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Abstract: Matrix-assisted laser desorption/ionization (MALDI) has been considered as one of the
most powerful analytical tools for mass spectrometry (MS) analysis of large molecular weight
compounds such as proteins, nucleic acids, and synthetic polymers thanks to its high sensitivity,
high resolution, and compatibility with high-throughput analysis. Despite these advantages, MALDI
cannot be applied to MS analysis of small molecular weight compounds (<500 Da) because of the
matrix interference in low mass region. Therefore, numerous efforts have been devoted to solving
this issue by using metal, semiconductor, and carbon nanomaterials for MALDI time-of-flight MS
(MALDI-TOF-MS) analysis instead of organic matrices. Among those nanomaterials, graphene oxide
(GO) is of particular interest considering its unique and highly tunable chemical structures composed
of the segregated sp2 carbon domains surrounded by sp3 carbon matrix. Chemical modification
of GO can precisely tune its physicochemical properties, and it can be readily incorporated with
other functional nanomaterials. In this review, the advances of GO derivatives and their nanohybrid
structures as alternatives to organic matrices are summarized to demonstrate their potential and
practical aspect for MALDI-TOF-MS analysis of small molecules.

Keywords: graphene oxide; nanocomposite; surface functionalization; laser desorption/ionization;
mass spectrometry

1. Introduction

Matrix-assisted laser desorption/ionization (MALDI) technique, often combined with
time-of-flight mass spectrometry (MALDI-TOF-MS), has been considered as a powerful
and essential technique to analyze the intact molecular weight of high-molecular-weight
compounds such as proteins [1], nucleic acids [2] and synthetic polymers [3] without their
undesired fragmentation. This soft-ionization strategy has significantly contributed to
the advances in chemical and biological researches based on its simple analysis process,
miniscule sample consumption, high resolution, salt-tolerance, sensitivity and compatibility
with high-throughput analysis [4,5]. The detailed mechanism of the MALDI process is
still not fully understood, but it has been generally described by serial 3-step processes
including laser energy transfer from matrix to analyte in their solid-state mixture upon
laser irradiation, ionization by photochemical reaction and isolation of ionized analyte
in excess matrix for mass spectrometric analysis [4]. Although MALDI-TOF-MS has
been successfully applied to biological and polymer research fields for the molecular
weight analysis of high-molecular-weight compounds, it cannot be directly harnessed to
analyze low-molecular-weight compounds owing to the severe background interference
in the low-mass region from detector saturation and/or photochemical side reactions by
organic matrices such as 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic
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acid (CHCA), sinapic acid, and caffeic acid [6]. For addressing this issue, many efforts
have been devoted to the development of an efficient alternative to organic matrices that
can be used in matrix-free laser desorption/ionization time-of-flight mass spectrometry
(LDI-TOF-MS) [7–9]. Metal [10], semiconductor [11–14], and carbon nanomaterials [15–18]
have been extensively investigated as potential mediators for the LDI-TOF-MS analysis of
important low-molecular-weight compounds, including amino acids, saccharides, lipids,
organic pollutants, and small peptides. The laser desorption/ionization (LDI) efficiency
of those nanomaterials significantly depends on their chemical composition, size and
morphology [12,19]. Therefore, development of an efficient nanomaterials-based LDI-
TOF-MS platform for the analysis of those small molecules has been of central interest
and has attracted much research attention from the material scientists [8]. Based on those
efforts, important requirements, such as high surface area, colloidal stability, laser absorption
capacity, electrical and thermal conductivity and photo-thermal conversion property, have
been revealed to fabricate an efficient platform for LDI-TOF-MS analysis [20,21]. In addition to
those colloidal nanomaterials, various nanoporous substrates including porous silicon [22]
and titania [23] have also been investigated as a chip-based analytical platform for LDI-
TOF-MS analysis of small molecules. Especially, porous silicon substrates are recognized as
one of the representative chip-based LDI-TOF-MS platforms because of their excellent LDI
efficiency derived from the high surface area, amenable surface and uniform mass signal
distribution [24,25]. The efficiency of those nanoporous substrates in LDI-TOF-MS analysis
has also been enhanced by surface modification [26,27] and subsequent nanohybridization
with other functional nanomaterials [28,29].

Among those various materials, carbon nanomaterials such as graphene [30–33], meso-
porous carbon [34], graphene oxide (GO) [35], carbon nanotube (CNT) [36], and carbon
dot (CD) [16,37] have been considered as excellent candidates because they meet most of
the requirements as an efficient mediator for LDI-TOF-MS analysis of small molecules. In
addition to the general requirements, the carbon materials can provide cost-effectiveness,
functionalizable surface and strong affinity to various biomolecules [38] and environmental
pollutants [39–41]. Especially, GO is a distinct carbon nanomaterial owing to its unique
chemical structures composed of small segregated sp2 carbon domain surrounded by sp3

carbon matrix presenting oxygen containing functional groups [42]. Those sp2 carbon
structures of GO derivatives play an important role in LDI-TOF-MS analysis by absorbing
laser energy and converting it into thermal energy through the electron-phonon interac-
tion for LDI of small molecules [35]. In this regard, Raman spectroscopy is a powerful
and essential analytical tool to characterize the ordered and defected sp2 carbon struc-
tures of GO derivatives and their nanohybrid structures, which are closely related to their
electron-phonon transition and then their efficiency in LDI-TOF-MS analysis [42–44]. GO
derivatives are a complex family presenting the structural diversity depending on their
synthetic and post-treatment processes. The physicochemical properties of GO derivatives
greatly affect their behavior in LDI-TOF-MS analysis, and their detailed chemistry has been
extensively reviewed elsewhere [45–52]. In addition, GO can be converted into graphene
analogues by chemical and thermal reduction treatments for partial removal of oxygen
containing functional groups, mainly hydroxyl and epoxy groups. However, there still
remains residual oxygen containing functional groups on the reduced GO (RGO) because
of the restricted degree of deoxygenation [52]. Thanks to these residual oxygen containing
functional groups, GO and RGO derivatives can be hybridized with metal, metal oxide,
and semiconductor nanomaterials by covalent and non-covalent surface modifications. The
resulting nanohybrid structures can enrich thioloated, phosphorylated and/or aromatic
biomolecules such as nucleic acids, amino acids, peptides and proteins through metal-
thiol, metal oxide-phosphate and π-π interactions, respectively [53–56]. Based on those
properties, GO and RGO derivatives and their nanohybrid structures have been actively
investigated for LDI-TOF-MS analysis and exhibited a strong and versatile potential to
analyze various kinds of important small molecules. There are several review articles
which deal with the various nanomaterials-based matrices for LDI-TOF-MS analysis of
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small molecules [19]. Given the promising prospect and strong potential of GO-based
nanohybrid structures for LDI-TOF-MS analysis, we think that GO derivatives and their
nanohybrid structures should be solely reviewed with more detailed and comprehensive
information.

2. GO Derivatives for LDI-TOF-MS Analysis

Dong et al. [57] reported that graphene can be harnessed as a novel matrix for LDI-TOF-
MS analysis of various small molecules, such as amino acids, polyamines, anticancer drugs,
nucleosides and steroids, regardless of their polarity. It is noteworthy that the graphene used in
this report was actually chemically-RGO flakes. Although the term graphene is only applicable
to a single-layer of networked atomic sp2 carbon sheet compacted into a honeycomb lattice, it
has been widely misused for RGO and few-layered graphite [58,59]. Therefore, we will use
the term “RGO” rather than “graphene” throughout this review because most of the cited
literature have utilized RGO for LDI-TOF-MS analysis of small molecules. In the report
of Dong et Al., RGO was synthesized by using sodium dodecylbenzene sulfonate (SDBS)
as a surfactant to prevent irreversible aggregation of RGO in aqueous media through the
van der Waals and π-π interactions between their basal planes [60]. Despite of the surface-
adsorbed SDBS on RGO, the resulting RGO exhibited many advantages for LDI-TOF-MS
analysis of small molecules such as the high reproducibility, salt tolerance and applicability
to the solid-phase extraction of squalene [57]. This report presents the possibility of GO
derivatives as an efficient platform for LDI-TOF-MS analysis. However, it is of note that
the surfactants on GO derivatives can interfere with the efficient energy transfer to analytes
and solid-phase extraction, and thus the follow-up studies are generally excluded to use
surfactants to prepare GO derivatives and their nanohybrid structures.

To address this issue, Zhou et al. [61] developed a RGO films-based LDI-TOF-MS
platform by sequential fabrication processes including spin-coating of GO and subsequent
chemical reduction by using hydrazine vapor. In this case, the RGO sheets were stably im-
mobilized on a solid substrate and thus there was no demand of surfactants for dispersion
in solvents. The resulting RGO films showed a higher efficiency and better reproducibil-
ity for LDI-TOF-MS analysis of an environmental pollutant, octachlorodibenzo-p-dioxin
(OCDD), than the dispersed RGO powder. The limit of detection (LOD) of OCDD was
found to be 500 pg with RGO films and the obtained signal was higher than the RGO
powder. This difference was attributed to the clean surface of RGO films, and their planar
and well-interconnected structures which facilitate the π-π interaction with OCDD, laser
energy absorption, and energy transfer to OCDD for LDI-TOF-MS analysis. This report
clearly shows that the advantages of chip-based LDI-TOF-MS platform.

Lu et al. [62] demonstrated that the efficiency of RGO flakes in LDI-TOF-MS analysis
was higher under negative ionization mode than positive ionization mode. Based on their
results, the mass spectra of peptides, amino acids, fatty acids, nucleosides and nucleotides
can be obtained by using RGO flakes under both positive and negative ionization modes,
but there was a clear difference in mass spectra obtained under positive and negative ion-
ization modes. The mass spectra obtained under positive ionization mode were composed
of many kinds of multiple cationic adducts with proton and alkali metals such as [M +
H]+, [M + Na]+, [M + K]+, [M + 2Na − H]+ and [M + Na + K − H]+. By stark contrast,
the mass spectra obtained under a negative ionization mode were only composed of a
single deprotonated form such as [M − H]−. Since the formation of multiple adducts
makes identification of analytes complicated, the applicability of RGO flakes to a negative
ionization mode facilitates its wide-spread usage for LDI-TOF-MS analysis [30,37,62].

The size and structure of graphene derivatives might also have significant influence
on the LDI-TOF-MS analysis. Liu et al. [63] investigated the LDI efficiency of graphene
derivatives such as graphene, GO and RGO for LDI-TOF-MS analysis of small molecules
under negative ionization mode. According to the results, the graphene prepared by
chemical vapor deposition showed no activity as a matrix for LDI-TOF-MS analysis, but
GO and RGO flakes presented a high efficiency for LDI-TOF-MS analysis of flavonoids
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and coumarin derivatives. Interestingly, the LDI efficiency of GO flakes was much higher
than that of RGO flakes even at 1 pmol of flavonoids, which is presumably attributed to
the abundant carboxylic acid groups on GO flakes. The authors also explored size effect of
GO flakes on LDI-TOF-MS analysis and found that millimeter-sized GO flakes provide a
higher LDI efficiency than micrometer-sized GO flakes for the analysis of flavonoids [63].

Kim et al. [64] investigated the size influence of GO flakes on their fragmentation
behavior during LDI-TOF-MS analysis of small molecules (Figure 1a). Considering that the
fragmentation of GO flakes mainly occurs on the defect sites and labile structures composed
of epoxide groups, the fragmentation of GO flakes can be strongly dependent on their lateral
dimension [64]. The GO flake larger than 5 µm in their lateral dimension underwent severe
fragmentation compared to the GO flakes smaller than 1 µm (Figure 1b). This observation was
attributed to the increased density of defects and epoxide groups on the basal plane GO flakes
with their lateral dimension [65]. The results implied that the smaller GO flakes lead to the
less fragmentation during LDI-TOF-MS analysis, and this hypothesis was further confirmed
with LDI-TOF-MS analysis by using nano-sized GO (NGO) flakes which obtained clear mass
spectra of small molecules without interference from the fragmentation of GO flakes in low
mass region [64]. By using NGO as a matrix, organic pollutants such as benzoyldibenzo-p-
dioxin (BDPD), benzo[a]pyrene (B[a]P), and perfluorobutyric acid (PBA) were analyzed with
LDI-TOF-MS and the LOD was determined as 15 fg, 150 fg, and 15 pg, respectively. Overall,
these outcomes clearly show the potential of LDI-TOF-MS analysis to be directly utilized for
investigating the chemical structure of GO derivatives.
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Copyright 2015 Wiley-VCH.

The origin of the fragmentation behavior of GO derivatives in LDI-TOF-MS analysis
was further investigated [66,67], as the true structure of GO sheets is debated owing to
the recent discovery of highly oxidized species present on their surface [68]. The origin
of the fragmentation could be traced to the direct fragmentation of a core graphene-like
sheet or the detachment of the surface-adsorbed oxidative debris (OD). To determine the
source of fragmentation, a graphene-like sheet and OD were separated from as-synthesized
GO (aGO) through a base-washing process (Figure 2a), and the resulting graphene-like
sheet (bwGO) and OD were subjected to LDI-TOF-MS analysis under identical condi-
tions (Figure 2b). Comparison of LDI-TOF-MS spectra of bwGO to that of aGO showed



Nanomaterials 2021, 11, 288 5 of 19

that aGO exhibited mass peaks attributed to both pure and oxidized carbon clusters,
while bwGO presented much stronger mass peaks solely due to the pure carbon clusters
(Figure 2c). These results indicate that the fragmentation of GO sheets originates from both
the core graphene-like sheet and the detachment of the surface-adsorbed OD; however, the
separation process leads to the partial reduction of these GO sheet constituents.
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@ in blue color corresponds to the carbon cluster ions and the symbol # in red color corresponds to the oxidized carbon
cluster ions. Adapted from ref. [66] with permission from The Royal Society of Chemistry.

In addition, the influence of OD on the efficiency of LDI-TOF-MS analysis was further
investigated by comparing aGO and bwGO. The efficiency of the LDI-TOF-MS analysis
of various analytes, was higher with bwGO than with aGO regardless of their chemical
structure and molecular weight (Figure 3). The LOD of small molecules with bwGO was
determined to be approximately 10 pmol which is lower than that with aGO (100 pmol).
This demonstrates that the photo-thermal conversion efficiency of GO derivatives can be
enhanced simply by removing the surface-adsorbed OD [67].
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3. GO/CNT Hybrid Structures for LDI-TOF-MS Analysis

As discussed in the former section, GO derivatives have been extensively investigated
for LDI-TOF-MS analysis of small molecules, but their direct application is relatively
restricted in comparison with other carbon nanomaterials such as CNT and CD [36,37]. This
is owed to their relatively low efficiency of photothermal conversion and low photochemical
stability under the irradiation by high-power lasers during LDI-TOF-MS analysis [64]. The
former feature results in low efficiency in LDI-TOF-MS analysis, and the latter feature
leads to severe fragmentation that generates background interference in the low-mass
region [64,67]. These problems are major obstacles to be overcome for the successful
application of GO derivatives to LDI-TOF-MS analysis. Lee et al. [69] demonstrated that
the hybrid films of GO and amine-functionalized multi-walled carbon nanotube (MWCNT-
NH2) can be utilized as an efficient platform for the lipase-activity assay based on the
LDI-TOF-MS analysis. The hybrid films were fabricated by the sequential assembly of GO
and MWCNT-NH2 on amine-functionalized solid substrates through the strong electrostatic
interaction between negatively-charged oxygen containing functional groups of GO and
positively-charged amine groups of MWCNT-NH2. After the sequential electrostatic
assembly, the resulting GO/MWCNT-NH2 hybrid films were thermally treated to induce
formation of covalent linkages which resulted in increase in their stability during LDI-
TOF-MS analysis [70]. Therefore, the hybrid films presented negligible interference in
the low mass region because of their covalently connected structures. The GO/MWCNT-
NH2 hybrid films also exhibited a high efficiency for LDI-TOF-MS analysis of lipids and
fatty acids, implying that there is a synergistic effect from the interfaces between GO and
MWCNT-NH2 that provides high laser energy absorption and photothermal conversion
for LDI-TOF-MS analysis [69].

Kim et al. [71] investigated how to develop an optimized hybrid film composed of
GO and MWCNT derivatives. Various combinations of GO and MWCNT derivatives
were systematically exploited to prepare their hybrid films such as GO/MWCNT-NH2,
RGO/MWCNT, and RGO/MWCNT-NH2 (Figure 4a). As control, the individual GO, RGO
and MWCNT-NH2 films were also prepared to clearly reveal the possible synergistic effect
from their hybridized structures. The detailed fabrication processes and structures of those
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hybrid films are presented in Figure 4a,b. Among the fabricated films, GO/MWCNT-NH2
hybrid films exhibited the highest performance for LDI-TOF-MS analysis of small molecules
in terms of salt tolerance, homogeneous mass signal, sensitivity, accuracy and resolution
(Figure 4c). The LOD was determined to be approximately 1 to 100 pmol. In addition, there
was less fragmentation of GO/MWCNT-NH2 hybrid films than the other hybrid films
during LDI-TOF-MS analysis, and this stability was attributed to the covalently-linked
structures between the substrate, GO flakes, and MWCNT-NH2 [71]. This report suggests
that the GO and MWCNT-NH2 hybrid film is a promising candidate as an efficient platform
for LDI-TOF-MS analysis of small molecules.
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Then, they explored the structural effect of GO/MWCNT-NH2 hybrid films such as
thickness and surface roughness [72]. It is well known that the oppositely charged GO flakes
and MWCNT-NH2 can be alternatively assembled on a solid substrate by layer-by-layer
(LBL) assembly technique [73–75]. Based on this principle, GO flakes and MWCNT-NH2
were successively assembled on a substrate with an alternating structure (Figure 5a), and
thus the laser energy absorption capacity, thickness and surface roughness of the resulting
GO/MWCNT-NH2 hybrid films were precisely controlled by the number of LBL assembly
cycles (Figure 5a–c) [72]. The thickness and surface roughness of GO/MWCNT-NH2 hybrid
films are directly related to their laser energy absorption capacity and interfacial area with
small molecules, respectively [71,72]. By using the LBL assembled GO/MWCNT-NH2
hybrid films, they found that the LDI-TOF-MS analysis efficiency of GO/MWCNT-NH2
hybrid films increased with the number of LBL assembly up to 5 cycles, but it started to
decrease with further LBL assembly. This interesting nonlinear behavior was attributed
to the fragmentation of LBL assembled GO/MWCNT-NH2 hybrid films by too much
local heating induced by laser irradiation. The results indicated that the LDI-TOF-MS
analysis efficiency of GO/MWCNT-NH2 hybrid films is greatly affected by their physical
structures such as thickness and surface roughness. The LOD of small molecules on five
layered GO/MWCNT-NH2 hybrid films were determined to be 10 pmol for cellobiose,
Leu-enkephalin and phenyl alanine, and 100 pmol for glucose, lysine and leucine.
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4. GO/Metal Hybrid Structures for LDI-TOF-MS Analysis

Metallic nanoparticles (NPs) have been extensively explored for LDI-TOF-MS analysis
of small molecules based on their well-defined synthesis, surface chemistry, high optical
absorption and photo-thermal conversion [76–81]. Therefore, the hybridization of GO
derivatives with metallic NPs has been considered a promising approach to the improve
efficiency of LDI-TOF-MS analysis of small molecules. Kim et al. [82] demonstrated a
simple approach to prepare the Au NPs/GO hybrid films. GO films were fabricated by
immobilization of GO flakes on amine-functionalized glass substrates and then treated
with polyallylamine hydrochloride (PAAH) to introduce primary amine groups on the GO
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films (Figure 6a). Five nm-sized Au NPs were incorporated onto the PAAH-functionalized
GO (PAAH-GO) films by electrostatic interaction and further grown by the seed-mediated
growth process (Figure 6a) [83,84]. The resulting Au NPs/PAAH-GO hybrid films exhibited
high efficiency in LDI-TOF-MS analysis of small molecules without interference in low
mass region (Figure 6b) and the LOD of small molecules were estimated to be 100 pmol.
For systematic investigation of interfacing-structure effect between Au NPs and GO films,
Au NPs on PAAH-treated glass, pyrene ethyleneglycol amine-functionalized GO (PEA-GO)
and PAAH-GO films were parallelly compared as an analytical platform for LDI-TOF-
MS analysis of small molecules. Interestingly, the analytical efficiency was highest on
the Au NPs/PAAH-GO hybrid films among the tested films (Figure 6c), which implies
that the hybridization of GO derivatives with metallic NPs considerably enhances their
LDI-TOF-MS efficiency for analysis of small molecules.
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Likewise, Kuo et al. [85] investigated the hybrid structures of Au NPs and RGO
flakes for LDI-TOF-MS analysis of small molecules. The Au NPs/RGO hybrid films
were fabricated by using a spin-assisted LBL assembly technique and thus the resulting
hybrid films presented an alternating structure of Au NPs and RGO flakes with a precisely
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controlled thickness by the number of LBL cycles. To find the correlation between the
thickness of hybrid films and LDI-TOF-MS analysis efficiency, 2, 5, 10, 15, and 20 layers of
Au NPs/RGO hybrid films were serially fabricated and applied to LDI-TOF-MS analysis
of small molecules. With an increase of the number of layers, the optical absorption at N2
laser wavelength (337 nm) almost linearly increased and thus the LDI-TOF-MS analysis
efficiency was also enhanced up to 10 LBL assembly cycles. However, the LDI-TOF-MS
efficiency was diminished with further LBL assembly because the deep infiltration of
analytes into the thick hybrid films impeded their efficient desorption/ionization. The
optimized 10 layered Au NPs/RGO films exhibited high efficiency in LDI-TOF-MS analysis
of amino acids and glutathione without interference in the low mass region at 150 pmol of
various small molecules. This high performance was attributed to the combination of high
thermal conductivity of RGO flakes and low heat capacity of Au NPs.

The hybridization of Ag NPs with GO derivatives for LDI-TOF-MS analysis of small
molecules was also thoroughly explored by Hong et al. [86]. They harnessed LBL assembly
process of poly(diallyldimethylamonium chloride) (PDDAC) and AgNPs/RGO flakes to
fabricate Ag NPs/RGO hybrid films with a controlled porosity and thickness (Figure 7).
Based on their results, it was confirmed that the formation of Ag cluster ions from Ag NPs,
one of main problems of metallic NPs as a LDI-TOF-MS platform, can be prevented with
enhanced LDI efficiency by hybridization of RGO flakes. Interestingly, carbon ion clusters
were also not formed from Ag NPs/RGO flakes hybrid films during LDI-TOF-MS analysis.
This interesting behavior was presumably attributed to their highly porous structures and
strong electrostatic interaction between PDDAC, Ag NPs and RGO flakes [85]. Given no
interference from metal and carbon ion clusters, Ag NPs/RGO hybrid films exhibited a high
applicability to LDI-TOF-MS analysis platform for carboxyl-containing small molecules
such as amino acids, fatty acids, peptides and dicarboxyl-contained organic molecules
(Figure 7).
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Au NPs/GO hybrid structures can also be harnessed for selective enrichment because
the surface functionalization chemistry of Au NPs is well established for the enrichment of
various specific targets [87]. Recently, Li et al. [88] reported the synthesis of a porous bead
composed of GO and Au NPs presenting abundant binding sites for selective enrichment
of N-linked glycopeptides. The porous GO beads were prepared by freeze-drying of a
mixture droplet consisting of GO flakes, polyethyleneimine (PEI) and poly(ethylene glycol)
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diglycidyl ether (PEGDE), and thermally treated for their structural stabilization. Then, the
GO beads were directly utilized as a support for direct synthesis of Au NPs on their surface
and the resulting Au NPs/GO porous hybrid beads were further functionalized with
glutathione to provide abundant binding sites for multivalent interaction with N-linked
glycopeptides. The N-linked glycopeptides possess higher hydrophilicity than non-linked
glycopeptides, and thus they can be strongly bound to the surface of Au NPs/GO porous
hybrid beads. By using the porous hybrid beads, N-linked glycopeptides were successfully
enriched and thus efficiently analyzed by using MALDI-TOF-MS with a high selectivity,
reproducibility, and low LOD of 2 fmol.

5. GO/Metal Oxide Hybrid Structures for LDI-TOF-MS Analysis

The magnetic solid phase extraction (MSPE) of environmental pollutants is also a
critical application of Fe3O4 NPs/RGO nanohybrid structures. In natural water, there are
many kinds of antibiotics that are regarded as organic pollutants owing to their potential
adverse effect on human health and ecosystems [89–91]. Tang et al. [92] reported that
the MSPE of quinolones (QNs), which are one of the widely-used antibiotics causing
a significant concern, by using Fe3O4 NPs/GO nanohybrid structures in various water
sources. Since the QNs are generally present at low concentration in natural water, there
is a strong demand on a facile way to enrich them for the efficient analysis [93,94]. The
Fe3O4 NPs/GO nanohybrid structures were prepared by covalent incorporation of 3-
aminopropyltriethoxysilane (APTES)-functionalized Fe3O4 NPs (Fe3O4 NPs-NH2) on the
surface of GO flakes through N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC)/N-
hydroxysuccinimide (NHS) coupling [93]. The resulting Fe3O4 NPs-NH2/GO nanohybrid
structures were harnessed for MSPE of 12 kinds of QNs such as enoxacin, norfloxacin,
ciprofloxacin, pefloxacin, fleroxacin, gatifloxacin, enrofloxacin, levofloxacin, sparfloxacin,
danofloxacin, difloxacin, and lomefloxacin [92]. For the optimization of MSPE and MALDI-
TOF-MS processes, various experimental factors including acidity, extraction time, amount
of adsorbent, elution solution and desorption time were systematically explored and then
the enriched QNs on Fe3O4 NPs-NH2/GO nanohybrid structures were analyzed by using
a surfaced-immobilized CHCA on SBA-15 treated with 3-APTES (SBA-15-NH2/CHCA) as
a matrix. All QNs were successfully detected from real water samples from the Hai river by
combination of MSPE and MALDI-TOF-MS analysis without background interference. This
result confirmed the practical applicability of Fe3O4 NPs-NH2/GO nanohybrid structures
as an adsorbent for MSPE of a trace amount of environmental pollutants.

Although the previous reports only utilize Fe3O4 NPs/GO nanohybrid structures as a
MSPE material [95], Fe3O4 NPs/GO nanohybrid structures can be directly applied to LDI-
TOF-MS analysis after MSPE of specific target analytes because both GO and Fe3O4 NPs are
an efficient material for LDI-TOF-MS analysis of small molecules [61,96]. Chien et al. [97]
demonstrated that the Fe3O4 NPs/GO nanohybrid structures can be simultaneously used
for MSPE and then LDI-TOF-MS analysis of glimepride, which is one of the representative
medicines to reduce blood glucose levels in the patients of diabetes but also abused to
induce narcotic effect. The Fe3O4 NPs/GO nanohybrid structures were prepared by
incorporation of pre-synthesized Fe3O4 NPs on the surface of GO flakes, having the
different number of layers through an emulsion and solvent evaporation process. By using
the Fe3O4 NPs/GO nanohybrid structures, the LOD of glimepiride was determined to be
as 284 pmol, 253 pmol, and 26 pmol for Fe3O4 NPs/GO nanohybrid structures prepared
with single layered, 2–4 layered, and 4–8 layered GO flakes, respectively [95]. Those results
clearly imply that the Fe3O4 NPs/GO nanohybrid structures are one of the promising
materials for MSPE and LDI-TOF-MS analysis and the number of GO layers has critical
influence on the efficiency of LDI-TOF-MS analysis on the Fe3O4 NPs/GO nanohybrid
structures.

Even without the MSPE process, metal oxide/GO nanohybrid structures can be
considered an important material for LDI-TOF-MS analysis. In this regard, Kim et al. [98]
demonstrated that the ZnO/RGO nanohybrid structures can be directly applied to wafer-
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level detection of organic contaminations with LDI-TOF-MS analysis (Figure 8a). The
detection of organic contaminants on Si wafer has been a critical issue to improve the
yield of semiconductor fabrication processes and thus there is a demand on the analytical
tool, which can provide the localized information of chemical structures of the residual
organic contaminants on the semiconductor devices [99]. Therefore, LDI-TOF-MS is a
powerful analytical tool because it can provide the localized information of chemical
structures which are irradiated by laser equipped in LDI-TOF-MS [100]. As a model
organic contaminant, B[a]P, which is one of the common organic contaminants on Si
wafer, was analyzed with LDI-TOF-MS by using ZnO/RGO nanohybrid structures [98].
The roles of ZnO and RGO in ZnO/RGO nanohybrid structures are to absorb UV light
from laser and transfer the energy to analytes [101], and to enrich organic contaminants
such as polyaromatic hydrocarbons from Si wafers through π-π interaction [102–104]. By
optimizing the composition ZnO/RGO hybrid structures and their amount used, B[a]P
was successfully analyzed with LDI-TOF-MS without interference in low mass region
and its LOD was estimated to be 13 pmol, which was lower than the concentration of
residual organic contaminations generated in the fabrication process of semiconductor
devices (Figure 8b,c). The ZnO/RGO nanohybrid structure was also proven to be an
effective material for LDI-TOF-MS analysis of other aromatic and aliphatic species on a
semiconductor wafer.
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As a summary of the important LDI-TOF-MS analytical platforms fabricated by using
GO derivatives and their nanohybrid structures, the figure of merit (FOM) of those ana-
lytical platforms such as LOD values was described in Table 1. The summarized results
indicated that the hybridization of CNT, metal and metal oxide nanomaterials on the
surface of GO derivatives does not always guarantee the improvement of LOD values, but
it can still endow their nanohybrid structures with a novel function and thus extend their
analytical applicability according to the purposes. The strengths, weaknesses, opportuni-
ties and threats (SWOT) analysis was also carried out on the basis of the reviewed literature
(Table 2). GO derivatives and their nanohybrid structures have exhibited many advan-
tages including high laser energy absorption capacity, photothermal conversion efficiency,
electrical and thermal conductivity, affinity to important biomolecules and environmental
pollutants, and amenable surface for functionalization and hybridization with other func-
tional groups and nanomaterials. However, they also possess disadvantages such as laser
induced fragmentation, contamination of mass spectrometer, and heterogeneous lateral
dimension and chemical structures.

Table 1. A summary of various analytes and their LOD values for different types of GO derivatives
and their nanohybrid structures for LDI-TOF-MS analysis of small molecules.

Platform Analytes LOD Ref.
RGO films OCDD 1 pmol [61]

GO Flavonoids 1 pmol [63]

NGO
BDPD 50 pmol

[64]B[a]P 600 pmol
PBA 70 nmol

bwGO Amino acids and saccharides 10 pmol [67]

GO/MWCNT-NH2 hybrid
films

Leu-enkephalin 1 pmol
[71]Saccharides 10 pmol

Amino acids 100 pmol

Multi-layered
GO/MWCNT-NH2 hybrid

films

Cellobiose
10 pmol

[72]

Leu-enkephalin
Phenylalanine

Glucose
100 pmolLysine

Leucine
Au/PAA-GO film Saccharides and amino acids 100 pmol [82]

LBL assembled Au NPs/RGO
hybrid films Amino acids 150 pmol [85]

AuNPs/GO porous hybrid
bead N-linked glycopeptide 2 fmol [88]

Fe3O4@graphene oxide
nanocluster Glimepiride 26 pmol [97]

ZnO-RGO hybrid B[a]P 13 pmol [98]
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Table 2. A SWOT analysis result of GO derivatives and their nanohybrid structures for LDI-TOF-MS
analysis of small molecules.

Strengths Weaknesses

- Optical absorption capacity.
- Photothermal conversion efficiency
- Electrical and thermal conductivity
- Tailorable surface for hybridization with

metal, metal oxide, and semiconductor
nanomaterials.

- Affinity to biomolecules and
environmental pollutants

- Fragmentation induced by laser
irradiation

- Contamination of mass spectrometer
- Heterogeneous lateral dimension and

chemical structures

Opportunities Threats

- Applicability to metabolomics
- Applicability to environmental

monitoring
- Compatibility with high-throughput

analysis
- Imaging mass spectrometry

- Potential toxicity of graphene derivatives
- Dangerous and toxic chemicals used for

synthesis of graphene derivatives
- Unstandardized synthetic process and

properties of graphene derivatives

6. Conclusions

Over the past decades, GO derivatives have been extensively investigated to develop
an efficient and multi-functional LDI-TOF-MS platform based on their high laser energy
absorption capacity, photo-thermal conversion efficiency, thermal conductivity, tailorable
surfaces, affinity toward aromatic compounds, salt tolerance, reproducibility, and large
surface area. In addition, their excellent intrinsic properties can be considerably enhanced
by their surface functionalization and subsequent nanohybridization with other functional
carbon, metal and metal oxide nanomaterials. Inspired by these interesting characteristics,
we have systematically reviewed the synthesis, structure and property relationship, surface
functionalization, assembly, and nanohybridization of GO derivatives for their efficient
and diverse applications to LDI-TOF-MS analysis of important low molecular-weight
compounds. Although there are many kinds of nanomaterials which have been efficiently
utilized for LDI-TOF-MS analysis, GO derivatives and their nanohybrid structures can
provide distinct advantages and thus they will considerably contribute to various research
fields including metabolomics, environmental pollution, imaging mass spectrometry, and
drug discovery. However, the potential toxicity, dangerous and toxic synthetic process and
unstandardized structures of GO derivatives should be addressed for their wide-spread
applications. Taken together, we believe that the GO-based nanohybrid structures can
provide distinct advantages from other nanomaterials and thus will be an important,
practical and functional tool for LDI-TOF-MS analysis with their steady progress.
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