
Neural Networks 139 (2021) 348–357

o
l
(
g
s
1
M
g
&
T
s
u
o
l

e
d
s
e

U

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Block-cyclic stochastic coordinate descent for deep neural networks
Kensuke Nakamura a, Stefano Soatto b, Byung-Woo Hong a,b,∗

a Computer Science Department, Chung-Ang University, Seoul, Republic of Korea
b Computer Science Department, University of California Los Angeles, CA, USA

a r t i c l e i n f o

Article history:
Received 4 August 2020
Received in revised form 18 February 2021
Accepted 2 April 2021
Available online 19 April 2021

Keywords:
Coordinate descent
Deep neural network
Energy optimization
Stochastic gradient descent

a b s t r a c t

We present a stochastic first-order optimization algorithm, named block-cyclic stochastic coordinate
descent (BCSC), that adds a cyclic constraint to stochastic block-coordinate descent in the selection
of both data and parameters. It uses different subsets of the data to update different subsets of
the parameters, thus limiting the detrimental effect of outliers in the training set. Empirical tests
in image classification benchmark datasets show that BCSC outperforms state-of-the-art optimization
methods in generalization leading to higher accuracy within the same number of update iterations.
The improvements are consistent across different architectures and datasets, and can be combined
with other training techniques and regularizations.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The two workhorses of Deep Learning, responsible for much
f the remarkable progress in traditionally challenging machine-
earning problems, are SGD (stochastic gradient descent) and GSD
graduate student descent). The latter has produced an ever-
rowing body of neural network architectures, starting from basic
hallow convolutional ones (LeCun, Bottou, Bengio, & Haffner,
998) to non-Markov ones (Balduzzi, Frean, Leary, Lewis, Ma, &
cWilliams, 2017; He, Zhang, Ren, & Sun, 2016a, 2016b), and still
rowing deeper (Chen, Li, Xiao, Jin, Yan, & Feng, 2017; Hu, Shen,
Sun, 2017; Huang, Liu, van der Maaten, & Weinberger, 2017).

he former has been the subject of intense scrutiny, despite its
implicity, both in terms of unraveling the mysteries behind its
nreasonable effectiveness, as well as fostering a cottage industry
f modifications and improvements. Our work is squarely in the
atter vein.

SGD (Robbins & Monro, 1951; Rumelhart, Hinton, Williams,
t al., 1988; Zhang, 2004) is a simple variant of classical gradient
escent where the stochasticity comes from employing a random
ubset of the measurements (mini-batch) to compute the gradi-
nt at each step of descent. This has the complexity of O(1) in

the total example size, that is usually in the tens of thousands
to millions. It also has implicit regularization effects, making it
suited for highly non-convex loss functions, such as those entailed
in training deep networks for classification.

∗ Corresponding author at: Computer Science Department, Chung-Ang
niversity, Seoul, Republic of Korea.

E-mail address: hong@cau.ac.kr (B.-W. Hong).
ttps://doi.org/10.1016/j.neunet.2021.04.001
893-6080/© 2021 Elsevier Ltd. All rights reserved.
The entire process of training is sensitive to outlier data such
as erroneous labeling in the training set, as each mini-batch
affects the update of the entire set of parameters. The mini-batch
size is usually small, thus the relative impact of an outlier can
be large compared to the full batch gradient. There are a num-
ber of techniques such as adaptive learning rate, regularization,
and some gradient descent designed for weakening the impact
of outliers, but they mainly aim to normalize the variation of
mini-batches and cannot manipulate training outliers explicitly.
Stochastic methods such as randomized block coordinate descent
(SBC) (Wan, Zeiler, Zhang, Cun, & Fergus, 2013; Wang & Banerjee,
2014; Zhao, Yu, Wang, Arora, & Liu, 2014), on the other hand,
trade off accuracy with robustness to noise. Our objective is to
develop an accurate optimization algorithm for deep learning that
is not subject to such a strict tradeoff.

In the proposed algorithm, we leverage randomized methods
based on stochastic randomized block coordinate descent (Wan
et al., 2013; Wang & Banerjee, 2014; Zhao et al., 2014), but in-
troduce a cyclic constraint in the selection of both measurements
and model parameters, so that different mini-batches of data are
used to update different subsets of the unknown parameters. We
perform numerical experiments using networks from shallow to
recently developed deeper models based on popular image clas-
sification benchmark sets, and demonstrate that our algorithm
consistently outperforms the state-of-the-art optimizations for all
the network models under consideration.

In Section 2 we place our contribution in context, and provide
the problem of interest and relevant works in Section 3. The
details on the proposed algorithm are presented in Section 4. In
Section 5 we report experiments to compare with the state-
of-the-art, and discuss limitations and potential extensions in

Section 6.

https://doi.org/10.1016/j.neunet.2021.04.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.04.001&domain=pdf
mailto:hong@cau.ac.kr
https://doi.org/10.1016/j.neunet.2021.04.001

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

2

A
m
t
t
i
s
a
s
S
&
Z
t
o
a
a
s
2
m
a
f
s
t
w
a

R
p
f
1
H
t
H
K
O
t
m
2
&
i
d
1
B
a
p
t
o

V

L

i

3

t
b
&
t
a
e
s
i
{

i
e
i

w

. Related work

daptive step size methods In SGD, the current parameter esti-
ate is updated by subtracting the (approximate) gradient mul-

iplied by a factor, the learning rate. Since SGD does not converge
o a point estimate, the learning rate usually decreases over
terations monotonically to reduce fluctuation of loss. While it is
till common in practice to modulate the learning rate based on
fixed schedule, several adaptive learning functions have been
tudied to automate the scheduling (George & Powell, 2006).
ome of the best known methods include AdaGrad (Duchi, Hazan,
Singer, 2011) and AdaDelta (Schaul, Zhang, & LeCun, 2013;

eiler, 2012). They reduce the learning rate by accumulating
he gradient of the loss function globally (Duchi et al., 2011)
r parameter-wise (Schaul et al., 2013; Zeiler, 2012). For the
daptive scheduling of the learning rate, the interpolation with
random sampling technique has been used to compute the step
ize (De, Yadav, Jacobs, & Goldstein, 2016; Tan, Ma, Dai, & Qian,
016). The adaptive change of learning rate has demonstrated nu-
erical benefit favoring stable and faster convergence. However,
s we will show empirically, our proposed algorithm outper-
orms the conventional SGD algorithms with the state-of-the-art
cheme of the adaptive learning rate in terms of both training and
esting losses. Moreover, our approach can be naturally integrated
ith the adaptive learning rate scheme and take its numerical
dvantage.

egularization methods There are a number of ways to im-
ose regularity to the model in order to improve generalization
or better prediction, among which are data augmentation (An,
996; Simonyan & Zisserman, 2014), batch normalization (Hoffer,
ubara, & Soudry, 2017; Ioffe & Szegedy, 2015), or dropout (Hin-
on, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012;
uang, Sun, Liu, Sedra, & Weinberger, 2016; Srivastava, Hinton,
rizhevsky, Sutskever, & Salakhutdinov, 2014; Wan et al., 2013).
ne can also incorporate regularization in the network architec-
ures, including pooling (Krizhevsky, Sutskever, & Hinton, 2012),
axout (Goodfellow, Warde-Farley, Mirza, Courville, & Bengio,
013), or skip connections (Huang et al., 2017; Long, Shelhamer,
Darrell, 2015). There is also an explicit regularization that

s integrated with the objective function with classical weight
ecay (Lang & Hinton, 1990; Plaut et al., 1986), lasso (Tibshirani,
996), group lasso (Yuan & Lin, 2006), or Hessian (Rifai, Glorot,
engio, & Vincent, 2011). Our method acts in concert, not in
lternative, to other forms of regularization. Yet, it can implicitly
rovides better generalization resulting in higher accuracy due
o the way how it deals with the selection of example data in
ptimization.

ariants of gradient descent Stochastic average gradient (SAG)
(Roux, Schmidt, & Bach, 2012) calculates the gradient using a ran-
domly chosen subset of the examples and then averages their gra-
dients in the estimation of the full gradient. Stochastic variance
reduced gradient (SVRG) (Johnson & Zhang, 2013) considers the
inherent variance of the gradient or the difference between the
gradients of a mini-batch and the full gradient. Both SAG (Roux
et al., 2012) and SVRG (Johnson & Zhang, 2013) are approxima-
tions of the standard gradient and would be subject to its same
limitations in large scale optimization problems for non-convex
objective functions. A variety of first-order stochastic algorithms
has been developed for parallel computation (Zhang, Choroman-
ska, & LeCun, 2015) or proximal operators (Duchi & Singer, 2009).
Similar to SGD that randomly selects subsets of data, stochasticity
has been applied in selecting subsets of parameters to update
by randomized block coordinate descent (BCD) (Nesterov, 2012;

Richtárik & Takáč, 2014). Such a technique has been used to

349
train neural networks in Liu, Yan, Wang, and Zha (2016) utilizing
parallel computation.

The term, block coordinate, is also used as the split variables
in ADMM-like optimization for deep networks (Lau, Zeng, Wu, &
Yao, 2018; Taylor, Burmeister, Xu, Singh, Patel, & Goldstein, 2016;
Zeng, Lau, Lin, & Yao, 2019; Zhang & Brand, 2017). These methods
are intended to update the model without the back-propagation
that can cause the gradient vanishing. We consider to split the
model parameters into blocks and update them using different
data in order to impose a regularization effect.

Our algorithm is closely related to stochastic (randomized)
block coordinate descent (SBC) (Wan et al., 2013; Wang & Baner-
jee, 2014; Zhao et al., 2014) which randomly chooses both pa-
rameters and examples in the optimization procedure. However,
when the number of parameters is in the millions, there is a
trade-off between accuracy and robustness to outliers. To mit-
igate this issue, we introduce a cyclic procedure such that a
parameter is updated only once with each sample within an
epoch. This is, however, different from classical cyclic coordinate
descent (Saha & Tewari, 2010) and recent cyclic-block coordinate
descents (Lee & Wright, 2016; Leventhal & Lewis, 2010; Richtárik
& Takáč, 2016; Saha & Tewari, 2013), since we consider mini-
batches of both the data and the parameters. Furthermore, our
goal is not to approximate the full gradient, as in Wang and
Banerjee (2014), Zhao et al. (2014). Instead, we aim to modify
the stochastic procedure to achieve better regularization, hence
higher accuracy.

3. Preliminaries

Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of training data
where xi ∈ X is an input, typically an image, and yi ∈ Y is an
output, typically a label. Let hw : X → Y be a prediction function
with the associated model parameters w = (w1, w2, . . . , wm) ∈

Rm where the dimension of the feature space is m. The discrep-
ancy between the predicted output hw(xi) and the true output yi is
measured by a loss function ℓ(hw(xi), yi) for each training sample
(xi, yi). The goal is to find optimal parameters w∗ that are typically
obtained by minimizing the empirical loss L(w) on the dataset
{(x1, y1), (x2, y2), . . . , (xn, yn)}:

(w) =
1
n

n∑
i=1

ℓ(hw(xi), yi) =
1
n

n∑
i=1

fi(w), (1)

w∗
= argmin

w

L(w), (2)

where the loss incurred by the parameters w with sample (xi, yi)
s denoted by fi(w) := ℓ(hw(xi), yi).

.1. Stochastic gradient descent

The minimization of L(w) in Eq. (1), assuming fi(w) is differen-
iable, involves the computation of the gradient for a large num-
er n of training data. Stochastic gradient descent (SGD) (Robbins
Monro, 1951; Rumelhart et al., 1988; Zhang, 2004) achieves

he dual objective of reducing the computational load as well
s improving generalization due to the implicit regularization
ffect (Zhu, Wu, Yu, Wu, & Ma, 2019). The stochastic process of
ampling subsets of data at each iteration leads to regularization
n the estimation of the gradient for the expected loss. Let χ =

1, 2, . . . , n} be the index set of the training data and β ⊂ χ be
ts random subset, called the mini-batch. SGD updates an initial
stimate (typically random) of the weights recursively at each
teration t via

(t+1)
:= w(t)

− η(t) 1
|β (t)|

∑
∇fi(w(t)), (3)
i∈β(t)

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

w

q

∑
f
a
P

T
e

g

here η(t) is a positive scalar, called learning rate. Manual
scheduling of the learning rate is typical, although adaptive
scheduling schemes based on the gradient or the iteration are also
considered (Duchi et al., 2011; Schaul et al., 2013; Zeiler, 2012).

3.2. Random coordinate descent

In the optimization of deep neural networks, it is often re-
uired to compute loss function {fi(w)}ni=1 with respect to a large

number m of parameters w ∈ Rm in addition to dealing with
a large number n of data. Randomized block coordinate descent
(BCD) (Nesterov, 2012; Richtárik & Takáč, 2014) selects a subset
c from the index set {1, 2, . . . ,m} of the feature space uni-
formly at random and computes gradients ∇wcL(w) restricted to
the selected subset wc of the coordinates using the set of loss
functions {fi}ni=1 on the whole data set. Then, the only selected
parameters wc are updated based on the gradient ∇wcL(w). The
BCD algorithm proceeds at each iteration t via

w
(t+1)
c(t)

:= w
(t)
c(t)

− η(t) 1
n

n∑
i=1

∇wc(t)
fi(w(t)), (4)

while keeping unselected parameters: w
(t+1)
j = w

(t)
j , ∀j /∈ c(t).

3.3. Stochastic random coordinate descent

It is natural to consider combining the use of random mini-
batches of data as done by SGD in Section 3.1 with random
subsets of coordinates as done by BCD in Section 3.2. The result-
ing algorithm, called stochastic random block coordinate descent
(SBC) (Wan et al., 2013; Wang & Banerjee, 2014; Zhao et al.,
2014), selects subsets of the training data uniformly at random
and computes the gradient of the objective function with respect
to a randomly chosen subset of the parameters:

w
(t+1)
c(t)

:= w
(t)
c(t)

− η(t) 1
|β (t)|

∑
i∈β(t)

∇wc(t)
fi(w(t)). (5)

While it is reasonable to expect that the regularizing effects of
mini-batching would compound the computational benefits of
block-descent, it is less obvious that connecting the random se-
lections so that different sets of data are used to update different
set of parameters would be beneficial. We present our proposed
algorithm in the following section.

4. Block-cyclic stochastic coordinate descent

The essential motivation of our proposed algorithm is to com-
bine the two types of algorithms, SGD and BCD, in such a way
that SGD is designed to feed random subsets of data in the
computation of gradient and BCD is designed to select random
subsets of parameters to update. The combination of the two
stochastic processes allows to use different subsets of data to
update different subsets of parameters. We also introduce a con-
straint that allows the algorithm to end up using all the training
example data to update each of model parameters and updating
all the parameters at each epoch. We call the resulting algorithm
block-cyclic stochastic coordinate descent (BCSC), which entails
a doubly-stochastic process with randomization of both mini-
batches of data and parameter blocks based on the cyclic block
structure.

4.1. Cyclic block structure

We model the block structure of coordinates by decomposing
the feature space Rm into M subspaces. Let P be an m × m
350
permutation matrix and P = [P1|P2|· · · |PM] be a decomposition
of P into a set of M column blocks with Pj of size m × mj, where

M
j=1 mj = m. For a random selection of the elements from a

eature vector with all the other elements being zero, we define
random selection matrix Qj with size m×m for a column block
j of the permutation matrix P as follows: Qj =

[
Pj|Oj

]
, where

Oj is a zero matrix with size of m × (m − mj). For a given feature
vector w ∈ Rm, it can be uniquely written as w =

∑M
j=1 QjQ T

j w.
he iterative selection of a parameter block w[j] = PT

j w from the
lements in w over j considers all the elements in w exhaustively

with being mutually disjoint across blocks.

4.2. Doubly cyclic stochastic process

In the optimization procedure, one can consider a single
stochastic process in the selection of mini-batch β (t) with a
iven cyclic block structure P = [P1|P2|· · · |PM] for a random

grouping of elements in parameter vector w, namely random
block coordinate descent (RBC) algorithms, where the same mini-
batch β (t) is used to update all the sequential blocks of parameters
w[j] = PT

j w in an iterative way. The RBC algorithm iterates over
each j with a fixed t as follows:

G(t,j)
:=

1
|β (t)|

∑
i∈β(t)

∇fi(w(t,j)), (6)

w(t,j+1)
:= w(t,j)

− η(t)Q T
j G

(t,j), (7)

where G(t,j) denotes the gradient of the objective function based
on a mini-batch β (t), and it is assumed that ∪tβ

(t) is the whole
index set χ of the training data and mini-batches are mutually
disjoint β (t)

∩ β (s)
= ∅ if t ̸= s. However, this approach

is ineffective in the presence of outliers that may corrupt the
estimation of the gradient for the entire set of parameters.

The algorithm we propose, called block-cyclic stochastic coor-
dinate descent (BCSC), is developed based on the doubly cyclic
stochastic process within the selection of both mini-batch from
the training set and coordinate block from the parameters. It is
designed to ensure that each random block w[j] = PT

j w of the
parameters w is updated following the independent stochastic
selection of mini-batch β (t). In addition, each element in the
training data ends up being used to update all the parameters
within an epoch. Our BCSC algorithm proceeds with the doubly
stochastic process to select both β (t,j) and Qj as follows:

G(t,j)
:=

1
|β (t,j)|

∑
i∈β(t,j)

∇fi(w(t,j)), (8)

w(t,j+1)
:= w(t,j)

− η(t)Q T
j G

(t,j), (9)

subject to ∪tβ
(t,j) is the whole index set of the training data and

β (t,j)
∩ β (s,j)

= ∅ if t ̸= s at fixed j. Note that P is randomly
generated at each epoch and the index sets {χj}

M
j=1 of the training

data are also randomly shuffled at each epoch.

4.3. Our proposed algorithm

The central idea of the algorithm we propose is to use different
subsets of data (mini-batches) to update different subsets (blocks)
of parameters. This is graphically illustrated in Fig. 1 where SGD
and RBC use the same mini-batch at each iteration, whereas our
BCSC uses different mini-batches to update different blocks. In
our algorithm, the number of partitions (M) in a sequence of
mutually disjoint subsets in both the training data and the model
parameters is related to the distributive effect of the undesired
perturbations with unknown variances in the training data with
which the stochastic gradients are computed. Thus, the effect of

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

s
d
t
u

t
m
l
a
t
s
t
B
p
t
s

n
w
a
m
b
i
i
M

a
g
C
&
t
c
t
b
a
r
e
(
R

Fig. 1. Graphical illustration of the algorithms. SGD updates all the parameters (w1, w2, . . . , wm) at once using each mini-batch β (t) . RBC updates sequential random
ubsets of parameters using the same mini-batch β (t) . Our BCSC uses different mini-batches β(t, j) to update different blocks w[j] = PT

j w of parameters w where j
enotes the index of parameter block and t denotes the index of mini-batch. Here we illustrate our algorithm using the number of blocks M = 3 as an instance. Note
hat each of training example is used to update each parameter exactly once in an epoch. It is not guaranteed but usually different parameter blocks are updated
sing different data at each epoch due to the nature of the mini-batch procedure.
he noise process involved in the computation of gradients is
ore weakly distributed over the entire model parameter space

eading to better accuracy due to the fact that incorrect gradients
re only applied to a limited subset of model parameters while
he entire model parameters are updated with the conventional
tochastic gradient descent algorithm. The expected regulariza-
ion effect of BCSC is related to SBC (Wan et al., 2013; Wang &
anerjee, 2014; Zhao et al., 2014) that randomly chooses both
arameters and examples. Different from SBC, we update all
he parameter blocks simultaneously using different mini-batches
uch that an outlier affects a small part of the model explicitly.
More details are described in Algorithm 1 where M is a given

umber of partitions in the parameters. The algorithm proceeds
ith the initialization for the M index sets {χj}

M
j=1 of training data

nd for the permutation matrix P at each epoch. Then, different
ini-batches β (t,j) are taken from the data χj to update different
locks w[j] = PT

j w of parameters w followed by the update of the
ndex set χj by excluding the mini-batch β (t,j) from χj. At each
teration t of mini-batches, the parameter updates are performed

times for parameter blocks indexed by j.

Algorithm 1 Block-Cyclic Stochastic Coordinate Descent (BCSC)

for all epoch do
{χj}

M
j=1 : M index sets χj of data by random shuffling.

P = [P1|P2|· · · |PM] : random permutation matrix.
for all t : index for mini-batch do
for all j : index for parameter block do
Take mini-batch β (t,j) from χj.
Take parameter block w[j] = PT

j w using Pj.
Compute gradient of the loss to w[j] using {fi}i∈β(t,j) .
Update parameter block w[j] using Eq. (9).
Update index set χj := χj \ β (t,j).

end for
end for

end for

5. Experimental results

We provide quantitative and qualitative evaluation of our
lgorithm in comparison to the state-of-the-art optimization al-
orithms on the datasets including MNIST (LeCun et al., 1998),
ifar10 (Krizhevsky & Hinton, 2009) and Cifar100 (Krizhevsky
Hinton, 2009). MNIST consists of 60,000 training and 10,000

esting images with 10 labels. Cifar10 and Cifar100 are more
hallenging datasets that consist of 50,000 training and 10,000
est data with 10 and 100 labels, respectively. In order to provide
etter understanding on the effectiveness and robustness of our
lgorithm, we consider a variety of neural network architectures
anging from simple to deep and wide models; LeNet4 (LeCun
t al., 1998), VGG19 (Simonyan & Zisserman, 2014), GoogLeNet
Szegedy et al., 2015), ResNet18 (He et al., 2016a, 2016b),
esNeXt29 (Xie, Girshick, Dollár, Tu, & He, 2016), MobileNet
351
(Howard et al., 2017), ShuffleNet (Zhang, Zhou, Lin, & Sun, 2017),
SENet18 (Hu et al., 2017), DPN92 (Chen et al., 2017), and DenseC-
onv (Huang et al., 2017).

The performance of our BCSC algorithm is compared with
other state-of-the-art optimization algorithms including stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951; Rumelhart
et al., 1988; Zhang, 2004) that is the de-facto standard in deep
learning optimization, stochastic randomized block-coordinate
descent (SBC) (Wan et al., 2013; Wang & Banerjee, 2014; Zhao
et al., 2014), and randomized block-coordinate descent (RBC)
within the same number of update-iterations that is the essen-
tial measure of algorithmic time complexity. Note that the time
complexity of our BCSC is the same as SGD. However, BCSC
requires an additional computational load due to that implemen-
tation issue of the deep learning platforms that do not support
the random choice of both model parameters and data in the
back-propagation operation. We thus involve RBC with the same
computational load in our experiments in order to highlight the
benefit of our idea that updates different parameter blocks using
different data.

For each experiment, we provide the learning curves that
consist of the training loss of training mini-batches, and the test
loss and the test accuracy for the validation set. In addition, the
standard deviation of the training loss computed from the mini-
batches within each epoch is also presented. The learning curves
are shown in colors; training loss in blue, test loss in red, and
test accuracy in green, and they are plotted with epoch in log
scale. The train and test losses are displayed with respect to the
left vertical axis and the percentile accuracy is displayed with
respect to the right vertical axis. As quantitative comparison, the
test accuracy is computed within the first half epochs, the last
half epochs, all the epochs, and the final epoch.

For the selection of the hyper-parameters associated with the
optimization algorithms, we use the customary values; mini-
batch size is 128, momentum is 0.9, weight decay is 5 × 10−4,
and the total number of epochs is 200. For the learning rate,
we employ a manual scheduling that is empirically optimized
with respect to SGD; η = 0.1 for epochs 1–100, 0.01 for epochs
101–150, and 0.001 for epochs 151–200, so that the staircase
effect appears in the learning curve in which it is noted that the
horizontal axis for epoch iteration is in log-scale. These values are
applied to all the algorithms throughout the experiments unless
mentioned otherwise. The same values are used for the common
hyper-parameters among all the algorithms.

Effect of the number of parameter blocks We initially design
the experiment to validate the behavior of our algorithm as a
function of the number of parameter blocks M . Thus, we compare
our BCSC with varying M = 2, 4, 8, 16 against SGD (M = 1) using
the models LeNet4, VGG19, and ResNet18, on the Cifar10 and
Cifar100 datasets. In this experiment, we use a fixed learning rate
of η = 0.1 across all the epochs to better understand the behavior
of BCSC in comparison to SGD. The learning curves obtained from

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

v
i

T
T
d
r

c
b

Fig. 2. Effect of the number of parameter blocks M . Learning curves obtained based on (top part) Cifar10 and (bottom part) Cifar100 datasets by our BCSC with
arying number of parameter blocks M for different network architectures. BCSC with M = 1 is equivalent to SGD. The train loss is indicated in blue, the test loss
n red, and the test accuracy in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
able 1
est accuracy (%) obtained by BCSC with varying number of parameter blocks at
ifferent training outliers (%) based on Cifar10 using LeNet4 model. The learning
ate is fixed at η = 0.1.
Training outlier (%) 0 5 10 15

SGD (M = 1) 57.91 53.43 52.80 51.79
BCSC (M = 2) 67.80 66.31 64.45 64.98
BCSC (M = 4) 71.72 71.32 70.73 70.12
BCSC (M = 8) 73.88 73.64 73.56 73.21

the models are presented with varying M in Fig. 2 where it is
learly observed that both training and testing losses (red and
lue lines) are significantly improved with increasing M , M ≤ 8

in particular with deeper network models where the number of
parameters is large, resulting in a notable improvement of the
test accuracy (green line). The maximum of test accuracy and the
minimum of test loss have reached a peak at M = 8 in some of
the conditions. This observation implies that M ≥ 16 may result
in the under-fitting of the model due to the strong regularization
effect. It is also observed that the variation of the training and
testing losses decreases with increasing M in most of the cases.

Robustness to training outliers To demonstrate the robustness
of our BCSC to training outliers in comparison to SGD, we com-
pute test accuracy with different number of parameter blocks
M = 2, 4, 8 in the presence of arbitrarily corrupted training data
with randomly assigned false labels at varying rates of outliers
from 0% (original), 5%, 10%, 15% based on Cifar10 dataset using
LeNet4 network model that is simple, yet illustrative. The training
352
loss computed using a noise example can be extremely higher
than the others. This means that the noise perturbs not only the
step direction but also the step size of the model update. Our
algorithm is designed to explicitly restrict the impact of such
outliers. Table 1 presents the average test accuracy and clearly
demonstrates that the test accuracy is improving with larger
number of parameter partitions M with the same amount of
noise. Fig. 3 shows the learning curves obtained by SGD (M = 1)
and our BCSC with (M = 2, 4, 8). SGD is shown to be more
sensitive to outliers, whereas BCSC yields higher accuracy with in-
creasing M demonstrating its robustness against training outliers.

Results with adaptive learning rate In order to demonstrate that
the benefits of BCSC are not diminished when using an adaptive
learning rate, we compare BCSC with M = 8 and SGD when
integrated with the learning rate given by AdaGrad (Duchi et al.,
2011) based on the basic models: VGG19 and ResNet18, using
the Cifar10 dataset. The learning curves are presented in Fig. 4
where the training loss and the test loss are noticeably improved
with BCSC in comparison to SGD. The results indicate that BCSC
outperforms SGD consistently, regardless of whether the adaptive
learning rate scheme is applied to the algorithm.

Results with Dropout In this experiment, we demonstrate that
the regularization effects of BCSC persist if additional regular-
ization is employed, for instance using Dropout. We employ a
simple network model, LeNet4, in which we can easily observe
the effect of Dropout using the MNIST dataset. Table 2 summa-
rizes the average test accuracy of BCSC with parameter blocks

M = 2, 4, 8 in comparison to SGD (M = 1) at different rates

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

t

u

S
l
w
n

R
f
t
d
c
v

Fig. 3. Robustness to training outliers. Learning curves obtained based on Cifar10 by BCSC with varying number of parameter blocks M at different degrees of
raining outliers (%) using LeNet4 network model. BCSC with M = 1 is equivalent to SGD.
Fig. 4. Comparison of BCSC with SGD when using with adaptive learning rate (AdaGrad). Learning curves obtained by SGD with AdaGrad and BCSC with AdaGrad
sing Cifar10. M = 8 is used for BCSC.
Table 2
Test accuracy (%) obtained by BCSC with varying number of parameter blocks
at different Dropout rates (%) based on MNIST dataset using LeNet4 model.
Dropout rate (%) 0 5 10 15

SGD (M = 1) 98.98 99.04 99.09 99.04
BCSC (M = 2) 99.00 99.10 99.14 99.13
BCSC (M = 4) 99.04 99.10 99.17 99.16
BCSC (M = 8) 99.02 99.13 99.17 99.19

of Dropout (0%, 5%, 10%, 15%). It is shown that BCSC outperforms
GD regardless of Dropout even though the effectiveness of a
arger number of parameter blocks M is shown to be weaker,
hich is due to the relatively small number of parameters in the
etwork model.

esults with deep models on Cifar10 We compare the per-
ormance of our BCSC against other state-of-the-art optimiza-
ions including stochastic gradient descent (SGD), stochastic ran-
omized block-coordinate descent (SBC), and randomized block-
oordinate descent (RBC). In this comparative analysis, we pro-
ide the learning curves and the test accuracy table based on the
353
network models including LeNet4, VGG19, ResNet18, GoogLeNet
and DPN92 using the Cifar10 dataset. The experimental results for
BCSC are obtained with M = 8, which is chosen as an example,
but the results with other values for M agree with the effec-
tiveness and robustness of the number of parameter blocks as
demonstrated by the previous experiments. The learning curves
obtained by different optimization algorithms, SGD, SBC, RBC
and BCSC, based on different network models are presented in
Fig. 5 where BCSC outperforms all the other algorithms in ac-
curacy and stability regardless of the network models. Note that
the effectiveness of our method is demonstrated in the learning
curve even at the initial epoch where a number of iterations are
performed across different mini-batches. In addition to the com-
parison by the learning curve, we provide quantitative evaluation
of the test accuracy computed within (a) the first half epochs, (b)
the last half epochs, (c) all the epochs and (d) the final epoch
in Table 3 where the first half epochs means those in the range
between 1st epoch and 100th epoch in our experimental con-
dition for example. These experimental results indicate that our
BCSC algorithm outperforms all the state-of-the-art optimization

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

T
T

able 3
est accuracy (%) obtained by SGD, SBC, RBC, and BCSC with M = 8 based on Cifar10 using different network models.

(a) First half epochs (b) Last half epochs

SGD SBC RBC BCSC SGD SBC RBC BCSC

LeNet4 46.98 64.32 54.34 70.49 70.33 72.90 72.74 77.17
VGG19 75.28 85.40 80.09 89.22 92.33 92.58 92.57 93.70
ResNet18 79.43 87.01 81.34 90.64 93.89 93.76 93.74 95.12
GoogLeNet 77.66 86.40 80.48 89.97 94.04 94.01 94.04 95.56
DPN92 80.53 86.62 70.78 91.15 94.50 93.99 89.58 95.24

(c) All epochs (d) Final epoch

SGD SBC RBC BCSC SGD SBC RBC BCSC

LeNet4 58.66 68.61 63.54 73.83 73.24 73.80 75.25 77.61
VGG19 83.81 88.99 86.33 91.46 93.62 92.69 93.58 94.09
ResNet18 86.66 90.38 87.54 92.88 94.90 93.87 94.34 95.19
GoogLeNet 85.85 90.21 87.26 92.77 94.78 94.02 94.36 95.61
DPN92 87.51 90.30 80.18 93.20 95.38 94.20 91.70 95.46
Fig. 5. Evaluation on Cifar10. Learning curves obtained by (SGD) stochastic gradient descent, (SBC) stochastic randomized block-coordinate descent, (RBC) randomized
block-coordinate descent, and (BCSC) our algorithm with M = 8.
methods irrespective of the architecture and the depth of the
models by the final accuracy.

Results with deep models on Cifar100 We now further validate
the performance of our BCSC in comparison with the state-of-
the-art optimizations, SGD, SBC, and RBC using the more chal-
lenging Cifar100 based on the deep models including MobileNet,
ShuffleNet, VGG19, ResNet18, SENet18, DenseConv, ResNeXt29,
GoogLeNet, and DPN92. In this experiment, we use M = 2 due
to the heavy computational cost required to optimize deep mod-
els using the Cifar100 dataset. The learning curves are obtained
by SGD, SBC, RBC and BCSC with M = 2, based on different
network models, and they are presented in Fig. 6 where better
and more stable results are observed with BCSC irrespective of
the architecture albeit the minimum partition number M = 2
is used. It is clearly observed that the train loss computed by
BCSC decreases faster than all the other algorithms, which leads
354
to significant improvement in particular at early epochs. The
quantitative evaluation of BCSC with M = 2 in comparison to the
other optimization methods is provided in Table 4 where the test
accuracy is computed at (a) first half epochs, (b) last half epochs,
(c) all epochs, and (d) final epoch. The test accuracy with BCSC is
shown to be better than the one with all the other methods under
comparison at the final epoch and over the all epochs. These
experiments further confirm that BCSC outperforms the state-of-
the-arts optimizations irrespective of the network architectures
in accuracy and stability. The effectiveness of our BCSC algorithm
can be naturally demonstrated with larger number of partitions
in the model parameters.

6. Discussion

We have presented a first-order optimization algorithm for

large scale problems in the deep learning framework when both

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

t
a
p
d
o
h
o
d
w
e
a
r
o

Fig. 6. Evaluation on Cifar100. Learning curves obtained by SGD, SBC, RBC, and our BCSC with M = 2 for different network architectures.
l
i

he number of training data and the number of model parameters
re large, and when the training data is polluted with outliers. The
roposed algorithm, named BCSC, is based on the intuition that
ifferent subsets of data being used for updating different subsets
f parameters is beneficial in achieving better generalization and
andling outliers. The experimental results based on the state-
f-the-art network models with the standard image classification
atasets indicate that the proposed doubly stochastic process
ith the block-cyclic constraint leads to improved model gen-
ralization and robustness to outliers in the training phase. In
ddition, it has been empirically demonstrated that our algo-
ithm outperforms the state-of-the-arts in optimizing a number
f recent deep models in terms of accuracy and stability of the
355
earning curve over the update-iteration. The implementation
ssue of our algorithm is that we use M of the individual mini-
batch sequences that increase the computational load due to the
back-propagation. We have demonstrated that BCSC has outper-
formed RBC that updates the parameters in discrete time and
requires the same computational load. Moreover our algorithm
could overtake SGD within the same number of parameter up-
dates. Our algorithm can be naturally extended to distributed and
parallel computation, so as to mitigate the added computational
cost due to the doubly stochastic process. Additional variants to
the sampling and circulant schemes, as well as hyper-parameter
tuning and determination of the optimal parameter-batch sizes,
are also subject of future work.

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

T
T

c
t

A

t
2
U

R

A

B

C

D

D

D

G

G

able 4
est accuracy (%) obtained based on Cifar100 dataset by SGD, SBC, RBC, and our BCSC with M = 2 at different ranges of epochs.

(a) First half epochs (b) Last half epochs

SGD SBC RBC BCSC SGD SBC RBC BCSC

MobileNet 39.36 47.24 39.09 51.47 63.80 67.89 63.24 67.79
ShuffleNet 43.57 50.12 45.26 53.75 67.77 68.53 67.22 69.57
VGG19 38.47 47.37 41.42 51.48 69.48 71.53 69.46 72.38
ResNet18 52.14 58.32 52.56 60.21 74.35 75.90 74.71 76.79
SENet18 52.90 57.74 53.40 60.09 75.38 75.83 75.11 76.98
DenseConv 51.91 55.15 53.86 60.02 75.68 75.36 75.52 76.84
ResNeXt29 52.65 59.78 54.79 62.39 77.52 78.33 77.42 78.97
GoogLeNet 51.14 58.86 53.83 60.97 78.33 79.17 78.20 79.68
DPN92 54.58 61.65 55.92 63.88 78.30 79.50 77.97 79.48

(c) All epochs (d) Final epoch

SGD SBC RBC BCSC SGD SBC RBC BCSC

MobileNet 51.58 57.57 51.17 59.63 65.21 68.57 65.04 68.88
ShuffleNet 55.67 59.32 56.24 61.66 69.12 68.77 68.56 70.36
VGG19 53.98 59.45 55.44 61.93 72.14 72.62 71.82 74.19
ResNet18 63.24 67.11 63.64 68.50 76.08 76.32 76.23 77.28
SENet18 64.14 66.78 64.26 68.53 77.28 76.11 76.50 77.30
DenseConv 63.79 65.25 64.69 68.43 77.22 75.53 76.91 77.46
ResNeXt29 65.09 69.05 66.11 70.68 78.88 78.21 78.47 79.37
GoogLeNet 64.73 69.02 66.01 70.33 79.51 79.42 79.04 80.20
DPN92 66.44 70.57 66.95 71.68 79.98 79.77 79.45 80.23
Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by the National Research Founda-
ion of Korea (NRF), Republic of Korea: 2017R1A2B4006023 and
019K1A3A1A77074958, and the Office of Naval Research (ONR),
SA: N00014-19-1-2229.

eferences

n, G. (1996). The effects of adding noise during backpropagation training on a
generalization performance. Neural Computation, 8(3), 643–674.

alduzzi, D., Frean, M., Leary, L., Lewis, J., Ma, K.-D., & McWilliams, B. (2017).
The shattered gradients problem: If resnets are the answer, then what is the
question? In Proceedings of machine learning research: Vol. 70, Proceedings of
the 34th international conference on machine learning (pp. 342–350). PMLR.

hen, Y., Li, J., Xiao, H., Jin, X., Yan, S., & Feng, J. (2017). Dual path networks. In
Advances in neural information processing systems (pp. 4470–4478).

e, S., Yadav, A., Jacobs, D., & Goldstein, T. (2016). Big batch SGD: Automated
inference using adaptive batch sizes. arXiv preprint arXiv:1610.05792.

uchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul), 2121–2159.

uchi, J., & Singer, Y. (2009). Efficient online and batch learning using forward
backward splitting. Journal of Machine Learning Research, 10(Dec), 2899–2934.

eorge, A. P., & Powell, W. B. (2006). Adaptive stepsizes for recursive estimation
with applications in approximate dynamic programming. Machine Learning,
65(1), 167–198.

oodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013).
Maxout networks. In ICML’13, Proceedings of the 30th international confer-
ence on international conference on machine learning (pp. III–1319–III–1327).
JMLR.org, http://dl.acm.org/citation.cfm?id=3042817.3043084.

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770–778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual
networks. In European conference on computer vision (pp. 630–645). Springer.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. In Advances
in neural information processing systems (pp. 1729–1739).
356
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

Hu, J., Shen, L., & Sun, G. (2017). Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507.

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep net-
works with stochastic depth. In European conference on computer vision
(pp. 646–661). Springer.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on
machine learning (pp. 448–456).

Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in neural information processing
systems (pp. 315–323).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny
images: Technical report, University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097–1105).

Lang, K. J., & Hinton, G. E. (1990). Dimensionality reduction and prior knowledge
in e-set recognition. In Advances in neural information processing systems
(pp. 178–185).

Lau, T. T.-K., Zeng, J., Wu, B., & Yao, Y. (2018). A proximal block coordinate
descent algorithm for deep neural network training. arXiv preprint arXiv:
1803.09082.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, C.-P., & Wright, S. J. (2016). Random permutations fix a worst case for cyclic
coordinate descent. arXiv preprint arXiv:1607.08320.

Leventhal, D., & Lewis, A. S. (2010). Randomized methods for linear constraints:
convergence rates and conditioning. Mathematics of Operations Research,
35(3), 641–654.

Liu, X., Yan, J., Wang, X., & Zha, H. (2016). Parallel randomized block coordinate
descent for neural probabilistic language model with high-dimensional
output targets. In Chinese conference on pattern recognition (pp. 334–348).
Springer.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431–3440).

Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale
optimization problems. SIAM Journal on Optimization, 22(2), 341–362.

Plaut, D. C., et al. (1986). Experiments on learning by back propagation. ERIC.
Richtárik, P., & Takáč, M. (2014). Iteration complexity of randomized

block-coordinate descent methods for minimizing a composite function.
Mathematical Programming, 144(1–2), 1–38.

Richtárik, P., & Takáč, M. (2016). Parallel coordinate descent methods for big
data optimization. Mathematical Programming, 156(1–2), 433–484.

Rifai, S., Glorot, X., Bengio, Y., & Vincent, P. (2011). Adding noise to the input of a
model trained with a regularized objective. arXiv preprint arXiv:1104.3250.

http://refhub.elsevier.com/S0893-6080(21)00128-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb3
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb3
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb3
http://arxiv.org/abs/1610.05792
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb5
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb5
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb5
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb5
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb5
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb7
http://dl.acm.org/citation.cfm?id=3042817.3043084
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb10
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb10
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb10
http://arxiv.org/abs/1207.0580
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb12
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1709.01507
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb16
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb16
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb16
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb16
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb16
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb17
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb17
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb17
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb17
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb17
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb19
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb19
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb19
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb21
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb21
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb21
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb21
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb21
http://arxiv.org/abs/1803.09082
http://arxiv.org/abs/1803.09082
http://arxiv.org/abs/1803.09082
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb23
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb23
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb23
http://arxiv.org/abs/1607.08320
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb28
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb28
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb28
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb29
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb31
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb31
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb31
http://arxiv.org/abs/1104.3250

K. Nakamura, S. Soatto and B.-W. Hong Neural Networks 139 (2021) 348–357

R

R

R

S

S

S

S

T

T

T

W Z
obbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals
of Mathematical Statistics, 400–407.

oux, N. L., Schmidt, M., & Bach, F. (2012). A stochastic gradient method with an
exponential convergence rate for finite training sets. In NIPS’12, Proceedings
of the 25th international conference on neural information processing systems
(Vol. 2) (pp. 2663–2671).

umelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning
representations by back-propagating errors. Cognitive Modeling, 5(3), 1.

Saha, A., & Tewari, A. (2010). On the finite time convergence of cyclic coordinate
descent methods. arXiv preprint arXiv:1005.2146.

Saha, A., & Tewari, A. (2013). On the nonasymptotic convergence of cyclic
coordinate descent methods. SIAM Journal on Optimization, 23(1), 576–601.
http://dx.doi.org/10.1137/110840054.

chaul, T., Zhang, S., & LeCun, Y. (2013). No more pesky learning rates. In
International conference on machine learning (pp. 343–351).

imonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

rivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1), 1929–1958.

zegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1–9).

an, C., Ma, S., Dai, Y.-H., & Qian, Y. (2016). Barzilai-borwein step size for
stochastic gradient descent. In Advances in neural information processing
systems (pp. 685–693).

aylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., & Goldstein, T. (2016).
Training neural networks without gradients: A scalable admm approach. In
International conference on machine learning (pp. 2722–2731).

ibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B. Statistical Methodology, 267–288.

an, L., Zeiler, M., Zhang, S., Cun, Y. L., & Fergus, R. (2013). Regularization of
neural networks using dropconnect. In Proceedings of the 30th International
conference on machine learning (ICML-13) (pp. 1058–1066).
357
Wang, H., & Banerjee, A. (2014). Randomized block coordinate descent for online
and stochastic optimization. arXiv preprint arXiv:1407.0107.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2016). Aggregated residual
transformations for deep neural networks. arXiv preprint arXiv:1611.05431.

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society. Series B. Statistical
Methodology, 68(1), 49–67.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Zeng, J., Lau, T. T.-K., Lin, S., & Yao, Y. (2019). Global convergence of block
coordinate descent in deep learning. In International conference on machine
learning (pp. 7313–7323). PMLR.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic
gradient descent algorithms. In Proceedings of the twenty-first international
conference on machine learning (p. 116). ACM.

Zhang, Z., & Brand, M. (2017). Convergent block coordinate descent for
training tikhonov regularized deep neural networks. In I. Guyon, U.
V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Gar-
nett (Eds.), Vol. 30, Advances in neural information processing systems
(pp. 1721–1730). Curran Associates, Inc., https://proceedings.neurips.cc/
paper/2017/file/6a2feef8ed6a9fe76d6b3f30f02150b4-Paper.pdf.

Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning with elas-
tic averaging SGD. In Advances in neural information processing systems
(pp. 685–693).

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2017). Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.
01083.

Zhao, T., Yu, M., Wang, Y., Arora, R., & Liu, H. (2014). Accelerated mini-batch
randomized block coordinate descent method. In NIPS’14, Proceedings of the
27th international conference on neural information processing systems (Vol. 2)
(pp. 3329–3337).

hu, Z., Wu, J., Yu, B., Wu, L., & Ma, J. (2019). The anisotropic noise in
stochastic gradient descent: Its behavior of escaping from sharp minima and
regularization effects. In ICML (pp. 7654–7663).

http://refhub.elsevier.com/S0893-6080(21)00128-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb35
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb35
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb35
http://arxiv.org/abs/1005.2146
http://dx.doi.org/10.1137/110840054
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb38
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb38
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb38
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb40
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb40
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb40
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb40
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb40
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb41
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb41
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb41
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb41
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb41
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb44
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb44
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb44
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb45
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb45
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb45
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb45
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb45
http://arxiv.org/abs/1407.0107
http://arxiv.org/abs/1611.05431
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb48
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb48
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb48
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb48
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb48
http://arxiv.org/abs/1212.5701
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb51
https://proceedings.neurips.cc/paper/2017/file/6a2feef8ed6a9fe76d6b3f30f02150b4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6a2feef8ed6a9fe76d6b3f30f02150b4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6a2feef8ed6a9fe76d6b3f30f02150b4-Paper.pdf
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb53
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb53
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb53
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb53
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb53
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00128-3/sb56

	Block-cyclic stochastic coordinate descent for deep neural networks
	Introduction
	Related work
	Preliminaries
	Stochastic gradient descent
	Random coordinate descent
	Stochastic random coordinate descent

	Block-cyclic stochastic coordinate descent
	Cyclic block structure
	Doubly cyclic stochastic process
	Our proposed algorithm

	Experimental results
	Discussion
	Declaration of competing interest
	Acknowledgments
	References

