
International Journal of Computational Intelligence Systems
Vol. 14(1), 2021, pp. 1053–1065

DOI: https://doi.org/10.2991/ijcis.d.210304.002; ISSN: 1875-6883; eISSN: 1875-6891
https://www.atlantis-press.com/journals/ijcis/

Research Article

Rumor Detection by Propagation Embedding Based on
Graph Convolutional Network

Dang Thinh Vu, , Jason J. Jung*,

Department of Computer Science and Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea

ART I C L E I N FO
Article History

Received 28 Aug 2020
Accepted 01 Mar 2021

Keywords

Rumor detection
Propagation embedding
Graph convolutional network
Feature aggregation

ABSTRACT
Detecting rumors is an important task in preventing the dissemination of false knowledge within social networks. When a post
is propagated in a social network, it typically contains four types of information: i) social interactions, ii) time of publishing,
iii) content, and iv) propagation structure. Nonetheless, these information have not been exploited and combined efficiently to
distinguish rumors in previous studies. In this research, we propose to detect a rumor post by identifying characteristics based
on its propagation patterns and other kinds of information. For the propagation pattern, we suggest using a graph structure to
model how a post propagates in social networks, allowing useful knowledge to be derived about a post’s pattern of propagation.
We then propose a propagation graph embedding method based on a graph convolutional network to learn an embedding
vector, representing the propagation pattern and other features of posts in a propagation process. Finally, we classify the learned
embedding vectors to different types of rumors by applying a fully connected neural network. Experimental results illustrate that
our approach reduces the error of detection by approximately 10% compared with state-of-the-art models. This enhancement
proves that the proposed model is efficient on extracting and integrating useful features for discriminating the propagation
patterns.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Social networks (e.g., Facebook and Twitter) are currently the most
common media platforms for monitoring and broadcasting news
across the world. While news from other media platforms (e.g.,
newspapers and television channels) are published by recognized
organizations and are thoroughly verified after many censor steps,
most of the information in social networks is published by indi-
viduals. The individuals may publish news based on their personal
perspectives. Additionally, many people intentionally publish fake
information to attract attention or achieve their purpose. Besides,
they do not have to take responsibility for their published informa-
tion, andmost social networks do not take any steps to verify infor-
mation before publication. Therefore, many posts in these networks
are rumors, fake stories, ormisinformation. This leads to the spread
of improper information, which can cause detrimental effects on
individuals and organizations.

By common definition, a rumor is a statement whose truth value is
unverified [1]. Rumor detection is an important task to ensure the
truthfulness of the information on social media platforms. There-
fore, the task of detecting rumors needs an examination of a huge
amount of information for checking the credibility of the suspected
statement. There are various online services (e.g., Snopes,1 and

*Corresponding author. Email: j2jung@gmail.com
1https://www.snopes.com/

PolitiFact2) that support debunking rumors. However, these ser-
vices require manual fact-checking by analyst specialists. This pro-
cess is highly labor-intensive and time-consuming. Therefore, an
automated and real-time rumor detector must be developed.

For automatically detecting rumors, most previous research have
focused on extracting set of handcrafted features from the user pro-
file, post content, and propagation patterns [2,3]. More recently,
several studies have applied deep neural networks for auto-learning
features [4,5]. Mostly such studies neglect or oversimplify the prop-
agation structure, although it has been shown to be effective in iden-
tifying rumors. The propagation structure of a post is known as how
a source post reaches other people in social networks. When a post
is published on social networks, it is delivered to the author’s sub-
scribers, who can then respond by response posts (e.g., comments,
retweets, or shares) to express their opinions about the source post.
Recent studies show differences between behavior of people and
semantic relationship between the posts in a propagation process.
For example, Ma et al. [6] assume that if a post is a rumor, it could
receive many negative responses (e.g., “disagreement” or “blame”),
whereas a nonrumor post is likely to have many positive responses
(e.g., “agreement” or “support”). Figure 1 gives an example of how
people express their stance toward a tweet on Twitter. This tweet
is a rumor because there is no official organization that confirms
the truthfulness of its content at the time of publishing. Most

2https://www.politifact.com/

https://doi.org/10.2991/ijcis.d.210304.002\relax
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0001-5451-4128
https://orcid.org/0000-0003-0050-7445
http://creativecommons.org/licenses/by-nc/4.0/

1054 D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065

Figure 1 Example of a rumor tweet propagating on Twitter.
Most comments on this rumor express suspicion or disagreement.

comments on this tweet express suspicion or disagreement. Specif-
ically, the comments of “User2” and “User4” express suspicion. The
comment of “User3” expresses disagreement. This observation is a
motivation for us to develop a rumor detection method by learning
the difference in how different posts respond to the source post in
the propagation process.

In this study, we propose a novel method to incorporate the propa-
gation structure and other derived features into a graph [7], where
each node is either the source post or responses (e.g., comments),
and each edge represents a relationship between posts. Features
extracted from a post are attributes of its corresponding node.
The features can be extracted from the content, temporal, and
social information of a post. By using a graph to represent the
propagation structure and valuable features of a post, the rumor
classification problem is transformed into the graph classification
problem. There are many graph classification algorithms which
were proposed based on graph kernels [8,9], or spectral and sta-
tistical fingerprints [10]. However, these methods are not suitable
or not applicable to our constructed graph. Therefore, we propose
using a graph embedding approach which embeds the constructed
graph into a continuous vector space. Next, we classify these graph
embedding vectors by using a supervised classification model.

For graph embedding, there exist various methods for learning
node embedding (e.g., DeepWalk [11], node2vec [12], SDNE [13]),
subgraph embedding (e.g., subgraph2vec [14]), and full graph
embedding (e.g., graph2vec [15]). However, the weakness of these
algorithms is that they only focus on embedding structural infor-
mation but forget to learn the features of nodes and edges. Instead,
we propose a graph embedding model based on a Graph Convolu-
tional Network (GCN) [16] and Long Short-TermMemory (LSTM)
network [17], which allows embedding full graph features with-
out loss of information. The GCNs allow to leverage both the node
features and the graph structure to generate node embeddings
for previously unseen data. By using the GCNs, the learned node
embedding is a combination of the structural information and
the node features. The GCN that we use is GraphSAGE [18].

GraphSAGE is an inductive variant of GCNs, which uses trainable
aggregator functions instead of simple convolutional function. We
then apply an LSTMmodel for learning the graph embedding vec-
tor from the sequence of node embeddings. Next, we classify these
graph embedding vectors to rumor labels by a fully connected neu-
ral network.

Finally, we evaluate the proposed model on public Twitter datasets.
The experimental results indicate that our model outperforms
strong baseline models. The main contributions of our study are
summarized as follows:

• We propose a method to model the propagation process of a
post as a graph. This allows learning the structural information
of the propagation process by using a GCN.

• A graph embedding method is applied to integrate both the
graph structure information and the node features to extract
valuable signals to detect rumors. Additionally, this technique
is strong in generalizing unseen data because the propagation
structure varies for different posts.

• A semi-supervised training method is proposed to exploit a
high volume of unlabeled data in social networks and enhance
the model’s performance in the case of a lack of labeled training
datasets.

• Our model demonstrates state-of-the-art performance on
real-world datasets for the rumor detection task.

The rest of the paper is organized as follows. Section 2 summa-
rizes previous research on rumor detection and graph embedding
techniques. The rumor detection problem is described in Section 3.
Section 4 explains the proposed model. Section 5 presents the
datasets, experiments, and results. In Section 6, the conclusions and
the scope for future research are given.

2. RELATED WORK

In this section, we summarize relevant approaches to rumor detec-
tion. In addition, we discuss some studies on graph embedding and
explain the reason why GraphSAGE is more suitable than other
embedding methods for our approach.

2.1. Rumor Detection

The problem of rumor detection has been an important subject of
research when social networks become popular. In an early study,
Zhao et al. [19] defined a set of regular expressions to detect sig-
nal posts that express inquiry about the truth value of post. The
drawback of this approach is that it heavily depends on prede-
fined regular expressions, which cannot encompass the diversity of
writing styles used in posts. Similarly, many early studies focused
on training a supervised classifier based on manually extracting
features from post’s information [2,3,20–23]. The disadvantage of
these approaches is their strong reliance on the method of feature
engineering, which is likely to be biased and labor-intensive.

Another research approaches leverage the propagation patterns
of the tracked posts. Kwon and Cha [24] proposed an approach
based on monitoring the difference between the propagation

D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065 1055

patterns. Recently, by integrating the post features based on calcu-
lating the weight of each post using the PageRank method, Vu and
Jung [25] embedded the propagation process and then categorized
the embedding vectors according to rumor labels. Furthermore,
some kernel-based approaches were proposed to differentiate the
propagation structure of rumor and nonrumor posts. Wu et al. [26]
introduced a graph-based kernel function to capture propagation
patterns and semantic features of posts, andMa et al. [27] proposed
a tree-kernel function that learns the similarity between propaga-
tion trees by evaluating the similarity of sub-trees. However, these
methods have highly computational complexity because it needs to
calculate the similarity between every pair of graphs or trees.

Recently, several studies of rumor detection centered on developing
a neural networkmodel. Alkhodair et al. [4] trained a LSTMmodel,
which only learns the source post’s content to classify rumors. Ma
et al. [28] introduced a recurrent neural network (RNN) to capture
variations of contextual information of posts when propagating.
Also, Ma et al. [6] model the propagation process as a tree and then
applied a Tree-structured Recursive Neural Network to aggregate
high-level information from the source and response posts. How-
ever, the tree structure only allows modeling one-to-one relation-
ships between posts. In several social networks, a post can respond
to more than one post at a time. Using the tree form therefore over-
simplifies the complexity of the propagation. In addition, this tree-
structured neural network enables only one path for synthesizing
features: bottom-up or top-down.

Compared with previous studies, our approach is more natural and
general. It relies on a graph embedding method, which allows gen-
erating representations from both neighbor structure and features
by using aggregator functions in the GraphSAGE.

2.2. Graph Embedding

Graph embedding methods learn to represent a graph or its com-
ponents (e.g., nodes, edges, and subgraphs) as vectors in a low-
dimensional continuous space [29]. For node embedding, Perozzi
et al. [11] proposed theDeepWalkmodel, which uses randomwalks
to sample neighbor nodes, and trained a skip-gram model [30] to
learn embeddings. Similarly, Grover and Leskovec [12] trained the
node2vecmodel with amodification in the randomwalk algorithm
to better preserve the network neighborhoods of nodes. Tang et al.
[31] andWang et al. [13] proposed different methods to learn node
embeddings with an objective is to preserve first-order and second-
order proximity, which represented local and global network struc-
ture, respectively.

For subgraph embedding, Narayanan et al. [14] proposed a model
to embed subgraphs based on the maximum likelihood of co-
occurrence of rooted subgraphs sharing the same context. For graph
embedding, Narayanan et al. [15] introduced the graph2vec model,
which samples a set of subgraphs in a graph, and then trained a skip-
gram model to maximize the probability of predicting subgraphs
that exist in a graph. However, these methods learn a specific vec-
tor for each node or graph; therefore, they cannot predict embed-
dings for a new node or graph. In contrast, the GraphSAGE learn an
aggregator function that can integrate node features with the graph
structure and predict embeddings for unseen nodes. This makes it

perfectly suitable for the propagation graph of a post when each
node has unique features, and each graph has a unique structure.

3. PROBLEM DESCRIPTION

In this section, we describe rumors and their types. We also define
the propagation graph and formulate the rumor detection problem.

3.1. Definition of Rumors

A rumor is defined as a story or a statement circulating without ver-
ification or certainty of facts [1]. This means that when these stories
are published, there are no reliable source confirm their trustful-
ness. Although the reliability of a rumor is uncertain, a rumor is not
necessarily false. A post that expresses true informationmay still be
a rumor if no trusted authority has confirmed it yet. Hence, rumors
may eventually contain true or false information. Generally, rumor
and nonrumor posts can be defined as follows:

• Nonrumor: for a nonrumor post, the veracity of information
contained in the post is verifiable at the time when it is
published.

• Rumor: a rumor is a post containing information that cannot be
verified at the beginning of circulation.

Additionally, a rumor can be distinguished by three types: true
rumor, false rumor, and unverified rumor, depending on the time
this information has been confirmed after circulation [27]. These
three sub-types of rumor can be defined as follows:

• True rumor: a rumor that cannot verify during the first stage of
spreading but was officially confirmed as true after a time
period.

• False rumor: information that was unverified at the beginning
of circulation, then it is disproved later.

• Unverified rumor: unverifiable information during the entire
circulation time.

3.2. Rumor Detection Problem

In this study, we focus on classify a post into four types of rumor:
nonrumor, true rumor, false rumor, or unverified rumor. This
section describes a formal problem formulation. An important fea-
ture type that generalizes the whole diffusion process of a post is
the propagation structure.When a post is propagated on social net-
works, its readers can react with response posts (e.g., comments, or
shares) to express their opinions. Therefore, the propagation struc-
ture includes “response relationships” among the source post and
the responses. For example, it may include the stance of a response
post toward its parent post. Specifically, if a post is a false rumor,
some direct response posts are likely to express the opposite stance;
otherwise, if a post is nonrumor, the direct responses will likely to
express a supportive opinion. Therefore, we model the propagation
structure of the source post and its related responses as a propaga-
tion graph for learning the relationship between posts.

1056 D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065

Definition 1. [Propagation Graph] Propagation graph 𝒢 is a
graph that illustrates how a post propagates in a social network

𝒢 = ⟨𝒱 ,ℰ⟩ , (1)

𝒱 =
{
vi ∣ vi ≡ pi, i ∈ [1, n]

}
(2)

ℰ =
{
(vi, vj) ∣ vi, vj ∈ 𝒱 , vi ≡ pi, vj ≡ pj, pj ↤ pi

}
(3)

where𝒱 andℰ are sets of nodes and edges, respectively, pi denotes
a post, and pj ↤ pi indicates that pj is a response to pi, n is the num-
ber of nodes in the graph. Each node, vi, in the graph represents a
post (source or response post), pi, and the edge, (vi, vj), represents
the relationship between a post, pi, and its direct responses, pj. Fur-
thermore, a post, pi, is represented by a triple pi = ⟨Ci, Si,T⟩i, where
Ci, Si,Ti are sets of features extracted from the content, social, and
temporal information, respectively. A feature vector 𝝓v of a node is
a concatenation of the post’s features

𝝓v =
{⟨{

ci
}
,
{
si
}
,
{
ti
}⟩

∣ ci ∈ Cv, si ∈ Sv, ti ∈ Tv
}

(4)

where ci, si, and ti are features in the feature sets Cv, Sv, and Tv,
respectively.

For instance, Figure 2 demonstrates how we model the tweet prop-
agation process as a propagation graph. At the beginning, “User1”
posts a new tweet p1. Then, this tweet was propagated to “User2,”
who posted a comment p2 on tweet p1. Therefore, in the propaga-
tion graph, there is an edge between posts p1 and p2. Similarly, there
are edges between p2 and p3, and between p1 and p4. Each node in
the propagation graph contains a set of features

⟨{
ci
}
,
{
si
}
,
{
ti
}⟩

derived from the corresponding post. Table 1 shows examples of
content, social, and temporal features. The content features are
extracted from the post’s content itself. Social features describe
the post’s author and interactions of the followers with that post.
Temporal features describe information related to the time
of publishing.

After embedding the propagation structure and valuable features of
the posts in a graph, our rumor detection task becomes classifying
the created graphs to the rumor classes.

Definition 2. [Rumor Detection] Rumor detection is the task of
learning a classifier  to classify a post according to different types
of rumors. We formulate this task as a graph classification problem,
as follows:

 ∶ 𝒢i → Ψj (5)

whereΨj ∈ {nonrumor, true rumor, false rumor, unverified rumor}.

To classify propagation graphs, we propose a graph embedding
method based on GraphSAGE and an LSTM model to learn an
embedding vector for each graph. Then, these vectors are classified
by using a fully connected neural network.

4. RUMOR DETECTION VIA PROPAGATION
GRAPH EMBEDDING

In this section, we explain the method of rumor detection based on
the classification of the propagation graphs. Figure 3 describes the
overall algorithm of learning the embeddings and classifying the
propagation graphs. First, we learn the node embedding vectors by

Figure 2 Graph model of the propagation structure of a post.
The posts correspond to nodes, and relations between posts are
modeled as graph edges.

Table 1 Examples of features that can be extracted from a post.
Categories Features Descriptions

Embedding vector Embedding vector of the post content
Capital letters ratio Ratio of capital letters over the total number of letters in the post content
Exclamation mark Whether the post content includes an exclamation mark
Question mark Whether the post content includes a question mark
Period mark Whether the post content includes a period mark

Content features

Word count Number of words in the post content
Account age Number of years since the user account has been created
Post count Number of posts published by the user account
Friend count Number of friends of the user account
Follower count Number of followers of the user account

Social features

Is verified Whether the user account is verified as an authentic account
Temporal features Time delay Time delay between publishing time of the source post and its responses

D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065 1057

aggregating the features of neighboring nodes. Then, we apply an
LSTMmodel to learn the graph embedding vectors. Finally, we clas-
sify the graph embedding vectors by a fully connected neural net-
work. Our model’s main goal is to effectively combine the structure
of propagation with the posts’ internal features to output a graph
embedding vector. As a result, the learned graph embedding vec-
tor is the combination of features useful for differentiating rumor
posts.

4.1. Embedding Propagation Graph

Given a propagation graph, our task is to learn an embedding vector
of this graph. The first step is to learn node embedding vectors of
the propagation graph by aggregating the neighbor’s features. The
neighbors of a node (which represents a post) include the nodes
that represent not only responses but also previous posts to which
this post responds to. The purpose of this step is to learn relation-
ships between the posts in a propagation process. For this purpose,
we apply a GCN called GraphSAGE, which aggregates the inter-
nal features of nodes and the local neighbor’s features into a node
embedding vector. Although GraphSAGE aggregates node embed-
dings based on features, theoretical analysis proved that it can learn
structural information regarding a node’s role in a graph [18]. Next,
we apply an LSTM model to learn a graph embedding vector from
the sequence of node embeddings. The LSTM model includes a
sequence of connected units, and each unit is responsible for pro-
cessing an input vector; therefore, it can capture the whole context
across the input sequence.

Algorithm 1 describes the procedures to generate the embeddings
of propagation graphs. The input is a graph 𝒢 = ⟨𝒱 ,ℰ⟩, and
nodes’ features 𝝓v,∀v ∈ 𝒱 , and 𝒩 (v) is a set of direct neigh-
bors of node v. Given K aggregating iterations, in each iteration,

we have aggregator functions Δk and weight matrices Wk, ∀k ∈
{1, ...,K}. The graph embedding algorithm is performed as fol-
lows. In each iteration k and for each node v, the aggregator func-
tion Δk aggregates embedding vectors of the neighboring nodes{
hk−1u ,∀u ∈ N(v)

}
, into a single vector hk𝒩 (v). The next step is con-

catenating the node’s current representation hk−1v with the aggre-
gated vector hk𝒩 (v). This concatenated vector is then transformed
by the weight matrixWk and the activation function 𝜎. The output
node embedding vector is then normalized and input to the next
iteration. AfterK iterations, we have a sequence of node embedding
vectors

{
hKv ,∀v ∈ 𝒱

}
. This sequence of node vectors is sorted in

order of the publishing time of corresponding posts. Finally, this
node embedding sequence is put into an LSTMnetwork to output a
graph embedding vector g. The graph vector g is the hidden state of
the last cell in the LSTM network. Now, the learned graph vector is
a combination of useful features of the source post and the response
posts in the propagation process.

4.2. Aggregator Functions

The aggregator functions are designed to efficiently aggregate
features from a node’s neighbors. In practice, the following func-
tions are used:

Mean aggregator:Mean aggregator is the element-wisemean of the
neighbors’ vectors [18].

Δmean
k =

∑
i hk−1ui|𝒩 (v)| ,∀ui ∈ 𝒩 (v), (6)

where |𝒩 (v)| is the number of neighbors of node v.

Convolutional aggregator: This aggregator takes the element-wise
mean of a node’s vector and its neighbors’ vectors [18].

hkv ← 𝜎

(
W ⋅

hk−1v +
∑

i hk−1ui|𝒩 (v)| + 1

)
,∀ui ∈ 𝒩 (v) (7)

Compared with the pseudo-code of Algorithm 1, the convolutional
aggregator takes both the node vector and its neighbors as inputs;
further, it does not perform the concatenation step in line 5 of the
algorithm.

LSTM aggregator: This aggregator applies an LSTM neural net-
work to aggregate information across a node’s neighbors [18].

Δlstm
k = LSTM

({
hk−1u ,∀u ∈ 𝒩 (v)

})
(8)

Pooling aggregator: This aggregator feds each neighbor’s vector
through a fully connected neural network; then, an element-wise
max-pooling operation is applied [18].

Δpool
k = max(

{
𝜎pool(Wpoolhk−1u + bpool),

∀u ∈ 𝒩 (v)),
(9)

where 𝜎pool is a nonlinear activation function; Wpool and bpool are
weights and bias, respectively, of the single-layer fully connected
neural network in the pooling aggregator.

1058 D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065

Figure 3 Model structure of classifying propagation graph. From the propagation graph, the node’s embedding are learned by aggregating
features of neighboring nodes. Then, the sequence of node embeddings is transformed by an Long Short Term Memory (LSTM) model to
output graph embedding vector. Finally, this graph embedding vector is classified by a fully connected neural network.

In the aggregator functions above, all neighbor nodes are han-
dled equally because the features of each neighbor of a node are
combined with the equal weight. However, in the propagation pro-
cess, each post expresses different information; thus, its contribu-
tion to the aggregating feature process can be different. Therefore,
we propose a linear aggregator function that combines neighbor
feature vectors linearly based on the role of each node in the prop-
agation graph.

Linear aggregator: The linear aggregator function is modeled as
follows:

Δlinear
k =

∑
i wihk−1ui∑

i wi
,∀ui ∈ 𝒩 (v) (10)

where wi is the weight of neighbor vector hui , which indicates
the importance of each neighbor node in the propagation pro-
cess. This linear aggregator function is a linear combination of
neighbor features, then normalized by the sum of weights. In the
propagation process, we assume that a post (including source and
response posts) which attracts more attention (i.e., a high number
of responses) is more important and expresses more valuable infor-
mation for detecting rumors. Therefore, we propose using the Page
Rank [32] of each node in the graph as the weighting factor. In the
PageRank algorithm, if a node has a high number of inbound links,
it should have a high PageRank, and vice versa. This attribute of the
PageRank algorithmmakes it suitable to evaluate the importance of
nodes in the propagation graph.

To calculate the PageRank of nodes in the propagation graph, we
reverse the direction of edges from a response post to its direct tar-
get post. This edge direction follows the rule of creating a graph of
webpages in the PageRank algorithm: the direction of edges in the
graph is from a page to its mentioned page. Similarly, in the prop-
agation process, the response post also mentions the target post.

In such a graph, the source node is likely to have the highest Page
Rank. Moreover, if a post has a high number of responses, its Page
Rank is expected to be higher than for the posts with fewer
responses. As a result, the source post and the response posts
which are highly responded will contribute more to the aggrega-
tion process. In general, this linear aggregatorwith PageRank allows
exploiting the nodes’ importance in the graph to improve the pro-
cess of feature aggregation.

4.3. Classification of the Propagation Graph

Out next task is to classify propagation graph embeddings accord-
ing to the rumor labels. We classify these embedding vectors by
applying a two-layer fully connected neural network. The number
of neurons in the input layer is the size of the graph embedding vec-
tor. The number of neurons in the output layer equals the number
of labels. The input of the network is the embedding vector, and
the activation function in the output layer is the softmax function.
For training model, the proposed model can be trained in a semi-
supervised or supervised manner.

Semi-Supervised: In the semi-supervised setting, we learn the
node embeddings in an unsupervisedmanner by using a set of unla-
beled graph data from social networks. The loss function for unsu-
pervised training of node embeddings is defined in GraphSAGE as
follows [18]:

J𝒢 (zu) =
− log(𝜎(zTuzv)) − Q ⋅ Evn∼Pn(v) log(𝜎(−z

T
uzvn))

(11)

where v is a neighboring node of node u, Pn defines a negative sam-
pling distribution, and Q is the number of negative samples. This
loss function is defined to encourage nearby nodes to have similar

D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065 1059

embeddings while enforcing the difference of embeddings of far-
away nodes. The unsupervised node embedding training method
allows leveraging a large volume of unlabeled social media data.
After learning node embeddings, we train the graph embedding and
graph classification parts of the model in a supervised setting on a
labeled dataset by minimizing the cross-entropy loss function:

L(y, ŷ) = − 1
N
∑
i,j

yij log(ŷij) (12)

where y is the ground-truth label, ŷ is the probability output of a
class, N is the number of training samples, i denotes each training
sample, and j denotes each class. During the training, all parameters
of themodel are updated using the backpropagation algorithm. The
semi-supervised learning is efficient when we have a small labeled
training dataset.

Supervised: In the supervised setting, the model is trained in an
end-to-endmanner. The parameters in the node embedding, graph
embedding, and graph classification parts of the model are simul-
taneously updated by backpropagation algorithm in each optimiza-
tion step. This model is trained to minimize the cross-entropy
loss function in equation 12. This training method optimizes the
embedding model and classification model specifically for the
rumor detection task.

5. EXPERIMENTS AND RESULTS

In this section, we describe the training datasets, our experimental
settings and results.

5.1. Datasets

In our experiments, we evaluate the proposed model on three
datasets: Twitter15, Twitter16 [27], and PHEME [33]. These
datasets is collected tweets, response tweets (replies and retweets),
and propagation structure on Twitter. The source tweets in Twit-
ter15 and Twitter16 datasets are annotated with one of the four class
labels: nonrumor, true rumor, false rumor, and unverified rumor.
Each source tweet in PHEME dataset is assigned to one of the two
classes: nonrumor and rumor. Although the PHEME dataset con-
tains only two classes, it can still be used to verify the proposed
model and compare its performance with other models.

Besides, while the PHEMEdataset provides JSON files with detailed
information on each tweet, Twitter15 and Twitter16 only provide
the tweet ID without content and other information; therefore, we
use the Twitter API3 and Tweepy library4 to query content and
social information from the tweet ID. Besides, Twitter15 and Twit-
ter16 have a similar structure; therefore, we merge them into one
dataset called Twitter15 + Twitter16 and train our model on this
dataset. Table 2 shows statistics of the training datasets. The num-
ber of source and response tweets in Twitter15 andTwitter16 are the
tweets that we could query by ID. Moreover, some tweets appear in
both Twitter15 and Twitter16; hence, the number of tweets in Twit-
ter15 + Twitter16 is smaller than the total number of tweets in Twit-
ter15 and Twitter16. Furthermore, we removed the retweets from

3https://developer.twitter.com/
4https://www.tweepy.org/

the propagation graph because the content in retweets is mostly
empty, and they do not provide any valuable information.

5.2. Feature Extraction and Text
Preprocessing

In our experiments, we use extracted features that are described in
Table 1. The extracted features are concatenated to obtain a feature
vector of a node. However, values of the following features: account
age, post count, follower count, friend count, and word count vary
over different ranges; therefore, we apply a Min-Max transforma-
tion to normalize their values to range [0, 1]. The formula of Min-
Max transformation is described as follows:

Xnorm =
X − Xmin

Xmax − Xmin
, (13)

where X is the original value of a feature, Xnorm is the normalized
value of X, and Xmin and Xmax are the minimum andmaximum val-
ues of a feature, respectively. By normalizing these features, we can
avoid the effect of outliers in the features.

To learn the embedding vector of a tweet’s content, we use the
Word2vec [30] model to learn the embedding vector of each word,
and then calculating element-wise average of these word vectors
in the content string. However, the content of a tweet is extremely
noisy because it usually includes many abbreviations, typographi-
cal errors, and special characters. Furthermore, tweet content may
include special components (such as hashtags, URLs, emails, emo-
jis, dates, and time). Hence, to improve the performance of training
the embedding models, the tweet need to clean beforehand.

We clean the tweet content through 6 steps: i) lower-case conver-
sion, ii) special strings annotation (e.g., “URL,” “email,” “phone
number,” “time,” “data,” and “number”), iii) spelling correction, iv)
emoji mapping, v) removing stop words, and vi) stemming and
lemmatization. In the special string annotation step, we attempt to
map each special string to its string type (e.g., we map all URLs
in a tweet to an “URL” string, and all emails to an “email” string).
This helps the embedding algorithm learn a unique vector for dif-
ferent variations of a type of a special string. The spelling correc-
tion step is used to correct misspellings, which are very popular in
social media texts. The emoji mapping step is to convert each emoji
to a string with a representative emotion (e.g., “:-)” is mapped to
“happy,” and “:-(” is mapped to “sad”). The stop-word removal step
aims to remove stop words that do not express additional meaning
in the sentence. Finally, the stemming and lemmatization step is
used to convert a string from all different morphological variations
to its common base form. To annotate special strings, correct mis-
spelling errors, and convert emojis, we use Ekphrasis [34], which is
a text-processing library for cleaning text from social networks (e.g.,
Twitter and Facebook). Additionally, we use NLTK [35], which is
a popular toolkit for natural language processing tasks, to perform
the stop-word removal, stemming, and lemmatization steps.

5.3. Experimental Settings

To evaluate the performance of the proposed model, we made a
comparison with strong baselines and recent state-of-the-art mod-
els. The comparedmodels are selected to have different approaches,

1060 D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065

Table 2 Statistics of the training datasets.
Statistic Twitter15 Twitter16 Twitter15 +

Twitter16
PHEME

Number of source tweets 1,490 818 2,139 6,425
Number of response tweets 42,500 19,290 57,649 98,157
Number of nonrumor tweets 374 205 579 4,023
Number of false-rumor tweets 370 205 575
Number of true-rumor tweets 372 207 579 2,402a

Number of unverified-rumor
tweets

374 201 406

Average number of tweets / graph 29.5 24.6 28.0 16.3
Min number of tweets / graph 1 1 1 1
Max number of tweets / graph 324 285 324 346
aThis value denotes the total number of rumors, (including true, false, and unverified rumors).

from a simple model that extracts handcrafted features to more
advanced models that apply modern deep-learning techniques.

• SVMC: Castillo et al. [2] applied an SVM classifier to detect
rumors based on hand-crafting features from the post content,
user profile, discussion topic, and propagation patterns.

• DTR: Zhao et al. [19] proposed a ranking model by searching
for signal posts and then applying a Decision Tree model to
rank the likelihood of being a rumor.

• RFC-AVG: A baseline model we built by averaging the feature
vectors of all nodes in the graph to output the propagation
vector. Then, this vector is classified by using the Random
Forest model.

• RFC-PR: This model learns an embedding vector that
represents the propagation structure based on PageRank.
Subsequently, a Random Forest classifier is trained to classify
these vectors [25].

• RvNN:Ma et al. [6] modeled the rumor propagation as a tree
and then they trained a Tree-structured Recursive Neural
Network to detect them.

We train our model with five variants of aggregator functions to
compare their performance in rumor detection. In addition, we
train our model in both semi-supervised and supervised manner.
In the semi-supervised setting, we train the node embeddingmodel
on the extracted graph data from the both training datasets: Twit-
ter15 + Twitter16 and PHEME. We name the training variants
as follows: SSGE-mean, SSGE-conv, SSGE-lstm, SSGE-pooling,
and SSGE-linear for semi-supervised learningwithmean, convolu-
tional, LSTM, pooling, and linear aggregator function, respectively;
and SGE-mean, SGE-conv, SGE-lstm, SGE-pooling, and SGE-
linear for supervised learning with mean, convolutional, LSTM,
pooling, and linear aggregator functions, respectively.

We use PyTorch [36] to implement models and the Adam with
weight decay (AdamW) [37] to optimize parameters. We train our
model using the batch training method with a batch size of 8
samples, and the maximum size of a propagation graph is 50 nodes.
The size of an embedding vector of each word is 400 dimensions.
After concatenating with other features, the feature vector for each
node in a graph has 411 dimensions. The dimension of the weight

matrixW in the models using the mean, linear, and pooling aggre-
gator functions is 822 × 411, that in model using the convolutional
aggregator is 411 × 411, and the dimension of Wpool is 411 × 411.
In the LSTM aggregator, the dimension ofW is 511 × 411, and the
dimension of the hidden state in the LSTM layer is 100. In the LSTM
model, which learns graph embedding from a sequence of node
embeddings, its hidden state has a dimension of 50. This outputs a
50-dimensional graph embedding vector. Themodel is trained until
the accuracy stops increasing. To make an impartial comparison,
we conduct 5-fold cross-validation and use average values of the
evaluation metrics for comparison. For the Twitter15 + Twitter16
dataset, we use the accuracy, macro-F1, and F1 score on each cate-
gory as the evaluation metrics. For the PHEME dataset, we report
the accuracy, F1 score, precision, and recall values, because its label
is binary.

5.4. Results and Analysis

In this section, we describe and analyze the results of ourmodel and
other models.

5.4.1. Performance of rumor detection

Table 3 compares the performance of our model with other models
on the Twitter15 + Twitter16 and PHEME datasets. In general, the
proposed model performs better than other models via embedding
valuable information in the propagation process.

According to the results, the performance of the two first baseline
models (i.e., SVMC and DTR), which are based on handcrafted
features, is significantly low in both training sets. The RFC-AVG
method performs relatively well, with an accuracy of 0.665 for Twit-
ter15 + Twitter16 and 0.793 for PHEME. This indicates that, by
simply averaging the features of all tweets in the propagation pro-
cess, the performance of the model can be improved. The more
advanced model RFC-PR outperforms the RFC-AVG model on
both training datasets. This is because the RFC-PRmodel can com-
bine information of the source and response tweets by using Page
Rank as their importance weights. This performance enhancement
proves that the propagation features extracted by calculating the
PageRank values can be leveraged to differentiate rumors. Among
baseline models, the RvNN achieves the best performance, with an

D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065 1061

Table 3 Performance comparisons between models on Twitter15 + Twitter16 and PHEME datasets.
Twitter15 + Twitter16 PHEME

NR TR FR URModel Accuracy Macro-F1
F1 F1 F1 F1

Accuracy F1 Precision Recall

SVMC 0.422 0.374 0.614 0.390 0.368 0.123 0.639 0.243 0.563 0.155
DTR 0.412 0.398 0.588 0.433 0.367 0.204 0.553 0.415 0.407 0.424
RFC-AVG 0.665 0.639 0.734 0.726 0.629 0.465 0.793 0.698 0.770 0.637
RFC-PR 0.704 0.696 0.688 0.801 0.676 0.618 0.817 0.741 0.789 0.699
RvNN 0.744 0.734 0.815 0.791 0.718 0.612 0.825 0.765 0.772 0.760
SSGE-mean 0.752 0.743 0.800 0.796 0.730 0.648 0.838 0.781 0.792 0.773
SSGE-conv 0.727 0.721 0.783 0.774 0.688 0.638 0.834 0.779 0.775 0.784
SSGE-lstm 0.690 0.674 0.767 0.779 0.629 0.519 0.840 0.785 0.787 0.786
SSGE-pooling 0.738 0.727 0.803 0.784 0.702 0.617 0.826 0.770 0.763 0.780
SSGE-linear 0.759 0.751 0.805 0.805 0.733 0.662 0.834 0.776 0.785 0.770
SGE-mean 0.754 0.745 0.812 0.797 0.735 0.636 0.842 0.795 0.772 0.820
SGE-conv 0.751 0.742 0.791 0.811 0.704 0.662 0.840 0.782 0.796 0.771
SGE-lstm 0.704 0.696 0.767 0.756 0.674 0.588 0.842 0.794 0.778 0.811
SGE-pooling 0.729 0.715 0.813 0.783 0.704 0.559 0.824 0.761 0.772 0.755
SGE-linear 0.770 0.763 0.819 0.821 0.731 0.682 0.841 0.786 0.794 0.779
The bold numbers indicate the best results.

accuracy of 0.744 for the Twitter15 + Twitter16 dataset and 0.825
for the PHEMEdataset. The improvement comes fromusing aTree-
structured Recursive Neural Network to aggregate information of
tweets in the propagation process.

However, the proposed model outperforms all baseline models on
both datasets for most aggregator functions. For the Twitter15 +
Twitter16 dataset, the proposed model, which uses the mean, con-
volutional, and linear aggregator, achieves a better accuracy than
the best baseline model RvNN. Besides, the model using the linear
aggregator, which is trained in the supervised manner, achieves the
best results in terms of accuracy, macro-F1, and F1 score for three
classes (nonrumor, true rumors, unverified rumors). The super-
vised model using the mean aggregator gives the best F1 score in
predicting false rumors. For the PHEME dataset, the supervised
model applying the mean and LSTM aggregators has the best accu-
racy of 0.842. In addition, the supervised model, which uses the
mean aggregator function, also has the best performance in F1
score and recall metrics. The supervised model using the convolu-
tional aggregator has the best precision among models. Comparing
between the best version of the proposed model and baseline mod-
els, the proposed model reduces the error of detection by approxi-
mately 10.2% and 9.7% in the Twitter15 + Twitter16 and PHEME
datasets, respectively.

In our model, supervised learning generally outperforms
semi-supervised learning for all aggregator functions except for the
pooling one. This is because the node embedding model in semi-
supervised learning is optimized for a different objective function.
However, the semi-supervised models can prove their advantage
when the size of labeled training data is small (see Section 5.4.2).
Comparing the models that apply different aggregator functions in
the semi-supervised training method, the linear aggregator func-
tion outperforms other aggregator functions, whereas the LSTM
aggregator function has the lowest performance in the Twitter15 +
Twitter16 dataset. For the PHEME dataset, the best and the worst
semi-supervised models are the models using the LSTM and pool-
ing aggregator, respectively. In the supervised training method, the

model using linear aggregator function outperforms other aggre-
gator functions on the Twitter15 + Twitter16 dataset. Besides, the
model using the LSTM aggregator performs worst in this dataset.
However, the models using the mean and LSTM aggregator func-
tions achieve the best accuracy for PHEME. In contrast, the model
using pooling aggregator function has the lowest performance
among aggregator functions.

5.4.2. Comparison between semi-supervised and
supervised models

To compare semi-supervised and supervised learning methods
when the size of a training dataset is small, we train the model with
different sizes of training data. Figures 4 and 5 illustrate the accu-
racy of semi-supervised and supervised models with different sizes
of data in the Twitter15 + Twitter16 and PHEME datasets. In the
Twitter15 + Twitter16 dataset, we randomly pick 500, 1000, 1500,
and all items for training. In the PHEME dataset, we randomly
choose 1000, 3000, 5000, and all items for training.

For Twitter15 + Twitter16, the accuracy of semi-supervised
models is better than of supervised models using the mean,
convolutional, and linear aggregator functions when the size of
training data is small (500 items). When the number of training
samples increases, the accuracy of the supervised models increases
at a faster pace. The supervised models then outperform the semi-
supervised models when training on the full-size training dataset.
For the PHEME dataset, when training with 1000 items, the semi-
supervised models using mean, convolutional, pooling, and lin-
ear aggregator functions outperform the supervised models by a
large margin. However, when training with the full-size dataset,
the supervised models outperform semi-supervised ones. Hence,
these experimental results prove that the semi-supervised training
method can be applied when the size of the training dataset is small.
Moreover, we see that the models’ performance increase when the
number of training items increases in all models using different
aggregator functions in both datasets.

1062 D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065

Figure 4 Comparison between semi-supervised and supervised
models for the Twitter15 + Twitter16 dataset.

Figure 5 Comparison between semi-supervised and supervised
models for the PHEME dataset.

5.4.3. Visualization of graph embedding vectors

Our model learns an embedding vector for each propagation graph
to combine valuable features in the propagation process of a post
before classifying them. Figures 6 and 7 elucidate the distribution
of the learned graph embedding vectors in a two-dimensional space
in the Twitter15 + Twitter16 and PHEME, respectively. To visu-
alize the graph vectors, we apply the Principal component analy-
sis (PCA) [38] technique to reduce the dimensions of the graph
vectors. Here, the graph embedding vectors with different labels

Figure 6 Visualization of distribution of graph embedding
vectors for the Twitter15 + Twitter16 dataset.

Figure 7 Visualization of distribution of graph embedding
vectors for the PHEME dataset.

are distributed to separate clusters in both datasets: Twitter15 +
Twitter16 and PHEME. This proves that the learned graph embed-
ding vectors include meaningful features to differentiate rumors.
However, for Twitter15 + Twitter16, the cluster of graph vectors
for unverified rumors slightly overlaps with the clusters of vectors
for true and false rumors. This shows that the features of unveri-
fied rumors and true/false rumors are relatively similar. This also
explains why the F1 score of all models when predicting unverified
rumors is lower than for other types of rumors.

D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065 1063

Figure 8 Comparison of graph embedding methods for rumor
detection.

5.4.4. Comparison between embedding methods

To illustrate the efficiency of the proposed propagation graph
embedding method, we compare performance between our pro-
posed method and other node embedding algorithms (i.e., Deep-
Walk [11], node2vec [12], LINE [31], and SDNE [13]) and
graph embedding algorithms (i.e., Graph2vec [15]). Because other
node embedding algorithms cannot exploit node features to learn
node embeddings, we concatenate the learned node embedding
vectors and node feature vectors to output the final node embed-
ding vectors, and then we apply an LSTMmodel to learn the graph
embedding vector.

Figure 8 compares the performance of the embedding algorithms
for rumor detection for the Twitter15 + Twitter16 and PHEME
datasets. The Graph2vec model shows the lowest results in both
datasets because this model learns graph embedding only based
on structure; therefore, it fails to combine the node features with
the propagation structure. Other node embeddingmethods outper-
form the Graph2vec model but are still worse than our proposed
method. This is because these node embedding methods focus on
learning the node embeddings to preserve the network structure,
but they forget to learn the relations between nodes. Therefore, they
are not efficient at learning the node embedding, which embeds the
node features and the relationships between nodes. Our proposed
graph embedding method achieves the best performance in both
training datasets because it is efficient at learning the node features
with the propagation relationship between the nodes in the graph.

6. CONCLUSION AND FUTURE WORK

We have introduced a novel approach to embed whole propaga-
tion process of an inspecting post to resolve the rumor detection
problem in social networks. Our idea is based on using a graph
to model the propagation process: each post is a node, and the
relationship between two posts is an edge. Next, we apply differ-
ent aggregator functions to aggregate neighbor features with node
features to output a node embedding vector. Then, we apply a

sequence-to-sequence model to learn a representation vector from
the sequence of node embeddings. Finally, we classify the represen-
tation vector by using a fully connected neural network. Our exper-
iments on Twitter datasets demonstrate that the proposed model
outperforms the baseline models as well as recent state-of-the-art
models in terms of accuracy, macro-F1, and F1 score of nonrumors
and all rumor types.

The advantage of the proposed method is that it efficiently inte-
grates features of the source post and response posts in the propaga-
tion process. The combined features will provide valuable informa-
tion to train a classification algorithm for classifying source posts.
However, this method has a disadvantage because it requires data in
the whole propagation process of a post to detect rumors. In some
cases, if we cannot obtain response posts in the propagation process
of a post, the proposed model’s accuracy can be reduced. Generally,
in this study, we found that i) the propagation structure provides
useful features to distinguish between rumor types, ii) the graph
embedding method based on a GCN efficiently integrates between
content features, social features, temporal features, and propagation
structure, iii) the proposed linear aggregator function improves the
results of graph embedding by considering the importance of each
post in the propagation process. Overall, by efficiently combining
features of a post and its response posts, we can improve the accu-
racy of the rumor detection method.

In our future plan, we intend to build a completely unsupervised
model to leverage a large amount of unlabeled social media data.
We also plan to find a better method to incorporate the propa-
gation structure with the post features and explore more power-
ful features to boost the performance of the model. In addition,
the existing rumor datasets are relatively small in size, and are not
general enough, considering the diversity of information in rumor
posts in social networks. This can lead to the overfitting problem of
many rumor detectionmodels. Therefore, we intend to build amore
diverse dataset to contribute to the development of this research
field.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTION

Conceptualization, Jason J. Jung; methodology, Jason J. Jung and
Dang Thinh Vu; formal analysis, Dang Thinh Vu; writing-original
draft preparation, Dang Thinh Vu; writing-review and editing,
Jason J. Jung and Dang Thinh Vu; supervision, Jason J. Jung; fund-
ing acquisition, Jason J. Jung. All authors have read and agreed to
the published version of the manuscript.

ACKNOWLEDGMENTS

This research was supported by the Chung-Ang University Young Scientist
Scholarship (CAYSS) Program 2019, and the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-
2018K1A3A1A09078981, NRF-2020R1A2B5B01002207).

1064 D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065

REFERENCES

[1] G. Allport, L. Postman, The Psychology of Rumor, Henry Holt,
USA, 1947.

[2] C. Castillo, M. Mendoza, B. Poblete, Information credibility on
twitter, in Proceedings of the 20th International Conference on
World Wide Web (WWW 2011), ACM, Hyderabad, India, 2011,
pp. 675–684.

[3] S. Kwon, M. Cha, K. Jung, W. Chen, Y. Wang, Prominent features
of rumor propagation in online social media, in Proceedings of
the 13th International Conference on DataMining (ICDM 2013),
IEEE, Dallas, TX, USA, 2013, pp. 1103–1108.

[4] S.A. Alkhodair, S.H. Ding, B.C. Fung, J. Liu, Detecting break-
ing news rumors of emerging topics in social media, Inf. Process.
Manag. 57 (2019), 102018.

[5] T. Chen, X. Li, H. Yin, J. Zhang, Call attention to rumors: deep
attention based recurrent neural networks for early rumor detec-
tion, in Proceedings of the Pacific-Asia Conference onKnowledge
Discovery and Data Mining (PAKDD 2018), Melbourne, Aus-
tralia, 2018, pp. 40–52.

[6] J. Ma, W. Gao, K.-F. Wong, Rumor detection on twitter with tree-
structured recursive neural networks, in Proceedings of the 56th
AnnualMeeting of the Association for Computational Linguistics
(ACL 2018), Melbourne, Australia, 2018, pp. 1980–1989.

[7] M. Pal, S. Samanta, G. Ghorai, Modern Trends in Fuzzy Graph
Theory, Springer, Singapore, 2020.

[8] N. Shervashidze, P. Schweitzer, E.J.v. Leeuwen, K.Mehlhorn, K.M.
Borgwardt, Weisfeiler-lehman graph kernels, J. Mach. Learn. Res.
12 (2011), 2539–2561.

[9] G. Nikolentzos, P. Meladianos, M. Vazirgiannis, Matching node
embeddings for graph similarity, in Proceedings of the 31st AAAI
Conference onArtificial Intelligence (AAAI 2017), San Francisco,
CA, USA, 2017, pp. 2429–2435.

[10] N. de Lara, E. Pineau, A simple baseline algorithm for graph clas-
sification, arXiv preprint arXiv:1810.09155, 2018.

[11] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: online learning
of social representations, in Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD 2014), ACM, New York, NY, USA, 2014,
pp. 701–710.

[12] A. Grover, J. Leskovec, Node2vec: scalable feature learning for
networks, in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference onKnowledgeDiscovery&DataMining (KDD
2016), ACM, San Francisco, CA, USA, 2016, pp. 855–864.

[13] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in
Proceedings of the 22ndACMSIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD 2016), ACM, San
Francisco, CA, USA, 2016, pp. 1225–1234.

[14] A.Narayanan,M. Chandramohan, L. Chen, Y. Liu, S. Saminathan,
subgraph2vec: learning distributed representations of rooted sub-
graphs from large graphs, arXiv preprint arXiv:1606.08928, 2016.

[15] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y.
Liu, S. Jaiswal, Graph2vec: learning distributed representations of
graphs, arXiv preprint arXiv:1707.05005, 2017.

[16] T.N. Kipf, M. Welling, Semi-supervised classification with
graph convolutional networks, arXiv preprint arXiv:1609.02907,
2016.

[17] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural
Comput. 9 (1997), 1735–1780.

[18] W.Hamilton, Z. Ying, J. Leskovec, Inductive representation learn-
ing on large graphs, in Proceedings of the 31thAnnualConference
on Neural Information Processing Systems (NIPS 2017), Long
Beach, CA, USA, 2017, pp. 1024–1034.

[19] Z. Zhao, P. Resnick, Q. Mei, Enquiring minds: early detec-
tion of rumors in social media from enquiry posts, in Pro-
ceedings of the 24th International Conference on World Wide
Web (WWW 2015), International World Wide Web Conferences
Steering Committee, Florence, Italy, 2015, pp. 1395–1405.

[20] H.S. Al-Khalifa, R.M. Al-Eidan, An experimental system formea-
suring the credibility of news content in twitter, Int. J. Web Inf.
Syst. 7 (2011), 130–151.

[21] X. Liu, A. Nourbakhsh, Q. Li, R. Fang, S. Shah, Real-time
rumor debunking on twitter, in Proceedings of the 24th ACM
International on Conference on Information and Knowledge
Management (CIKM 2015), ACM, Melbourne, Australia, 2015,
pp.1867–1870.

[22] V. Qazvinian, E. Rosengren, D.R. Radev, Q. Mei, Rumor has it:
Identifying misinformation in microblogs, in Proceedings of the
Conference on Empirical Methods in Natural Language Process-
ing (EMNLP 2011), Association for Computational Linguistics,
Edinburgh, UK, 2011, pp. 1589–1599.

[23] F. Yang, Y. Liu, X. Yu, M. Yang, Automatic detection of rumor on
Sina Weibo, in Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics (MDS 2012), ACM, Beijing, China, 2012,
p. 13.

[24] S. Kwon, M. Cha, Modeling bursty temporal pattern of rumors,
in Proceedings of the 8th International Conference on Weblogs
and Social Media (ICWSM 2014), Ann Arbor, MI, USA,
2014.

[25] D.T. Vu, J.J. Jung, Detecting emerging rumors by embedding
propagation graphs, in Proceedings of the 15th Asia Information
Retrieval Societies Conference (AIRS 2019), Hong Kong, China,
2019, pp. 173–184.

[26] K. Wu, S. Yang, K.Q. Zhu, False rumors detection on Sina Weibo
by propagation structures, in Proceedings of the 31st IEEE Inter-
national Conference on Data Engineering (ICDE 2015), IEEE,
Seoul, South Korea, 2015, pp. 651–662.

[27] J. Ma, W. Gao, K.-F. Wong, Detect rumors in microblog posts
using propagation structure via kernel learning, in Proceedings
of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2017), Vancouver, Canada, 2017, pp.
708–717.

[28] J. Ma, W. Gao, P. Mitra, S. Kwon, B.J. Jansen, K.-F. Wong, M.
Cha, Detecting rumors from microblogs with recurrent neural
networks, in Proceedings of the 25th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2016), New York, NY, USA,
2016, pp. 3818–3824.

[29] H.L. Nguyen, D.T. Vu, J.J. Jung, Knowledge graph fusion for smart
systems: a survey, Inf. Fusion. 61 (2020), 56–70.

[30] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Dis-
tributed representations of words and phrases and their com-
positionality, in Proceedings of the 27th Annual Conference on
Neural Information Processing Systems (NIPS 2013), Lake Tahoe,
NV, USA, 2013, pp. 3111–3119.

[31] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: large-
scale information network embedding, in Proceedings of the 24th
International Conference on World Wide Web (WWW 2015),
Florence, Italy, 2015, pp. 1067–1077.

https://doi.org/10.1145/1963405.1963500
https://doi.org/10.1145/1963405.1963500
https://doi.org/10.1145/1963405.1963500
https://doi.org/10.1145/1963405.1963500
https://doi.org/10.1109/ICDM.2013.61
https://doi.org/10.1109/ICDM.2013.61
https://doi.org/10.1109/ICDM.2013.61
https://doi.org/10.1109/ICDM.2013.61
https://doi.org/10.1016/j.ipm.2019.02.016
https://doi.org/10.1016/j.ipm.2019.02.016
https://doi.org/10.1016/j.ipm.2019.02.016
https://doi.org/10.1007/978-3-030-04503-6_4
https://doi.org/10.1007/978-3-030-04503-6_4
https://doi.org/10.1007/978-3-030-04503-6_4
https://doi.org/10.1007/978-3-030-04503-6_4
https://doi.org/10.1007/978-3-030-04503-6_4
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.1007/978-981-15-8803-7
https://doi.org/10.1007/978-981-15-8803-7
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2736277.2741637
https://doi.org/10.1145/2736277.2741637
https://doi.org/10.1145/2736277.2741637
https://doi.org/10.1145/2736277.2741637
https://doi.org/10.1145/2736277.2741637
https://doi.org/10.1108/17440081111141772
https://doi.org/10.1108/17440081111141772
https://doi.org/10.1108/17440081111141772
https://doi.org/10.1145/2806416.2806651
https://doi.org/10.1145/2806416.2806651
https://doi.org/10.1145/2806416.2806651
https://doi.org/10.1145/2806416.2806651
https://doi.org/10.1145/2806416.2806651
https://doi.org/10.1145/2350190.2350203
https://doi.org/10.1145/2350190.2350203
https://doi.org/10.1145/2350190.2350203
https://doi.org/10.1145/2350190.2350203
https://doi.org/10.1007/978-3-030-42835-8_15
https://doi.org/10.1007/978-3-030-42835-8_15
https://doi.org/10.1007/978-3-030-42835-8_15
https://doi.org/10.1007/978-3-030-42835-8_15
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.1109/ICDE.2015.7113322
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.1016/j.inffus.2020.03.014
https://doi.org/10.1016/j.inffus.2020.03.014
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093

D. T. Vu and J. J. Jung. / International Journal of Computational Intelligence Systems 14(1) 1053–1065 1065

[32] J. Berkhout, Google’s pagerank algorithm for ranking nodes in
general networks, in Proceedings of the 13th International Work-
shop on Discrete Event Systems (WODES 2016), IEEE, Xi’an,
China, 2016, pp. 153–158.

[33] A. Zubiaga, M. Liakata, R. Procter, Learning reporting dynamics
during breaking news for rumour detection in social media, arXiv
preprint arXiv:1610.07363, 2016.

[34] C. Baziotis, N. Pelekis, C. Doulkeridis, Datastories at semeval-
2017 task 4: deep lstm with attention for message-level and topic-
based sentiment analysis, in Proceedings of the 11st International
Workshop on Semantic Evaluation (SemEval-2017), San Diego,
CA, USA, 2017, pp. 747–754.

[35] S. Bird, NLTK: the natural language toolkit, in Proceedings of
the 21st International Conference on Computational Linguistics
(ACL 2016), Sydney, Australia, 2006.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: an
imperative style, high-performance deep learning library, in Pro-
ceedings of the 33rd Annual Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019,
pp. 8024–8035.

[37] I. Loshchilov, F. Hutter, Decoupled weight decay regularization,
in Proceedings of the International Conference on Learning Rep-
resentations (ICLR 2019), New Orleans, LA, USA, 2019.

[38] H. Abdi, L.J.Williams, Principal component analysis,Wiley Inter-
discip. Rev. Comput. Stat. 2 (2010), 433–459.

https://doi.org/10.1109/WODES.2016.7497841
https://doi.org/10.1109/WODES.2016.7497841
https://doi.org/10.1109/WODES.2016.7497841
https://doi.org/10.1109/WODES.2016.7497841
https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.18653/v1/S17-2126
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101

	Rumor Detection by Propagation Embedding Based on Graph Convolutional Network
	1. INTRODUCTION
	2. RELATED WORK
	2.1. Rumor Detection
	2.2. Graph Embedding

	3. PROBLEM DESCRIPTION
	3.1. Definition of Rumors
	3.2. Rumor Detection Problem

	4. RUMOR DETECTION VIA PROPAGATION GRAPH EMBEDDING
	4.1. Embedding Propagation Graph
	4.2. Aggregator Functions
	4.3. Classification of the Propagation Graph

	5. EXPERIMENTS AND RESULTS
	5.1. Datasets
	5.2. Feature Extraction and Text Preprocessing
	5.3. Experimental Settings
	5.4. Results and Analysis
	5.4.1. Performance of rumor detection
	5.4.2. Comparison between semi-supervised and supervised models
	5.4.3. Visualization of graph embedding vectors
	5.4.4. Comparison between embedding methods

	6. CONCLUSION AND FUTURE WORK

