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Abstract: In this study, the frequency characteristics of series DC arcs are analyzed according to the
types of frequency fluctuations caused by inverters in photovoltaic (PV) systems. These frequency
fluctuation types used in analysis include centralized frequency fluctuations by three-phase inverter,
spread frequency fluctuations by three-phase inverter, and centralized frequency fluctuations by
single-phase inverter. To collect arc current data, the frequency fluctuations are generated by
inverters in the arc-generating circuit, designed by referring to UL1699B, and the arcs are generated
by separating the arc rods of the arc generator. The frequency analysis of the arc current data,
collected using an oscilloscope, is conducted using MATLAB. From the results of the frequency
characteristics analysis, it is confirmed that the frequencies in the range from 5 to 40 kHz increase after
arc generation regardless of the type of frequency fluctuation. In addition, the smaller the current,
the greater the increase in frequencies between 5 and 40 kHz after arc generation. Further, in case of
arc currents with centralized frequency fluctuations, for larger switching frequencies, the 5 to 40 kHz
components increase to a greater extent after arcing.
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1. Introduction

Arcing is a phenomenon in which the gas insulation between electrodes is continuously destroyed
and discharged by the potential difference generated between the electrodes. The DC arcs generated
by DC currents are less likely to be extinguished naturally than ac arcs. This is because there is
no zero-crossing point, as in the ac current. Therefore, the risk of accidents, such as fire damage
caused by DC arcs, is greater [1,2]. Among the various DC arcs, series DC arcs tend to change the
magnitude of the arc current a little in the event of an arc accident, thereby making it difficult to
prevent arc faults with conventional circuit breakers, which detect large currents [3,4]. Therefore, a fire
accident caused by a series DC arc can be aggravated into a very large fire accident. The series DC arc
occurs when the connectors between the conductors are loosely connected or when the conductors
are damaged. Series DC arc accidents occur frequently, especially in photovoltaic (PV) systems;
the reason for this is attributed to the nature of the PV system, where there is a high possibility of
damage to the conductor wire because it is installed in an outdoor environment. Moreover, because PV
systems are generally installed as modules, there are many points in the system where arc accidents
can occur [5]. Various studies have been conducted to analyze the characteristics of series DC
arcs [6–8].Arcs were studied via an experimental method that mathematically modeled the arc voltage,
i.e., the voltage between the arcing conductors, and arc current, i.e., the current flowing through the
arcing conductors [6]. Moreover, the frequency characteristics were analyzed for arcs occurring in PV
systems with single-phase and three-phase inverters as loads [7]. Meanwhile, a new arc model equation
was proposed through arc analysis according to the input voltage, arc current, and distance between the
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arc rods [8]. Moreover, techniques for detecting series DC arcs using various characteristics observed
after arcing have been proposed [8–21]. Despite these studies on arcs, a frequency analysis of the arc
current based on the type of frequency fluctuation generated by the inverter has not been conducted.

In this study, the frequency characteristics of series DC arcs are analyzed according to the types of
frequency fluctuations caused by inverters in PV systems. The frequency fluctuation types used in the
analysis are centralized frequency fluctuations by three-phase inverters, spread frequency fluctuations
by three-phase inverters, and centralized frequency fluctuations by single-phase inverters. To collect
arc current data, frequency fluctuation was generated by the inverter in the arc-generating circuit that
was designed with reference to UL1699B (Underwriters Laboratories, Northbrook, IL, USA). Further,
the arc is generated by separating the arc rods of the arc generator. The currents flowing through the
arc rods before and after arcing are saved as data using an oscilloscope, and the frequency analysis of
the arc currents for the collected data are conducted using MATLAB (The MathWorks, Natick, MA,
USA). From the analysis of the frequency characteristics, it was confirmed that the frequencies between
5 and 40 kHz increased after arc generation regardless of the type of frequency fluctuation. Specifically,
increase in the 5 to 20 kHz components was evident. In the case of centralized frequency fluctuations
by three-phase inverters, the larger the switching frequency, the greater was the increase in the 5 to
40 kHz band after arcing. In addition, when the switching frequency was 5 and 20 kHz, there was
little difference in the increase in the 5 to 40 kHz band after arcing based on the current magnitude.
However, when the switching frequency was 10 and 15 kHz, the smaller the current, the larger the 5 to
40 kHz band increase after arcing. In case of spread frequency fluctuations by three-phase inverters,
there are no clear trends for the average switching frequencies. However, the smaller the current,
the larger the increase in frequency in the 5 to 40 kHz band after arcing. In the case of centralized
frequency fluctuations by single-phase inverters, as the switching frequency increased, the 5 to 40 kHz
components increased significantly after arc generation. In the case where the frequency fluctuation
characteristics were centralized, it was confirmed that the switching frequency and its multiples
decreased after arcing. Moreover, when the frequency fluctuation was spread, there was no significant
change in the average switching frequency and its multiples. These results can be utilized in the
development of the series DC arc detection technique that can occur in the system with various
frequency fluctuations.

2. Analysis of Frequency Characteristics of Series DC Arcs According to Type of Frequency
Fluctuation Caused by Inverters

This section presents analysis of the frequency characteristics of the arc current according to the
type of frequency fluctuation caused by the inverter of the PV system. These arc currents according to
the frequency fluctuation of the inverter are defined as shown in Table 1.

Table 1. Arc currents according to the frequency fluctuation.

Arc Current Inverter Frequency Fluctuation

Iarc1 Three-phase inverter Centralized frequency fluctuation
Iarc2 Three-phase inverter Spread frequency fluctuation
Iarc3 Single-phase inverter Centralized frequency fluctuation

To gather arc current data, the arc generator and experimental setup were configured as shown in
Figure 1 by referring to UL1699B, which contains regulations for verifications of an arc fault circuit
interrupter (AFCI) which is a device for detecting and blocking serial DC arcs in PV systems [22].



Appl. Sci. 2020, 10, 8042 3 of 14
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 14 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 1. (a) Arc generation experiment setup; (b) decoupling network; (c) module and line 

impedances; (d) arc generator; (e) arc generation. 

Figure 1a shows the arc generation experiment setup used to obtain the series DC arcs and collect 

arc current data. In Figure 1a, 𝑉𝑑𝑐 represents the voltage of the DC supply, and𝐼𝑎𝑟𝑐 represents the 

arc current passing through the arc rods. The arc generation experiment setup is composed of a DC 

supply, decoupling network, module and line impedances, arc generator, and inverter load. Figure 

1b–d depicts the decoupling network, module and line impedances, and arc generator used in the arc 

experiment, respectively. Frequency analysis of series DC arcs in PV systems focuses on high-

frequency components rather than DC components [7]. Therefore, in this study, the DC supply was 

used as the voltage source, not the PV source. The DC supply used in the experiment is KEYSIGHT 

C1

C2

C3

L1

L2

L3

R1

R2

Decoupling Network

DC 

supply
Vdc

L4

L5

R3

R4

Module and Line 
Impedance

Arc 

generator

1-phase 
or 

3-phase
Inverter

C4

C5

C6

Iarc

R1, R2 C1
C2

C3

L2

L3

L1
R3, R4

C4

C2

C3

L4

L5

Stationary 

Electrode

Moving 

Electrode

Electric 

ruler

Step motor

Figure 1. (a) Arc generation experiment setup; (b) decoupling network; (c) module and line impedances;
(d) arc generator; (e) arc generation.

Figure 1a shows the arc generation experiment setup used to obtain the series DC arcs and
collect arc current data. In Figure 1a, Vdc represents the voltage of the DC supply, and Iarc represents
the arc current passing through the arc rods. The arc generation experiment setup is composed of
a DC supply, decoupling network, module and line impedances, arc generator, and inverter load.
Figure 1b–d depicts the decoupling network, module and line impedances, and arc generator used
in the arc experiment, respectively. Frequency analysis of series DC arcs in PV systems focuses on
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high-frequency components rather than DC components [7]. Therefore, in this study, the DC supply
was used as the voltage source, not the PV source. The DC supply used in the experiment is KEYSIGHT
N8741A (maximum voltage 300 V, maximum current 11 A, maximum power 3.3 Kw, KEYSIGHT
TECHNOLOGIES, Santa Rosa, CA, USA). To generate arcs safely and evenly, the step motor shown in
Figure 1d is used to separate the rods. Further, the separated distance of the rods is checked with an
electric ruler installed parallel to the rod, as in Figure 1d. Figure 1e shows a picture of the arc generated
by the generator, and Table 2 summarizes the resistances, capacitances, and inductances used in the
decoupling network, as well as module and line impedances.

Table 2. Parameters used in the decoupling network as well as module and line impedances.

Parameters Value

R1, R2, R3, R4 0.5 Ω
L1 12 mH

L2, L3 60 µH
C1 20 µF

C2, C3 22 nF
L4, L5 50 µH

C4 10 nF
C5, C6 1 nF

The single-phase and three-phase inverters used in the experiments are composed of an
insulated-gate bipolar transistor (IGBT) module (SKM50GB123D, SEMIKRON, Nuremberg, Germany).
A resistance and an inductance of 10 Ω and 10 mH are used as the loads for three-phase and
single-phase inverter; Table 3 shows the arc generation test conditions for each arc current. To use the
concept of switching frequency for the arc current with spread frequency fluctuations, the average
switching frequency was calculated by measuring the number of times that the switch was operated
during a certain period. In Table 3, the current is represented by the arc current magnitude before
arc generation. For reference, the arc current before arcing is the inverter input current, and after
arc generation, the inverter input current becomes the arc current.

Table 3. Arc generation test conditions according to arc currents.

Iarc1 Iarc2 Iarc3

Current 3 A, 5 A, 8 A 5 A, 8 A 5 A
Vdc 300 V 300 V 300 V

Switching frequency
(or average switching

frequency)

5 kHz, 10 kHz, 15 kHz,
20 kHz

5 kHz, 10 kHz, 15 kHz,
20 kHz

5 kHz, 10 kHz, 15 kHz,
20 kHz

Figure 2 shows the flowchart for the data accumulation and frequency analysis in this work.
To collect arc current data, first, a DC voltage is applied to drive an inverter load, as in Figure 1a.
Then, the arc rods are separated by the step motor connected to the rods. Then, the arc current data
are stored at 250 kHz using the oscilloscope (Tektronix MSO3054, OR, USA) so that the data before
and after arcing are included. The current probe used for the current measurement is Tektronix
TCP312 (Tektronix, OR, USA) that can measure frequency components from 0 to 100 MHz. Using the
saved data, frequency analysis was performed in MATLAB, and the fast Fourier transform (FFT) was
used for the analysis.
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2.1. Frequency Analysis of Arc Current with Centralized Frequency Fluctuationsby Three-Phase Inverter

For frequency analysis before and after arcing, arc currents are generated under the conditions
noted in Table 3. Figure 3 shows an example of frequency analysis for arc current under the various
conditions in Table 3.
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Figure 3. Current waveform and FFT results of Iarc1 when the magnitude of current is 5 A and switching
frequency is 20 kHz: (a) current waveform, (b) FFT result before arcing, and (c) FFT result after arcing.

Figure 3 shows the current waveform and FFT results of Iarc1 when the magnitude of current is
5 A and switching frequency is 20 kHz. As can be seen from the first waveform in Figure 3, when the
arc rods are separated, an arc is generated, and the harmonic components are added in Iarc1. Further,
it can be seen that the magnitude of the DC component of the arc current changes a little. Owing to
this property, conventional circuit breakers meant for detecting large currents cannot detect such series
DC arcs.

The FFT was applied to determine the frequency changes before and after arcing. The current
data before arcing are that of the green part marked as À; the current data after arcing are that of the
red part marked as Á; the result of FFT using the data in À is shown in Figure 3b. From Figure 3b, it is
seen that the switching frequency and its multiples are identified from the FFT of Iarc1 before arcing.
In particular, the doubled switching frequency is distinctly observed.

In Figure 3c, it is seen that the multiples of the switching frequency are clearly visible, similar to that
before arcing. However, their magnitudes are smaller than those before arcing. Further, the frequencies
between 5 and 40 kHz increase after arcing. Particularly, the components in the 5 to 20 kHz band
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increase significantly. To investigate this frequency change tendency based on the current magnitude
and switching frequency, the FFT results after and before arcing are subtracted.

Figure 4 shows the FFT differences after and before arc generation based on the current magnitude
and switching frequency in Iarc1. To reduce deviations in the FFT results, the average of 100
consecutive FFT results is used. In other words, Figure 4 shows the differences between the averages
of 100 consecutive FFT results after and before arcing.
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Figure 4. FFT differences after and before arc generation based on the current magnitude and switching
frequency in Iarc1: (a) 5 kHz, (b) 10 kHz, (c) 15 kHz, and (d) 20 kHz.

It can be seen from Figure 4 that frequencies between 5 and 40 kHz increase after arcing under
all conditions. However, the magnitudes of the frequencies in the 5 to 40 kHz band that increase
after arcing are different. From Figure 4, it is seen that for 5 and 20 kHz switching frequencies,
the magnitudes of the 5 to 40 kHz components that increase after arcing are almost the same, regardless
of the current magnitude. In the case where the magnitude of the switching frequency is 10 and
15 kHz, it is confirmed that for smaller currents, the 5 to 40 kHz components increase to a greater
extent after arcing. Furthermore, the higher the switching frequency, the larger the increase in the
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magnitudes of the 5 to 40 kHz components after arcing. The magnitudes of the switching frequency
and its multiples are negative values, which indicate that these multiples of the switching frequency
decrease after arcing.

To understand the increase in frequencies in the 5 to 40 kHz range based on each examined current
condition, the results of Figure 4 in the range of 5 to 40 kHz are integrated. The large integral results
indicate that the 5 to 40 kHz band increases significantly after arcing. Figure 5 shows the trend of
increment in the 5 to 40 kHz band depending on the switching frequency. In addition, it is seen that
the integral result for 5 to 40 kHz frequencies for a switching frequency of 20 kHz is three times greater
than that for the switching frequency of 5 kHz.
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2.2. Frequency Analysis of Arc Current with Spread Frequency Fluctuationsby Three-Phase Inverter

Figure 6 represents the current waveform and FFT results of Iarc2 when the magnitude of current
is 5 A and average switching frequency is 20 kHz. As in the case of Figure 3, the arc commences at
the same time that the arc rods are separated. In addition, it is seen that the magnitude of the DC
component of the arc current changes a little, as in the case of the arc current with centralized frequency
fluctuations by the three-phase inverter.
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Figure 6. Current waveform and FFT results of Iarc2 when the magnitude of current is 5 A and average
switching frequency is 20 kHz: (a) current waveform, (b) FFT result before arcing, and (c) FFT result
after arcing.

The FFT results for the regionsÂ and Ãin Iarc2 are shown in Figure 6b,c, respectively. From the
FFT results of Â, it is seen that the frequency distribution is not concentrated but is spread between
5 and 20 kHz because of the spread frequency fluctuationsin Iarc2. From the FFT results of Ã, which is
the result after arcing, it is confirmed that the components in the 5 to 40 kHz band increase after arcing.

Figure 7 shows the FFT differences after and before arc generation based on the current magnitude
and average switching frequency in Iarc2. As in the case of Figure 4, Figure 7 is obtained from the
differences between the averages of 100 consecutive FFT results after and before arcing. In addition,
when the frequency fluctuation was spread, arcing did not occur at the low current of 3 A, so only the
results of 5 and 8 A are shown in Figure 7.
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Figure 7. FFT differences after and before arc generation based on the current magnitude and average
switching frequency in Iarc2: (a) 5 kHz, (b) 10 kHz, (c) 15 kHz, and (d) 20 kHz.

From Figure 7, it is seen that the frequency components that increase after arcing are between
5 and 40 kHz. Particularly, the components in the 5 to 20 kHz band increased significantly. Unlike the
case of the arc current with centralized frequency fluctuations by three-phase inverter, there was no
clear trend inthe average switching frequency. However, smaller currents caused larger increases in
the frequency magnitudes in the 5 to 40 kHz band after arcing. Moreover, in the case of Iarc2, since the
frequency fluctuation was spread, unlike the case of Iarc1 in Figure 4, there was no distinct reduction in
the average switching frequency component and its multiples.

Figure 8 shows the integral results from 5 to 40 kHz for Figure 7. Compared to Figure 5, which
is the case of the centralized frequency fluctuations by three-phase inverter, no distinct increase is
observed in the 5to 40 kHz band for the average switching frequency. However, smaller currents cause
larger integral results in the range of 5 to 40 kHz. The difference between the 5 to 40 kHz integral result
for 5 and 8 A is greatest when the average switching frequency is 5 kHz, and the difference between
the 5 to 40 kHz integral result for 5 and 8 A decreases as the average switching frequency increases.
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Figure 8. Integral results from 5 kHz to 40 kHz for Figure 7.

2.3. Frequency Analysis of Arc Current with Centralized Frequency Fluctuationsby Single-Phase Inverter

Figure 9 shows the current waveforms and FFT results of Iarc3 when the magnitude of current is
5 A and switching frequency is 20 kHz. Unlike Iarc1 and Iarc2, it can be seen from Figure 9a that the
120 Hz component, which is double the fundamental frequency of the inverter load current, exists
before the arcing. Further, unlike the three-phase inverter load, it can be seen that arcing occurs after
a time delay once the arc rods are separated. In addition, it is seen that the magnitude of the DC
component of the arc current changes a little, as in the case of Iarc1 and Iarc2.
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Figure 9. Current waveform and FFT results of Iarc3 when the magnitude of current is 5 A and switching
frequency is 20 kHz: (a) current waveform, (b) FFT result before arcing, and (c) FFT result after arcing.
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The FFT result of Ä, which is the instant before arcing, can be seen in Figure 9b. Since the frequency
fluctuation has a centralized characteristic, the doubled component of the switching frequency is
clearly seen. From the FFT of 6Oin Figure 9c, which is the moment after arcing, multiples of the
switching frequency are visible. However, their magnitudes are smaller than those before arcing.
Moreover, it is seen that the 5 to 40 kHz components increase compared to before arcing, especially the
components in the 5 to 20 kHz band, which increase significantly.

Figure 10 shows the FFT differences after and before arc generation according to the current
magnitude and switching frequency in Iarc3. Figure 10 is obtained using the averages of 10 consecutive
FFT results instead of 100 because the arc did not last long in the single-phase inverter load. In addition,
when the current was 3 or 8 A, arcing was not adequate, so only the results of 5 A are shown.
Figure 10 shows that even in arc currents with centralized frequency fluctuations emitted by the
single-phase inverter, the frequency component in the 5 to 40 kHz band increased after arcing.
In particular, the components in the 5 to 20 kHz band clearly increased. Further, the higher the
switching frequency, the larger the increase in magnitudes of the 5 to 40 kHz components after arcing.
Similar to the arc current with centralized frequency fluctuations by three-phase inverters, as in Figure 4,
it can be seen from Figure 10 that the switching frequency and its multiples decrease after arcing.
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Through frequency analysis of Iarc1, Iarc2, and Iarc3, it was confirmed that the 5 to 40 kHz components
commonly increased after arcing. In particular, increase in the 5 to 20 kHz components was noticeable,
and in the arc currents with centralized frequency fluctuations by three-phase and single-phase
inverters, the larger the switching frequency, the greater the increase in the 5 to 40 kHz component
after arcing. In the arc currents for all cases of frequency fluctuations, the smaller the current, the larger
the magnitude of the increase in frequency in the 5 to 40 kHz band after arcing. Table 4 summarizes
the analysis results of the arc current frequencies for various frequency fluctuations.

Table 4. Results of analysis of arc current frequencies for various frequency fluctuations.

Iarc1 Iarc2 Iarc3

Frequency band
increased after arcing 5 to 40 kHz 5 to 40 kHz 5 to 40 kHz

Frequency change
according to the

switching frequency

Large increase in 5 to
40 kHz component when

switching frequency
is large

No tendency

Large increase in 5 to
40 kHz component when

switching frequency
is large

Frequency change
according to the

magnitude of current

Large increase in 5 to
40 kHz component when

magnitude of current
is small

Large increase in 5 to
40 kHz component when

magnitude of current
is small

-

3. Conclusions

In this study, the frequency characteristics of series DC arcs are analyzed based on the types of
frequency fluctuations caused by inverters in PV systems. The frequency fluctuation types used in the
analysis are centralized frequency fluctuations by three-phase inverters, spread frequency fluctuations
by three-phase inverters, and centralized frequency fluctuations by single-phase inverters. From the
frequency analysis, it was confirmed that the frequencies in 5 to 40 kHz increased after arcing in all
three types of frequency fluctuation conditions. Specifically, increase in the 5 to 20 kHz components
was evident. In the case of centralized frequency fluctuations by three-phase inverters, the larger the
switching frequency, the greater the increase in the 5 to 40 kHz band after arcing. In addition, when the
switching frequency was 5 and 20 kHz, there was little difference in the increase in the 5 to 40 kHz
band after arcing based on the current magnitude. On the other hand, when the switching frequency
was 10 and 15 kHz, the smaller the current, the larger the 5 to 40 kHz band increase after arcing.
In the case of spread frequency fluctuations by three-phase inverters, there was no clear trend for the
average switching frequency. However, the smaller the current, the larger the increase in frequency in
the 5 to 40 kHz band after arcing. In the case of centralized frequency fluctuations by single-phase
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inverters, as the switching frequency increased, the 5 to 40 kHz components increased significantly
after arc generation. In the case where the frequency fluctuation characteristics were centralized, it was
confirmed that the switching frequency and its multiples decreased after arcing. On the other hand,
when the frequency fluctuation was spread, there was no significant change in the average switching
frequency and its multiples.
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