DC
biasing. Optical methods [11,12] have also been used similarly. Optical control is normally
as fast as electrical, but the short wavelength makes it difficult to implement. Magnetic
methods use magnetic material, e.g., ferrite, to control RF properties by controlling DC bias
or magnetic field using a magnetic tensor [13,14]. However, magnetic approaches require
bulky and difficult to control components. In general, the operating frequency is limited by
parasitic capacitance. In addition, the active electrical devices suffer from nonlinearity at
high power [15–17].

Electromagnetic control can also be achieved mechanically, modifying RF character-
istics by mechanical transformation targeting parameters that affect RF properties [7,8].
Mechanical systems (using actuators, motors, etc. [18–24].) offer advantages from no
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operating frequency limitations to increased reliability in dust or moisture impacted en-
vironments compared with electrical and optical methods. In addition, the mechanical
tuning range can be wider at high frequencies such as millimeter-wave or sub-terahertz
spectrum [25]. However, mechanical approaches are generally more complex and costly to
implement. Mechanical approaches using origami and kirigami structures have received
increasing attention for solving this problem [26–29]. Origami, which means paper art
in Japanese, has been employed in various fields using folding and unfolding structures.
Kirigami adds cuts to basic origami structures and hence can implement more complex
forms [26–29].

Several previous studies have proposed reconfigurable antennas using origami and
kirigami structures [30–34]. For example, Shah et al. [31] proposed an origami quasi-
Yagi helical antenna comprising three origami quasi-Yagi helical antennas that fold and
unfold to act as driven, director, and reflector elements; and Lee et al. [32] proposed a
frequency reconfigurable monopole antenna using kirigami techniques, varying the operat-
ing frequency by folded and unfolded three-story tower kirigami structural deformations.
Shah et al. [33] proposed a deployable antenna utilizing kirigami pop-up geometry com-
prised of driven reflectors and a parasitic strip. Origami and kirigami structures allow
mechanical transformation with small forces and can be implemented at a low cost.

This paper proposes mechanical, electromagnetic control using a shape memory alloy
(SMA) actuator spring. SMA transforms into its original shape under external environ-
mental stimulus, such as temperature [34]. Thus, the limited operating frequency can be
overcome by using the spring as a thermal actuator, which also avoids adding noise, a com-
mon problem for motor-based mechanical control. We selected and analyzed a thermally
reconfigurable antenna to demonstrate the proposed control. The proposed reconfigurable
antenna was a kirigami-inspired structure that varies the operating frequency depending
on its model. The proposed SMA actuator spring was transformed by applying a voltage
to increase the temperature, changing between the circular patch and circular sector modes
with correspondingly different resonance frequencies. In addition, this antenna can be
used as a remote high-temperature alarm by modulating the frequency with high and low
temperatures. The proposed control was proven numerically and experimentally using
the SMA.

2. Electromagnetic Analysis for Proposed Antenna Design

Figure 1 shows the proposed frequency reconfigurable kirigami-inspired antenna,
designed using the ANSYS high-frequency structure simulator (HFSS). The antenna oper-
ates in circular disk mode when the SMA spring is pulled circular disk sector mode when
the SMA spring is released. The circular antenna radius was determined from the cavity
model [35,36]:

a =
Kvmc

2π fr1
√

εr
=

K11c
2π fr1

√
εr

(1)

where fr1 is the resonant frequency of circular patch antenna, c is the speed of light, εr is
the dielectric constant, Kvm is the mth zero of derivative of the Bessel function of order v,
and K11 is the lowest value in circular patch antenna.

Here is the first Bessel’s function of order v:

Jv(Kvma) = 0
{

v = n, i f θ = 2π
v = nπ

θ , otherwise
(2)

where a is the circular patch antenna radius, θ is the ratio of the angle (expressed in radians),
and n = 0,1,2,3 . . . .

From (1), it is possible to calculate the effective radius ae:

ae =

[
a2 +

(
2ha
πεr

)(
ln

a
2h

+ (1.41εr + 1.77) +
h
a
(0.268εr + 1.65)

)]1/2
(3)
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where h is the substrate height.
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Figure 1. Proposed frequency reconfigurable kirigami-inspired antenna: perspective view in (a) circular disk and (b) cir-

cular sector modes; side view in (c) circular disk and (d) circular sector modes. 
Figure 1. Proposed frequency reconfigurable kirigami-inspired antenna: perspective view in (a) circular disk and (b) circular
sector modes; side view in (c) circular disk and (d) circular sector modes.

Finally, the expected resonant frequency of the circular sector antenna equation is
calculated with the following:

fr2 =
Kvmc

2πae
√

εe
=

K61c
2πae

√
εe

(4)

where fr2 is the resonant frequency of circular patch antenna, εe is the effective dielectric
constant and K61 is the lowest value when θ = 300◦ circular sector patch antenna.

We set the proposed antenna radius a = 20.5 mm, and length from the center (d1)
was cut to implement the proposed kirigami-inspired structure. The circular patch was
realized on an Ecoflex substrate with size w × l = 60 mm × 60 mm, thickness h = 5 mm,
dielectric constant = 2.8, and tangential loss = 0.045. Both w and l correspond to 0.8λg at
2.4 GHz. Figure 1c,d show side views for each antenna mode with the SMA spring for
mode transformation. The proposed antenna was fed by a coaxial probe and excited at
distance d2 = 11 mm from the proposed antenna center for 50 Ω impedance matching. We
allowed space r1 to insert the SMA spring, and the length was within the substrate height
when the SMA was pulled.

Figure 2 shows that simulated real and imaginary input impedances for the circular
disk and circular sector modes change according to the mode conversion. Figure 3 shows
the simulation results of the proposed kirigami-inspired antenna. As shown in Figure 3a,
when the radius (C1 = 16 to 21 mm) of circular disk mode is larger, the resonant frequency
is decreased. As shown in Figure 2b, when the fixed radius (C1 = 20.5 mm) with a longer
arc length (larger θ = 220◦, 250◦, 280◦, and 320◦) of the major sector, the resonant frequency
is decreased, as well. Figure 4a,b show electric field magnitude for the circular disk and
circular sector modes at mode at 2.41 and 3.25 GHz, respectively. The circular disk mode
exhibited a large electric field at the antenna edges (Figure 4a), whereas the circular sector
mode exhibited a reduced electric field in regions where the electric field gathers due to



Sensors 2021, 21, 3026 4 of 12

the structural change. Figure 5 shows the comparison of the proposed antenna peak gain
according to ground size. The peak gain was increased with a larger ground size (Figure 5).
In this paper, we set the ground size at 60 mm for moderate peak gain and easy fabrication.
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sector modes.
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3. Structural Analysis for Thermal Reconfigurability

Structural analysis simulations were performed using COMSOL Multiphysics for the
kirigami-inspired structure and SMA spring. Figure 6a shows the final design incorporating
the SMA spring. Material properties were selected for Ti and Ni using standard COMSOL
Multiphysics modules, with −2.7 × 10−4 K−1 coefficient of thermal expansion obtained
by optimizing the SMA spring experiment results from [37] using COMSOL. The ambient
temperature for this simulation was set at 253.15 K. Figure 6b shows SMA spring total
displacement after 12 s heating from that paper. Similar results were obtained for the SMA
spring used in the current paper.
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Figure 6. (a) SMA spring rendered in COMSOL and corresponding (b) simulated total displacement.

Figure 7a shows the kirigami-inspired structure design with SMA spring in COMSOL.
SMA spring properties were the same as simulated in Figure 6, and Ecoflex 00–30 parame-
ters were Young’s modulus = 125 kPa and Poisson’s ratio = 0.49 [38,39]. Figure 7b shows
simulated von Mises stress from applying 0.68 V at 3 A to the SMA spring for 19 s. Thus,
270 kN/m2 was applied to the connection between the kirigami-inspired structure and the
SMA spring. Figure 7c shows total displacement with respect to time for the arc shown in
Figure 7a. Simulated results for arc displacement suggest 16 s to convert circular sector to
circular disk mode.
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displacement with respect to time.

4. Fabrication and Experimental Demonstration

Figure 8 shows the proposed antenna fabricated sample to experimentally verify the
concept. Figure 8a,b shows the circular disk and circular sector modes. The circular patch
conductive pattern was implemented using copper tape. Ecoflex 00-30 was provided by
Smooth-On, Inc (5600 Lower Macungie Road, Macungie, PA 18062, USA). The SMA spring
employed was a commercial product, with 150 mm total length and 9 mm pitch. However,
we only used a 5 mm section for the proposed kirigami-inspired structure. The spring was
one-way with 10 N force (nominal) when pulled. Figure 8c shows that the SMA spring
was pulled within 16–20 s by applying 0.68 V at 3 A was applied, confirming successful
mode conversion. Figure 9 compares simulated and measured reflection coefficient for the
proposed antenna in the circular disk and circular sector modes. The reflection coefficient
was measured with an Anritsu MS2038C network analyzer. Simulated and measured
reflection coefficient = −17.12 and −12.81 dB at 2.4 GHz, and −12.65 and −22.43 dB at
3.25 GHz for the circular disk and circular sector modes, respectively.
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Figure 9. Simulated and measured reflection coefficient for a proposed antenna in circular disk mode
and circular sector mode.

Figure 10 shows simulated and measured normalized radiation patterns for the pro-
posed antenna for each mode. Figure 10a,b shows normalized radiation patterns in XZ and
YZ planes, respectively, in circular disk mode at 2.41 GHz, with simulated and measured
peak gains = 4.9 and 4.26 dBi, respectively. Figure 10c,d shows normalized radiation
patterns in XZ and YZ planes, respectively, in circular sector mode at 3.25 GHz, with simu-
lated and measured peak gains = 5.95 and 6.41 dBi, respectively. The measured difference
between co and cross-polarization = 15.49 and 18.47 dB in the boresight direction in the
circular disk and circular sector modes, respectively. Figure 11a,b shows the simulated and
measured radiation efficiency at different tangential losses for the circular disk mode and
circular sector mode, respectively. Simulated and measured radiation efficiency = 65.55
and 51.44% at 2.41 GHz and 76.42 and 75.5% at 3.25 GHz for circular disk and circular
sector modes, respectively. As shown in Figure 11, the radiation efficiency can be increased
by decreasing the tangential loss of the substrate. In addition, the simulated efficiency
is compared with the measured efficiency. The difference between the simulated and
measured efficiency was due to the adhesive film from the copper tape.

In Table 1, the proposed antenna was compared with other frequency reconfigurable
antennas with different tuning technologies. It was observed that the mechanical and
thermal tuning methods could achieve a wider frequency tuning range compared to
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electrical and optical tuning methods because of their low parasitic capacitance. In this
work, we sacrificed the tuning range for less stress of the SMA spring. Nevertheless, its
tuning range can be increased with a longer SMA spring or larger mechanical deformation.
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Table 1. Comparison table of frequency reconfigurable antennas with different tuning technologies.

Ref. Tuning Tech. Method Tuning
Range (%)

Size (mm)
(W × L × H) Gain (dBi) Efficiency (%) DC Biasing

Circuit Complexity Cost

[40] Electrical Pin-diode 49 127 × 127 × 2.54 −1.1 47 Yes High High

[41] Electrical Varactor-diode 25 150 × 150 × 1.524 N/A N/A Yes High High

[11] Optical Photoconductive
switch 25 4.56 × 48.94 × N/A 8–9 N/A No High High

[42] Mechanical Microfluidic 70 100 × 100 × 3.175 6.98–7.34 80.5–88.0 No Low Low

[43] Mechanical MEMS switch 149 45 × 41.8 × 7.126 1.2–3.3 75–85 No High Low

[44] Thermal SMA 148 60 × 50 × 1.6 −17.13–3.18 N/A No Low Low

This
work Thermal SMA spring 30 60 × 60 × 5 4.26–6.41 51.44–75.5 No Low Low

5. Discussion

The proposed concept could be used to advance smart structure and actuator tech-
nology. Although the SMA springs used here are one-way, i.e., they can only be changed
in one direction, two-way springs would enable two-way variation. In addition, we used
copper tape for a fast demonstration of the proposed antenna. It was possible because
of simple conductive patterns. For complicated conductive patterns and robustness, the
conductive patterns can be realized by additive manufacturing technology such as inkjet
printing [45,46], aerosol jet printing [47], or screen printing [48].

This antenna can be used as the multiple-input multiple-output (MIMO) antenna. We
investigated the MIMO spatial diversity by simulating two array antennas. MIMO systems
can obtain high capacity by using multiple antennas. However, minimizing interference
between antennas is one of the important factors for MIMO, as coupling between multiple
antennas can lead to poor performance. [49] For the MIMO system, the envelope correction
coefficient (ECC) is an important parameter indicating the interference between antennas.

The ECC can be calculated as follows [50]:

ρe =
|S11

∗S12 + S12
∗S22|2(

1− |S11|2 − |S21|2
)(

1− |S22|2 − |S12|2
) (5)

Figure 12a,b shows the distance (Ad) between the centers of the two array antennas
for each mode. The Radius (C2) of the array antenna in each mode is 20.5 mm, and the
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S-parameter when the distance (Ad) between the antennas was changed to 42, 45, and
50 mm is shown in Figure 12c. In general, the MIMO system has good isolation if the
mutual coupling level (S21) is lower than −15 dB. [49] When the distance (Ad) between two
antenna elements was larger than 45 mm, S21 was lower than −15 dB. Figure 12d shows
the calculated ECC from Equation (5). The ECC value when the distance (Ad) is 42 mm
was 0.0004 for the circular disk mode at 2.41 GHz, and the circular sector mode is 0.019
at 3.25 GHz, respectively. The MIMO arrangement of the proposed antenna had good
diversity performance for a MIMO antenna. [49]
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6. Conclusions

This paper proposes a kirigami-inspired antenna that can be transformed mechanically
to change its electromagnetic response using an SMA actuator spring. The proposed
kirigami-inspired antenna was comprised of a flexible Ecoflex substrate and SMA spring
that could mechanically transform from circular disk to circular sector mode by pulling
and releasing the SMA spring. The proposed antenna could vary resonance frequency from
2.41 to 3.25 GHz. We numerically and experimentally demonstrated that the resonance
response was thermally controlled by actuating the SMA.
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