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ABSTRACT Noise or artifacts in an image, such as shadow artifacts, deteriorate the performance of state-
of-the-art models for the segmentation of an image. In this study, a novel saliency-based region detection
and image segmentation (SRIS) model is proposed to overcome the problem of image segmentation in the
existence of noise and intensity inhomogeneity. Herein, a novel adaptive level-set evolution protocol based
on the internal and external functions is designed to eliminate the initialization sensitivity, thereby making
the proposed SRIS model robust to contour initialization. In the level-set energy function, an adaptive weight
function is formulated to adaptively alter the intensities of the internal and external energy functions based
on image information. In addition, the sign of energy function is modulated depending on the internal and
external regions to eliminate the effects of noise in an image. Finally, the performance of the proposed
SRIS model is illustrated on complex real and synthetic images and compared with that of the previously
reported state-of-the-art models. Moreover, statistical analysis has been performed on coronavirus disease
(COVID-19) computed tomography images and THUS10000 real image datasets to confirm the superior
performance of the SRIS model from the viewpoint of both segmentation accuracy and time efficiency.
Results suggest that SRIS is a promising approach for early screening of COVID-19.

INDEX TERMS Active contours, image segmentation, level-set.

I. INTRODUCTION
Numerous image segmentation methods have been proposed
for various applications and image types [1]. These methods
are broadly categorized as thresholding-based, deformable-
based, and deep learning-based [2]. Threshold-based segmen-
tation is the simplest segmentation method, but it requires an
optimal threshold value for accurate segmentation. However,
the selection of an optimal threshold is very challenging,
degrading the performance with improper selection, which
further degrades in presence of inhomogeneity and noise.
Whereas deep learning models can provide higher accuracy
than other methods, they require larger datasets and more
computing power [3]. Therefore, the deformable-based active
contour model (ACM) has attracted attention over the last two
decades.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

In the past few years, ACMhas achieved themost advanced
performance in image processing. From image segmenta-
tion and object positioning to object detection and saliency
detection, ACM has been extensively used in image analy-
sis, medical imaging, and computer vision tasks [4]. ACM
can effectively handle the topological changes of the con-
tour evolution. However, inhomogeneity or pixel variation
is a significant problem in image segmentation with ACMs.
These problems are caused by defects that occur during
image acquisition or by external obstructions. Shadow arti-
facts that appear on the image degrade the performance of
the segmentation methods that assume a constant intensity
over the image range. Therefore, inhomogeneity may cause
erroneous results and confound the radiologists and experts
during diagnosis [5]. Primarily, ACM can be branched as
edge-based [6]–[10] and region-based models [11]–[28].

The gradient information of the image is utilized in
the edge-based models for contour evolution around the
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object boundaries. Geodesic ACM (GAC) [7], one of the
most prominent edge-based models, integrates edge detectors
and gradient information into an evolving curve to construct
the edge stopping function. An advantage of this model
is that it does not require region-based constraints. There-
fore, it can feasibly achieve accurate segmentation results
for images with heterogeneous or homogeneous intensities.
However, the gradient information is susceptible to noise and
largely depends on the contour’s initial position. Therefore,
the edge-based models cannot converge to weak edges with
noise and low contrast, thereby making it difficult to provide
consistent results.

In contrast, region-based models can achieve better results
than edge-based models owing to the utilization of the
region descriptors for directing the evolving contour move-
ment. The region-based model uses global image informa-
tion of the internal and external regions for constructing
an evolving contour. Therefore, compared with edge-based
models, region-based model can accurately obtain segmen-
tation results in the presence of blurred edges. Among the
region-based models, the most popular model is Chan–Vese
(CV) [12] based on the Mumford–Shah (MS) model [11],
which considers the image regions to be homogeneous or
constant. In addition, some region-based models override the
constraints of the global active contours and consider only
the local image information for inhomogeneous image seg-
mentation [13], [15]. However, under extreme noise and spe-
cific inhomogeneity conditions, local ACMs are not always
suitable to achieve accurate image segmentation. Further-
more, to overcome the problem of inhomogeneity, various
bias correction segmentation strategies have been proposed
in [14], [18]. In [16], a unique region-based ACM was pro-
posed by integrating a global signed pressure force func-
tion, which was characterized using intensity means given
in [12].

Recently, several hybrid (local and global) ACMs have
been proposed for image segmentation [19]–[25], [27], [28].
For various applications, these models alternatively consoli-
date region and edge information. For instance, a two-stage
hybrid technique was proposed in [22], which coordinates
region and edge information in separate phases. In the first
phase, the global region and edge information are used to
create rough initial segmentation, whereas in the next stage,
local pixel and edge information is used to produce the final
segmentation results. In [21], [23], a weighted p-Laplace
integral that integrated the length regularization term to
scale-back the noise effect, while contour minimization was
proposed. In addition, [21] has considered a bias field to
overcome the inhomogeneities. However, these models are
weak in capturing strong intensity inhomogeneity. In [27],
hybrid and local fuzzy region-edge based active contour
model (HLFRA) is proposed, in which the region energy
is strictly convex, and the evolution curve of edge energy
stops on the object boundary. In the case of visible object
edges, HLFRA performs well in segmenting images with

intensity inhomogeneity and noise but fails if the edges are
varying.

Saliency has been used in various disciplines, including
neurobiology, social neuroscience, image processing, and
computer vision. It has been widely implemented in tandem
with other approaches for the application of image segmen-
tation [29]–[32]. In image segmentation, saliency refers to
the perceptual quality that makes an object, pixel, or per-
son stand out from their neighbors and, thus, attracts our
attention. Generally, in the context of visual processing, this
technique refers to the unique characteristics (such as pix-
els or intensity inhomogeneity) of an image. For instance,
a color image is converted to a black-and-white image for
analyzing the existence of the most intense colors. There-
fore, the saliency information can be leveraged for image
segmentation. In [29], a saliency-based segmentation method
for the color image was proposed, which constructs a facial
saliency map and uses it for face segmentation and tracking.
In [31], the saliency-SVM (support vector machine) model
was proposed, which considered the saliency information
and formulated the image segmentation as a binary classifi-
cation problem. Further, using affinity propagation cluster-
ing algorithm, [32] combines regional saliency and uses the
random walks method for segmentation. Moreover, visual
saliency with ACMs are proposed in [33], [34] to enhance the
segmentation results. However, these saliency-based models
cannot accurately segment images with weaker edges due to
inhomogeneity.

As of August 25, 2020, coronavirus disease 2019, or
COVID-19, has spread globally and has caused 23,844,912
confirmed cases and 817,906 mortality cases [35]. The com-
puted tomography (CT) is a non-invasive imaging technique
that can detect the characteristics such as ground-glass opac-
ity or bilateral patchy shadows and serves as a practical
approach for early screening of COVID-19 [36]. In cur-
rent medical practice, identification and classification of
COVID-19 infection need manual execution, which is a
laborious process and requires experienced and well-trained
radiologists. To the best of the authors’ knowledge, there
has been no attempt to develop an ACM that can segment
COVID-19 infection. Segmenting COVID-19 infections from
CT images is still a challenging task due to the high variation
in size, texture, and position of infections [37]. Therefore, this
study aims to develop an ACM that provides efficient and
robust segmentation not only on real and synthetic images
but also onmedical images with intensity inhomogeneity, low
contrast, and noise.

The past ACMs are weak to segment real and COVID-19
CT images with severe intensity inhomogeneity and noise,
and are sensitive to initialization. Thus, a novel saliency-
based region detection and image segmentation (SRIS)model
is proposed. Here, a new energy function is designed by
incorporating the region saliency and variance of color infor-
mation in the level-set along with the adaptive weight and
sign functions to overcome the issues due to severe intensity
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inhomogeneity and noise. In addition, a new internal and
external energy-based level-set evolution protocol is designed
for robust and fast contour evolution.

The major contributions of this study are summarized as
follows.

• A novel SRIS model is proposed to overcome the
severe inhomogeneity and noise in an image. Herein,
a new energy function is derived that can efficiently
extract the object with complex background regardless
of severe inhomogeneity and noise by incorporating
the saliency and variance of color information in the
level-set.

• A new level-set evolution protocol is designed based
on the internal and external energy functions. The aim
is to ensure that the proposed SRIS model is robust to
initialization and converges significantly faster than the
other segmentation models.

• Adaptive weight and sign functions are formulated in the
energy function to accomplish inhomogeneous image
segmentation and robustness to noise, respectively.

• After the implementation of the proposed SRIS model,
the contour evolutions over numerous real and syn-
thetic images are performed to confirm the efficiency
and superiority of the proposed SRIS model than the
state-of-the-art models.

The remainder of the paper is structured as follows. Related
work is described in Section II. In Section III, the proposed
SRIS model is derived using the information on saliency
and variance of color intensity. Precisely, the mathematical
implementation of the proposed energy function for contour
evolution is developed. In Section IV, the simulation results
show the performance of the proposed SRIS model on syn-
thetic and real images and the results are compared with those
of the state-of-the-art models. Quantitative and qualitative
analyses for the state-of-the-art and proposed models are per-
formed in Section V using COVID-CT and THUS10000 real
image datasets. Finally, the conclusions are drawn in
Section VI.

II. RELATED WORK
This section presents state-of-the-art ACMs: CV [12],
variational level-set for bias correction and segmentation
(VLSBCS) [14], local statistical ACM (LSACM) [18], local
and global fitted image (LGFI) [19], and fuzzy region-based
active contours driven by weighting global and local fit-
ting energy (FRAGL) [24]. Subsequently, in Sections IV
and V, these models are compared with the proposed SRIS
model.

A. CV MODEL
In [12], the CVmodel was proposed, which is an ACM based
on the MS model [11] for the global image segmentation. Let
I : � → <2 be an input image, � be an image domain,
8 : � → <

2 be a level-set function, and Contour C :
{x ∈ � |φ (x) = 0 } be the zero level-set. The energy function

of the CV model is defined as

ECV (C, c1, c2)

= λ1

∫
�

|I (x)− c1|2Hε (φ (x)) dx

+ λ2

∫
�

|I (x)− c2|2 [1− Hε (φ (x))] dx

+µ

∫
�

|∇Hε (φ (x))|2dx + ν
∫
�

Hε (φ (x)) dx, (1)

where {µ, v, λ1, λ2} ≥ 0 are constant positive parameters
and {c1, c2} denote mean image intensity {inside, outside}
contour C . Herein, µ and v control the length term and area
term for contour C , respectively. In addition, the smooth
approximated Heaviside function Hε (φ), where ε balances
the smoothness is given as

Hε (φ) =
1
2

[
1+

(
2
π

)
arctan

(
φ

ε

)]
(2)

As a global ACM, the CV model’s contour evolution is
analogous to the global characteristics of an image region.
Consequently, it weakens with images that have local or
inhomogeneous-intensity regions.

B. VLSBCS MODEL
In [14], a VLSBCS model has been proposed for bias cor-
rection and segmentation for images with intensity inho-
mogeneities. Herein, the proposed energy function ensures
that the evaluated bias field is smooth, without any addi-
tional computation to maintain the smoothness of the
bias field. The VLSBCS is based on a model that com-
monly describes images with inhomogeneous intensity
as

I (x) = b (x) J (x)+ n (x) , (3)

where I (x), b (x), J (x), and n (x) denote the input image
with intensity inhomogeneity, bias field responsible for inten-
sity inhomogeneity, original image, and noise, respectively.
In (3), it is assumed that b (x) varies slowly throughout the
image domain, and J (x) ≈ ci for x ∈ �i, with x ∈
(�i)

N
i=1, is approximately a constant ci within each object

in the image, where N is a number of disjoint regions or
clusters.

This model used K-means clustering for local image inten-
sities classification and formulated an energy function

EVLSBCS
1
=

∫  N∑
i=1

∫
�i

κρ (x − y) |I (y)− b (x) ci|2dy

 dx.

(4)

In the case of N = 2, image domain {�i}
N
i=1 can be parti-

tioned into two regions, {�i}
2
i=1, separated by zero level-sets
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such that �1 ∼= φ > 0 and �2 ∼= φ < 0. Then,
(4) becomes

EVLSBCS (φ, b, c)

=

∫ ( 2∑
i=1

∫
κρ (x−y) |I (y)−b (x) ci|2Mi (φ) dy

)
dx, (5)

where M1 = Hε (φ) and M2 = (1− Hε (φ)). This model
is robust on intensity inhomogeneity regions only when
edges are visible (even if the edges are blurred). In addition,
VLSBCS is dependent on initial contour’s position and fails
in severe intensity inhomogeneity.

C. LSACM MODEL
In [18], the LSACM model has been proposed. It corrects
and segments the bias field in an intensity inhomogeneous
image. Herein, an image with intensity inhomogeneity was
represented as Gaussian distributions with different means
and variances. In addition, they are projected with the mul-
tiplication of a bias field with the real image in a Gaussian
window. An energy function of LSACM was given as

ELSACM =
N∑
i=1

∫
�

κρ (x−y)Mi (φ)

×

(
log (σi)+

(I (y)−b (x) ci)2

2σ 2
i

)
dx, (6)

where σi denotes the variances:

σi=

√∫ ∫
κρ (x−y)Mi (φ (y)) (I (y)− b (x) ci)2dydx∫ ∫

κρ (x − y)Mi (φ (y)) dydx
. (7)

This model is very effective for image segmentation with
inhomogeneity but fails to find the precise image boundary.

D. LGFI MODEL
In [19], an ACM has been proposed, which targeted intensity
inhomogeneity on LGFI. The model’s energy function was
given as

ELGFI =
∫
�

(I (x)− IbLFI (x)) (I (x)− IGFI (x)) dx, (8)

where IbLFI and IGFI are the bias local fitted image and the
global fitted image:

IbLFI (x) = b (x) (c1M1 + c2M2) , (9)

IGFI (x) = f1M1 + f2M2, (10)

where f1, f2 and c1, c2 are global and local mean intensities,
respectively. In this model, a bias field is considered only for
the local contour evolution and not for the global one. Thus,
it can only solve the problem of local intensity inhomogeneity
segmentation.

E. FRAGL MODEL
In [24], FRAGL ACM was proposed, which integrated the
fuzzy sets to achieve a convex global energy function. The
FRAGLmodel is different from other ACMs, as it uses 0.5 as
the level-set for the contour evolution. This pseudo level-set
function, u(x), was given as

u (x) = 0.5, I (x) ∈ C,
u (x) > 0.5, I (x) ∈ In (C),
u (x) < 0.5, I (x) ∈ Out (C),

(11)

where Out (C) and In (C) denote the region outside and
inside contour C . The energy function of FRAGL was

EFRAGL (u) = l1L (u− 0.5)+ l2P (u− 0.5) , (12)

where L, P, and l1, l2 denote a regularization term, penalty
term, and positive parameters, respectively. L helps to evolve
the length of the contour to ensure that the pseudo level-set
function remains smooth:

L (u = 0.5) =
∫
�

δ (u− 0.5) |∇ (u− 0.5)| dx. (13)

Moreover, P keeps the consistency within the signed distance
function and pseudo level-set function:

P (u = 0.5) =
1
2

∫
�

(1− |∇ (u− 0.5)|)2dx, (14)

where δ = ε
/
π
(
φ2 + ε2

)
and ∇ denote Dirac delta function

and Hamilton operator, respectively.

III. PROPOSED SRIS MODEL
In this section, a new SRIS model is proposed to overcome
the problem with severe intensity inhomogeneity and noise
in an image. Herein, a new energy function is derived that
can efficiently extract the object with complex background
regardless of severe inhomogeneity and noise. In addition,
a new level-set evolution protocol is designed based on inter-
nal and external energy functions such that the proposed SRIS
model is robust to initialization and converges significantly
faster than other segmentation models.

Let I : � → <2 be an input image and φ be the level-set
function with the initial contour C : {x ∈ �|φ = 0} in an
image domain �. In addition, let �0 : {�|φ = 0} be the zero
level-set, and �in : {�|φ < 0} and �ex : {�|φ > 0} be
a domain inside and outside �0, respectively. The proposed
energy function ESRIS is defined as

ESRIS = Eex (φ)+ Ein (φ) . (15)

Herein, the external energy function Eex is determined by
region, gradient, and saliency, while the internal energy func-
tion Ein is used as a constraint for the evolution of level-set.

In an image with intensity inhomogeneity and color varia-
tion, the pixels are clustered and the pixels with similar inten-
sity and saliency values are assigned to both �in and �ex.
Thus, the proposed external energy function Eex incorporates
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the saliency information as well as the variance of color
intensity for both �in and �ex of the input image, I .

Eex (φ)

= α

∫
�

hYin(x)Hε (φ)dx +
∫
�

hYex(x) (1− Hε (φ))dx


+ λ

∫
�

hZin(x)Hε (φ) dx+
∫
�

hZex(x) (1− Hε (φ)) dx

,
(16)

where

Yin(x) = [S(x)− s1]2, Yex(x) = [S(x)− s2]2, (17)

Zin (x) = |I (x)− c1|2 + |I (x)− f |2,

Zex (x) = |I (x)− c2|2, (18)

ε ≥ 0, Hε (φ) is ε−Heaviside function given in (2), and
{α, λ} > 0 are fixed scaling constants for saliency infor-
mation (first term) and variance of color intensity (second
term), respectively. In addition, both saliency information
and variance of color intensity energy functions in (16) are
embedded with an edge indicator, h, described as

h =
1

1+
∣∣∇κρ ∗ I ∣∣2 , (19)

where∇ and κρ are the gradient operator and Gaussian kernel
with standard deviation ρ. In addition, ∗ is the convolution
operator that reduces the influence of intense noise.

In (17), S is the saliency information, which aims at identi-
fying the most distinct objects or regions such as edge, color,
and/or texture in an image. It is formulated as [38]:

S(x) =
∣∣Ī (x)− Iκ (x)∣∣ , (20)

where Ī is the mean pixel value of I and Iκ = κρ ∗ I is the
image blurred by the Gaussian filter. Moreover, s1 and s2 are
the saliency means for �in and �ex, respectively:

s1 =

∫
�

S(x) · Hε (φ) dx∫
�

Hε (φ) dx
, s2 =

∫
�

S(x) · (1− Hε (φ)) dx∫
�

(1− Hε (φ)) dx
.

(21)

In (18), c1 and c2 are the scalar approximation of the mean
intensities for �in and �ex, respectively, and f is the scalar
approximation of the median for �in.

c1 = ω ·mean (I (x) ∈ �in) ,

c2 = ω ·mean (I (x) ∈ �ex) ,

f = ω ·median (I (x) ∈ �in) , (22)

where ω is an adaptive weighted function:

ω =

∫
�

Hε (φ) ‖Zin(x)‖2dx

+

∫
�

(1− Hε (φ)) ‖Zex(x)‖2dx, (23)

where ‖·‖ is the L2 norm. Compared to the mean values,
the median is closer to the pixel value of the object boundary,
which can effectively suppress the noise and retain more
detailed features such as thin lines.

However, only with the external energy function, the seg-
mentation may be inaccurate and irregular, and some sin-
gularities or undesired false contour may appear. Therefore,
the internal energy function is given as

Ein (φ) =
µ` (φ) η (I )
max (|η (I )|)

+ νP (φ) , (24)

where µ, ν > 0 are constants. Terms ` (φ) and P (φ) are
the weighted length term of the contour dealing with object’s
boundary based on edge information

` (φ) =

∫
�

hδε (φ) |∇φ| dx, (25)

and area term of the contour to calculate the region-of-interest
(ROI)

P (φ) =
∫
�

1
2
(1− |∇φ|)2dx, (26)

respectively. Here, δε = ε
/
π
(
φ2 + ε2

)
is a Dirac delta

function. Ein is to regularize φ with the use of P(φ) such
that the contour remain close to the ROI and prevent the
appearance of singularity for smooth contour evolution. Term
η (I ) is to modulate the signs of the length term using the
statistics defined in (22):

η(I ) = sgn (2c1 + 2f − 4c2) · sgn (ϒ) · ϒ2, (27)

where

ϒ = I (x)−
c21 + f

2
− 2c22

2c1 + 2f − 4c2
, (28)

and sgn (·) is the signum function with the values {−1, 1} for
�in and �ex domains of I .

Hence, the proposed energy function ESRIS in (15) can be
rewritten as

ESRIS (φ)

= α

∫
�

hYin(x)Hε (φ) dx +
∫
�

hYex(x) (1− Hε (φ)) dx


+ λ

∫
�

hZin(x)Hε (φ) dx+
∫
�

hZex(x) (1− Hε (φ)) dx


+

µη (I )
max (|η (I )|)

∫
�

hδε (φ) |∇φ| dx

+
ν

2

∫
�

(1− |∇φ|)2dx. (29)
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Further, to minimize (29) with respect to φ, the derivative of
(29) can be written by the calculus of variations

∂ESRIS
∂φ

= α
[
h(S (x)− s1)2 − h(S(x)− s2)2

]
+ λ

[
h
(
|I (x)−c1|2+|I (x)− f |2

)
−h|I (x)−c2|2

]
−
µη (I ) |∇φ|
max (|η (I )|)

δε (φ) div
(
h
∇φ

|∇φ|

)
−ν1φ, (30)

where div(·) and 1 denote divergence and Laplacian oper-
ators, respectively. Using the steepest gradient descent [39]
such that ∂ESRIS/∂φ = 0 (Euler–Lagrange equation),
the evolution of φ in (15) with time t is

∂φ

∂t
= −

∂ESRIS
∂t

= −αh [Yin(x)− Yex(x)]− λh [Zin(x)− Zex(x)]

+
µη (I ) |∇φ|
max (|η (I )|)

δε (φ) div
(
h
∇φ

|∇φ|

)
+ ν1φ. (31)

In the proposed SRIS model, the region information (such
as saliency and variance of color intensity) is a global feature
determined by I . Therefore, the initialization of φ can be very
flexible. The proposed SRIS’s level-set function is initialized
as

φt=0 = p, x ∈ �, (32)

where p ≥ 0 is a constant initial level-set parameter. The evo-
lution of φ should be stopped using threshold γ as follows:∣∣∣∣∂φ∂t 1t

∣∣∣∣ = |φt+1 − φt | < γ, (33)

because φ will not converge anymore. Herein,1t is the initial
parameter time step. Finally, the proposed SRIS model is
summarized in Algorithm 1.

Algorithm 1 Proposed SRIS Model
Input: I , λ, α, µ, ν, and γ
Output: φ
1: Initialization: φ0 by (32) and ω = 1
2: for 1 to maximum iteration do
3: Compute edge detector h by (19)
4: Compute saliency information S(x) by (20)
5: Compute saliency means s1 and s2 by (21) and inten-

sity means c1, c2, and median f by (22)
6: Update ω by (23)
7: Compute η(I ) by (27)
8: Perform level-set evolution by (31)
9: if (33) is satisfied then

10: Jump to step 3
11: else
12: Stop evolution
13: end if
14: end for

IV. SIMULATIONS AND RESULTS
The proposed SRIS model was implemented in MATLAB
running on a 3.60 GHz Intel Core i7 system with 8 GB
RAM. Multiple synthetic and real images were tested with
the proposed SRIS model and compared with the state-
of-the-art models such as CV, VLSBCS, LSACM, LGFI,
FRAGL (Section II), and HLFRA. The parameters of the
proposed SRIS model were fixed throughout the experiments
and are given in Table 1, while the parameters of the past
models were selected from their respective work.

TABLE 1. Parameters of the proposed SRIS model.

Fig. 1 demonstrates the comparative segmentation results
of the SRIS model with and without saliency information
incorporated in the proposed level-set. Herein, two synthetic
and two real images (Fig. 1(a)) are used as an input image.
The saliency information obtained using the proposed model
is shown in Fig. 1(b). The final contour and segmentation
results obtained using the proposed SRIS model (i.e., with
saliency information) are shown in Fig. 1(c) and Fig. 1(d).
Further, to obtain the segmentation result without saliency
information, the scale factor of the saliency term α is ini-
tialized to zero, and the result is shown in Fig. 1(e). The
figure shows that by incorporating the saliency information,
the proposed model provides more reliable and accurate seg-
mentation results.

Fig. 2 compares the segmentation results of a synthetic
image with varying intensity obtained with all the methods
summarized in Section II and the proposed SRIS model.
Here, a homogeneous image (Fig. 2a: Row 1) was used,
in which the distribution of intensity has altered to a certain
extent (Fig. 2a: Rows 2 and 3), where even manual seg-
mentation becomes difficult to segment the inhomogeneous
image well. In Fig. 2, the number of input images with initial
contours are shown in Fig. 2(a) followed by the segmentation
results obtained by CV, VLSBCS, LGFI, FRAGL, HLFRA,
and proposed SRISmodels, respectively. As can be seen from
the results in Fig. 2, the proposed SRIS model and LGFI
model provided the best segmentation results regardless of
intensity inhomogeneity. Segmentation results using LSACM
showed that it could not find the precise object boundary.
In addition, the CV, VLSBCS, and HLFRA models provided
close segmentation of the homogeneous (Row 1) image;
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FIGURE 1. Example of segmentation with and without saliency information. (a) Original image, (b) saliency
information, (c) final contour with saliency, (d) result with saliency, and (e) result without saliency.

FIGURE 2. Comparison of segmentation results of a synthetic image with varying intensity.
(a) Original image with initial Contour, (b) CV, (c) VLSBCS, (d) LSACM, (e) LGFI, (f) FRAGL, (g) HLFRA,
and (h) proposed SRIS.

however, the segmentation performance deteriorated as the
intensity inhomogeneity was increased. The segmentation
results with the FRAGL model indicated that even for the
homogeneous image, it could not find the precise object
boundaries.

In general, most state-of-the-art ACMs need to initialize
the level-set function and are considerably sensitive to the
initial contour position. However, the proposed SRISmodel is
robust to the initial contour position, and it provided identical
results regardless of the contour position. Fig. 3 shows the
robustness toward the initial contour position on two severe
intensity inhomogeneous synthetic images. The first and third
rows in Fig. 3 show initial contours with different positions
to confirm the independence and stability of the proposed
SRIS model. The second and fourth rows in Fig. 3 show the
final segmentation results relative to different initial contour
positions. Even if the edges of the object are blurred and/or
invisible, the proposed model is robust to the initial contour
position and achieved accurate segmentation regardless of
severe intensity inhomogeneity. Therefore, in this article,

FIGURE 3. Effect of initial contour position on proposed SRIS model.
Rows 1 and 3: Original images with initial contours and Rows 2 and 4:
Segmentation results.

a constant initial level-set function, p = 1, is used for all the
images.
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FIGURE 4. Segmentation results and comparison of synthetic images. (a) Original
images, (b) CV, (c) VLSBCS, (d) LSACM, (e) LGFI, (f) FRAGL, (g) HLFRA, and (h) Proposed
SRIS.

TABLE 2. Number of iterations and processing time for Fig. 4.

Fig. 4 illustrates the performance of the proposed model
compared to the state-of-the-art models with homogeneous
and intensity inhomogeneous synthetic images. The orig-
inal images are shown in Fig. 4(a), and the subsequent
columns show the segmentation results obtained by the CV,
VLSBCS, LSACM, LGFI, FRAGL, HLFRA, and proposed

SRIS models, respectively. Fig. 4(b) shows the segmentation
results of the CV model: images with homogeneous back-
grounds were segmented accurately, but if the image con-
tains inhomogeneities in the background and/or foreground,
the model cannot accurately capture the ROI. The segmen-
tation results obtained by the VLSBCS, LSACM, FRAGL,
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FIGURE 5. Segmentation and comparison of real images. (a) Original images, (b) CV, (c) VLSBCS, (d) LSACM, (e) LGFI,
(f) FRAGL, (g) HLFRA, and (h) Proposed SRIS.
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TABLE 3. Number of iterations and processing time for Fig. 5.

FIGURE 6. Segmentation results and comparison of the image with varying Gaussian noise level: (0.01, 0.02, 0.03, 0.04). (a) Original image with
initial contour, (b) CV, (c) VLSBCS, (d) LSACM, (e) LGFI, (f) FRAGL, (g) HLFRA, and (h) Proposed SRIS.

FIGURE 7. Segmentation results and comparison of the image with varying salt-and-pepper noise level: (0.01, 0.02, 0.03, 0.04). (a) Original
image with initial contour, (b) CV, (c) VLSBCS, (d) LSACM, (e) LGFI, (f) FRAGL, (g) HLFRA, and (h) Proposed SRIS.

and HLFRA models (Fig. 4 (c), (d), (f), and (g)) achieved
accurate results on images with homogeneous and inhomo-
geneous backgrounds but failed to segment the ROI of the
last two images with the inhomogeneous foregrounds. The
LGFI model cannot obtain the desirable segmentation results,
as shown in Fig. 4(e). According to Fig. 4, the segmentation

results of the proposed SRIS model (Fig. 4(h)) provided
the best results on both types of images, and it accurately
extracted the ROI from the foreground.

To evaluate the computational efficiency of the proposed
SRIS and state-of-the-art models, the number of iterations
required for the contour convergence and final convergence
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FIGURE 8. Segmentation results and comparison of cell images. (a) Original images, (b) CV, (c) VLSBCS, (d) LSACM, (e) LGFI,
(f) FRAGL, (g) HLFRA, and (h) Proposed SRIS.

time (i.e., processing time) of all the synthetic images in Fig. 4
are shown in Table 2. The proposed SRIS model can segment
the synthetic image with a significantly fewer number of
iterations and less processing time compared with the state-
of-the-art models. The computational efficiency of FRAGL
and HLFRA are close to the proposed SRIS model, but they
cannot obtain accurate segmentation of all synthetic images.

Fig. 5 shows the segmentation results on eight publicly
available real images with challenging foregrounds and back-
grounds. The original images are shown in Fig. 5(a), and the
results are shown in Fig. 5 (b) CV, (c) VLSBCS, (d) LSACM,
(e) LGFI, (f) FRAGL, (g) HLFRA, and (h) Proposed SRIS.
According to the results, all the state-of-the-art models can-
not segment real images with complex backgrounds, except
for the seventh image, which is composed of homogenous
foreground and background. In addition, the FRAGL model
provided near-accurate segmentation of first, second, third,
and seventh images (Fig. 5(f)) but failed to segment other
images with severe intensity inhomogeneity in the foreground
and background. The proposed SRIS model has provided
accurate segmentation and precisely extracted the ROI even
from highly complex background images.

By analogy with Table 2, Table 3 shows the performance
of the proposed SRIS model in terms of the number of

iterations and processing time required for all the real images
in Fig. 5 compared with the previous models. The proposed
SRIS model consumed relatively fewer iterations and less
processing time than previous models.

In Fig. 6 and Fig. 7, two images (one with Gaussian noise
and other with salt-and-pepper noise) are used to show the
robustness of the proposed SRIS model toward the noise.
From Row 1 to Row 4 in Fig. 6 and Fig. 7, noise levels
were altered to 0.01, 0.02, 0.03, and 0.04, respectively. The
CV, VLSBCS, LSACM, and LGFI models cannot eliminate
the noise in the images and generated false contours around
the ROI boundaries (Fig. 6,(b)-(e) and Fig. 7,(b)-(e)). More-
over, the FRAGL and HLFRA models achieved excellent
performance, making its segmentation accuracy closer to the
proposed SRIS model (Fig. 6 (f)-(g) and Fig. 7 (f)-(g)). In the
proposed SRIS model, saliency information is used to extract
the ROI from the background, and most of the noise is elim-
inated using the regularization term. The ROI is accurately
segmented regardless of the image complexity and noise type;
thus, SRIS is robust to noise (Fig. 6(h) and Fig. 7(h)).
Moreover, the state-of-the-art and proposed SRIS models

have been evaluated on erythrocyte (first), leukocyte (sec-
ond), and paramecium images (third), all in Fig. 8(a). The
results are shown in Fig. 8,(b)-(h). The CV (Fig. 8(b)) and

VOLUME 8, 2020 190497



A. Joshi et al.: SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases

FIGURE 9. SRIS segmentation results of COVID-19 patients’ lung images. (a) Original image,
(b) saliency information, (c) final contour, and (d) segmentation results.

LGFI (Fig. 8(e)) models cannot segment the first image
because the intensities of certain cells are the same as the
background, and also the edges of the cells are weak, result-
ing in leakage. For the other two images, most cells were
detected, but the edges were not accurately positioned. Sim-
ilar results were obtained for VLSBCS, LSACM, FRAGL,
HLFRA models, in which some isolated cells were seg-
mented in adhesion, as shown in Fig. 8 (c), (d), (f), and (g),
respectively. The proposed model showed less cell adhesion
and provided precise segmentation, as shown in Fig. 8(h).

V. QUALITATIVE AND QUANTITATIVE ANALYSIS
In this section, the qualitative and quantitative analyses
of the proposed SRIS model have been illustrated using
COVID-CT [40] and THUS10000 [41] datasets compris-
ing 349 CT images of 216 COVID-19 patients and 10000

real images, respectively. In addition, the segmentation
results achieved by the proposed SRIS model are compared
with the state-of-the-art models mentioned in Section II.

To test the reliability of the proposed SRIS model on med-
ical images, CT images from COVID-CT dataset [40] were
tested for the segmentation of COVID-19 infected lungs.
As an example, Fig. 9 shows the segmentation of seven
CT images. In Fig. 9(a), it can be seen that most lesions
are located around, with a slight preponderance of dorsal
lung regions. Due to the special structure and visual char-
acteristics, it is difficult to distinguish the infected region
(shown by arrows in the first and fourth images) boundaries
from the chest wall. Thus, the past segmentation models
failed to segment the COVID-19 infected area accurately.
However, with the incorporation of saliency information in
the proposed model, accurate segmentation of the infected
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FIGURE 10. Segmentation results and comparison of COVID-19 patients’ seven lung images from COVID-CT dataset [40]. (a) CV,
(b) VLSBCS, (c) LSACM, (d) LGFI, (e) FRAGL, (f) HLFRA, and (g) Proposed SRIS.

areas was obtained. Hence, SRIS is a promising approach
for the early screening of COVID-19. According to the lung
saliency information in Fig. 9(b), the proposed SRIS model
can implicitly find the edges of the lungs for the segmen-
tation, as shown in Fig. 9(c). Therefore, the proposed SRIS
model perfectly extracted the lungs from the contrast and
the challenging backgrounds, and the results looked closer
to manual segmentation. The comparative results with the
state-of-the-art models are shown in Fig. 10. It shows that
compared with all the state-of-the-art models, the proposed
SRIS model provided the best segmentation results for most
images.

TABLE 4. Average metric analysis of COVID-CT dataset [40].

To analyze the proposed SRIS model quantitatively, the
following metrics were calculated: Accuracy, Dice coeffi-
cient (DSC), Sensitivity, and Specificity. The results are
shown in Table 4. Accuracy metric is the correlation between
the segmented and actual regions, DSC metric measures
the overlap between the segmented and actual regions,

Sensitivity metric characterizes the detected ROI by the
segmentation model, and Specificity metric characterizes the
region ignored by the segmentation model. These metrics are
formulated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (34)

DSC =
2TP

2TP + FP + FN
, (35)

Sensitivity =
TP

TP + FN
, (36)

Specificity =
TN

TN + FP
. (37)

If the values are close to 1, the results obtained are considered
acceptable. Here, TP (true positive) and TN (true negative)
represent the correctly segmented and unsegmented regions.
FP (false positive) and FN (false negative) represent detected
and undetected false-regions, respectively. Table 4 shows
that the proposed SRIS model has achieved better values of
Accuracy, DCS, Sensitivity, and Specificity compared with
the past models.

In addition, THUS10000 dataset [41], which included
10000 real images, was used to test the accuracy and pro-
cessing time of the proposed SRIS model in the context of
qualitative and quantitative analysis. The segmentation of the
SRIS model on 13 images from the dataset, along with the
results of past models, are shown in Fig. 11. As illustrated
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FIGURE 11. Segmentation results and comparison of 13 real images from THUS10000 dataset [41]. (a) Original images, (b) GT, (c) CV, (d) VLSBCS,
(e) LSACM, (f) LGFI, (g) FRAGL, (h) HLFRA, and (i) Proposed SRIS.

190500 VOLUME 8, 2020



A. Joshi et al.: SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases

in Fig. 11, in most cases, the proposed SRIS model yielded
the best segmentation results.

FIGURE 12. Average accuracy comparison for THUS10000 dataset.

FIGURE 13. Average processing time for THUS10000 dataset.

Fig. 12 and Fig. 13 show the average accuracy and average
processing time required for the segmentation of 10000 real
images from THUS10000 dataset [41] using the proposed
SRIS model and the state-of-the-art models, respectively.
Here, the segmentation accuracy is obtained by comparing
the segmented region RS obtained by the segmentation mod-
els and the image’s given ground-truth RG as

Accuracy =
|RS ∩ RG|
|RS ∪ RG|

%. (38)

The analyses in Fig. 12 and Fig. 13 show that the proposed
SRIS model yielded the highest accuracy with significantly
lower processing time.

VI. CONCLUSION
In this study, a novel SRIS model was proposed to over-
come the problem of image segmentation in the presence of
intensity inhomogeneity and noise. A new adaptive level-set
evolution protocol based on internal and external functions
was designed. The proposed approach eliminated the need for
contour initialization and made the proposed model robust
to initialization. In the level-set energy function, an adap-
tive weight function was formulated to adaptively alter the

intensities of internal and external energy functions accord-
ing to the image information. Further, sign of the energy
function was modulated depending on the internal and exter-
nal regions to eliminate the effect of noise in an image.
The performance of the SRIS model has been evaluated
on complex real and synthetic images with various inten-
sity variations. In addition, the SRIS model was compared
with various state of-the-art ACMs in terms of the number
of iterations and processing time. The simulation results
showed that the proposed SRIS model yielded the best
visual segmentation on synthetic and real images. The pro-
cessing time has significantly reduced compared with the
state-of-the-art models. Besides, Accuracy, DCS, Sensitivity,
and Specificity metrics were measured for qualitative and
quantitative analyses over COVID-CT and THUS10000 real
image datasets. According to the results, the proposed
SRIS model outperformed all the state-of-the-art models
in terms of comparison metrics as well as processing
time.
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