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Abstract: Semiconducting single-walled carbon nanotubes (s-SWCNTs) have gathered significant
interest in various emerging electronics due to their outstanding electrical and mechanical properties.
Although large-area and low-cost fabrication of s-SWCNT field effect transistors (FETs) can be easily
achieved via solution processing, the electrical performance of the solution-based s-SWCNT FETs is
often limited by the charge transport in the s-SWCNT networks and interface between the s-SWCNT
and the dielectrics depending on both s-SWCNT solution synthesis and device architecture. Here,
we investigate the surface and interfacial electro-chemical behaviors of s-SWCNTs. In addition,
we propose a cost-effective and straightforward process capable of minimizing polymers bound to
s-SWCNT surfaces acting as an interfering element for the charge carrier transport via a heat-assisted
purification (HAP). With the HAP treated s-SWCNTs, we introduced conformal dielectric configu-
ration for s-SWCNT FETs, which are explored by a carefully designed wide array of electrical and
chemical characterizations with finite-element analysis (FEA) computer simulation. For more favor-
able gate-field-induced surface and interfacial behaviors of s-SWCNT, we implemented conformally
gated highly capacitive s-SWCNT FETs with ion-gel dielectrics, demonstrating field-effect mobility
of ~8.19 cm2/V·s and on/off current ratio of ~105 along with negligible hysteresis.

Keywords: single-walled carbon nanotube (SWCNTs); high purity SWCNT separation process;
thin-film transistors (TFTs)

1. Introduction

Recently, non-conventional semiconducting channel layers provided by low-dimensional
unit structures such as nanotubular networks or quantum dots have emerged as promising
candidates for next generation electronic applications [1–4]. Particularly, nanotubular
linked single-walled carbon nanotubes (SWCNTs) have consistently attracted attention
in a variety of electronic applications due to their outstanding electrical and mechanical
characteristics such as high carrier mobility, good chemical and thermal stability, and
excellent mechanical durability [5,6]. Moreover, the SWCNT film can be fabricated via a
simple solution process, which can enable their utilization in cost-effective and large-area
applications [7,8]. Despite intensive research on SWCNT-based electronic devices, they
often suffer from their distinct geometric features such as less flattened and unsmooth
surface linkages of the nanotubes, exhibiting limited electrical characteristics possibly
due to non-uniform electric field distribution and resistive interconnection between the
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nanotubes. Typically, SWCNTs are able to be adapted as a transparent electrode and a
semiconductor depending on the degree of separation of metallic (m-) nanotubes from
semiconducting (s-) nanotubes during dispersion because most as-synthesized SWCNTs
have the coexistence of m- and s-SWCNTs [9–11]. Therefore, for the specific applications of
SWCNTs to semiconducting channels of various electronics, high purity s-SWCNTs should
be efficiently and separately collected by an appropriate dispersion of SWCNTs. Recently,
as an effective strategy for the functionalization of s-SWCNTs preserving their intrinsic
characteristics, non-covalently modified s-SWCNTs with conjugated polymers have re-
markably been developed due to their simplicity, high selectivity, and high yield [12–14].
Although such conjugated polymers have been found to efficiently separate s-SWCNT from
m-SWCNT, however, there is still some problematic issues on the electrical performances
of the s-SWCNT-based electronics such as limited electric field-induced charge carrier dis-
tribution on the semiconductor surface and charge carrying ability between the s-SWCNT
nanotubular networks. Typically, the conjugated polymers bonded with s-SWCNTs often
impede to induce and carry the charge carriers on the nanotubular channel surface, which
causes degradation of electrical properties [15–17]. Therefore, it is necessary to remove
the conjugated polymers that interact with s-SWCNTs after the dispersion of s-SWCNTs
to achieve desirable performances as a semiconductor material. Previously, several ap-
proaches have been employed to remove these polymers from s-SWCNTs using extensive
washing and high-power sonication/ultra-centrifugation processes [18,19]. Despite its
high efficiency in purifying and sorting the s-SWCNTs, the process is rather complex and
costly. In addition to the separation of s-SWCNT, for high-performance SWCNT-FETs,
the interface surface between the semiconductor and gate dielectric layer should be con-
sidered as a crucial factor because of 1D-randomly distributed rough configuration of
SWCNTs that negatively influences electrical performances of FETs. For example, in the
case of the conventional bottom-gate and top-contact SWCNT FETs, the s-SWCNT channel
layer is placed on a gate dielectric layer and structurally exposed in ambient species in
air, causing unstable SWCNT FETs. Additionally, it is difficult to form an optimal and
conformal contact between the SWCNT channel and gate dielectric layer, because the
SWCNT network is inherently porous and has a rough surface [20–22]. In this regard,
conformally gated soft dielectric materials such as organic and ionotronic materials may in-
troduce more favorable device structures to achieve intimate contact with the nanotubular
semiconducting networks overwhelming the vacuum deposited conventional inorganic
dielectrics. According to that, more investigations for the surface conducting and interfacial
behaviors of s-SWCNT FETs corresponding to structural integrity with the semiconducting
nanotube networks and dielectric materials are needed to achieve highly conductive and
stable s-SWCNT electronic devices.

Here, we report a facile process capable of minimizing interfering-polymers bound to
the SWCNT surfaces for charge carrier transport between nanotubes during the dispersion
of s-SWCNTs via a heat-assisted purification (HAP). The s-SWCNTs were obtained by selec-
tive dispersion with poly(3-dodecylthiophene) (P3DDT). After the dispersion of s-SWCNTs,
a thermal treatment at 140 ◦C would induce the side-chain fluctuations of P3DDT in the
P3DD-sorted s-SWCNTs solution, resulting in s-SWCNTs aggregation by prohibiting inter-
action between polymers and s-SWCNT. Then, with high purity s-SWCNTs obtained by
re-dispersion of the s-SWCNTs aggregation, we demonstrate solution-processed s-SWCNT-
FETs on the Al2O3 gate dielectric that exhibited good hole-carrier average mobility of
1.37 cm2·V−1·s−1 with on/off ratio of ~106, compared to that without the HAP. The results
imply that the P3DDT bound to s-SWCNTs can interfere with charge carrier transport
between nanotubes despite the effective separation of s-SWCNT from m-SWCNT. Ad-
ditionally, we investigate the influence of gate dielectric structural conformation (on- or
in-dielectric) in the s-SWCNT-FETs on induced charge and trap density at the interface
between the s-SWCNTs channel and organic/ion-gel dielectric layer. As a result, compared
to on-dielectric configuration devices, devices with in-dielectric configuration showed im-
proved electrical performances. This is attributed to conformal contact that can be formed
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in the in-dielectric structure by wholly covering rough surfaces of the s-SWCNT channel
layer that acts as a defect at the interface. In particular, by applying finite-element analysis
(FEA) simulation and various electrical characterizations, we evidently explore the device’s
structural conformation for high performance and stable s-SWCNT FETs. Moreover, in
order to further strengthen the impact of in-dielectric configuration in the s-SWCNT FETs,
ion-gel gate dielectric was employed. As a result, ion-gel gated SWCNT FETs with more
conformal contact even further accumulates charge carriers as well as reduces interface
trap density so that their electrical characteristics are considerably enhanced, exhibiting the
highest field-effect mobility of 8.19 cm2·V−1·s−1 with negligible hysteresis characteristics.

2. Materials and Methods
2.1. Preparation of High Purity s-SWCNT Solution

Polymer-wrapped SWCNT solution was prepared by mixing 5 mg of high-pressure
CO (HiPCO) SWCNTs (diameter 0.8–1.2 nm, NanoIntegris, Boisbriand, QC, Canada) and
5 mg of regioregular poly(3-dodecylthiophene) (rr-P3DDT) in 25 mg of toluene. The
solution was ultra-sonicated (700 W, 30%; Qsonica, Newtown, CT, USA) for 3 h at 50 ◦C in
a bath. Then, the solution was centrifuged (Micro Centrifuge, Smart R17, Hanil Science Co.,
Ltd., Daejeon, Korea) at 15,000 rpm for 30 min and subsequently, a supernatant containing
polymer wrapped s-SWCNTs was collected. Such centrifugation and collection processes
were repeated for 3 times to remove SWCNT bundles and metallic species. Afterward,
for the heat-assisted purification, 2 mL of the rr-P3DDT wrapped s-SWCNT solution
was placed on a hot plate at 140 ◦C for 5 min. As a result, the s-SWCNTs are gradually
agglomerated and precipitated at the bottom of the solution. Then, the aggregated s-
SWCNT solution was collected, followed by the centrifugation at 15,000 rpm for 5 min.
Finally, the purified s-SWCNT sediment was collected and re-dispersed by the ultra-
sonication. Note that highly purified s-SWCNT is called a heat-assisted purification (HAP)
treated s-SWCNT solution.

2.2. Preparation of Gate Dielectric Solutions (CYTOP and Ion-Gel)

CYTOP was prepared by diluting CYTOP solution (CTL-809M, Asahi Glass, Tokyo,
Japan) and solvent (CT-solv.180, Asahi Glass, Tokyo, Japan) with a volume ratio of 3:1.
For the ion-gel, the ion liquid 1-ethyl-3-methylimidazolium bis (trifluoro-methylsulfonyl)
imide ([EMIM][TFSI]), poly (ethylene glycol) diacrylate), and photo initiator 2-hydroxy-2-
methylpropiophenone were mixed with a weight ratio of 80:20:3. Then, this mixture was
stirred at 80 ◦C and 1000 rpm for 6 h.

2.3. Fabrication of s-SWCNT FETs on Al2O3 Gate Dielectric

Heavily p-doped Si substrate was used as a bottom gate and an atomic-layer deposited
(ALD) Al2O3 with a 60 nm of thickness was used as a gate dielectric layer. For a bottom
contact device’s configuration, Cr (3 nm)/Au (30 nm) was deposited as source and drain
(S/D) electrodes, on the Al2O3 gate dielectric and patterned by using a thermal evaporation
and a lift-off process, respectively. Then, 40 µL of the HAP treated s-SWCNT solution
was spin-coated on it and annealed at 160 ◦C for 1 h to evaporate toluene solvent. The
s-SWCNT channel layer was patterned via both photolithography and dry-etching process
with a reactive ion etching system (RIE, 100 W for 1 min, Daeki High-Tech. Co., Ltd.,
Daejeon, Korea).

2.4. Fabrication of a Side Gate High-Purity SWCNT FETs Using Ion-Gel Gate Dielectric

For demonstration of a coplanar-structured s-SWCNT FETs with ion-gel gate dielectric,
33 nm-thick Cr/Au was deposited simultaneously on a bare glass substrate as gate and
S/D electrodes. Then, the s-SWCNT channel layer was formed and patterned by using
spin-coating and the RIE process, respectively. After that, in order to fabricate a bank area
for ion-gel gate dielectric layer, a negative photoresist (N-PR, SU-8 3005, Microchem Corp.
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Westborough, MA, USA) was used. Subsequently, ion-gel was drop-casted on the bank,
followed by a photo-curing process with UV light and a photo-mask.

2.5. Characterization

The electrical characteristics of the s-SWCNT FETs were measured by using a semi-
conductor parameter analyzer (Agilent 4156C, Agilent Technologies, Santa Clara, CA,
USA) in ambient air. The surface morphology and areal density of the SWCNT films were
obtained using atomic force microscopy (AFM) (NX10, Park SYSTEMS, Suwon, Korea)
with non-contact atomic force mode. Raman spectra were measured using a WITec con-
focal Raman microscope (alpha300R, WITec, Ulm, Germany) which is equipped with a
piezo-scanner and an intensity-tunable 532 nm Nd:YAG laser (neodymium-doped yttrium
aluminum garnet). UV-vis-NIR measurements of all SWCNT dispersions were carried
out in quartz cells by using a spectrophotometer (Cary 5000, Agilent Technologies, Santa
Clara, CA, USA). Note that all spectra for SWCNT solutions were recorded in the range of
400–1500 nm. C-V and C-F characteristics of gate dielectrics were investigated by using
a metal-insulator-semiconductor (MIS; Au/Al2O3, CYTOP, or ion-gel/s-SWCNTs) and a
metal-insulator-metal (MIM; Au/Al2O3, CYTOP, or ion-gel/Au) structure, respectively,
with LCR meter (Agilent 4284A, Agilent Technologies, Santa Clara, CA, USA) (Figure S1).

3. Results and Discussion

To prepare the s-SWCNT solution, high-pressure carbon monoxide (HiPCO)-synthesized
SWCNTs and P3DDT were dispersed in toluene through sonication as shown in Figure 1a.
In this step, the C12H25 side chains of P3DDT molecules bind to the surface SWCNTs by
strong π-π interaction, followed by effective SWCNT dispersion (step 1) [23–25]. Afterward,
the solution was centrifuged and approximately 80% of the supernatant was collected and
residual solvent containing undispersed m-SWCNTs and SWCNT bundles was removed
(step 2). This conventional purification and sorting route is definitely efficient in separating
the s-SWCNTs from the undesired SWCNT mixture, however, a considerable amount of
P3DDT molecules is still bound to s-SWCNTs which may disturb the carrier transport
between the nanotubes. Therefore, it is essential to remove or reduce the amount of
P3DDT molecules to improve the charge transport in s-SWCNT films. To reduce the
P3DDT molecules and to obtain a high-purity s-SWCNT solution, we applied a simple
heat-assisted polymer removing step. Specifically, by applying a thermal treatment to
the solution, the s-SWCNTs are gradually agglomerated and precipitated at the bottom
of the solution as shown in Figure 1b (step 3). It is speculated that the thermal energy
induces fluctuation of the P3DDT side chains which leads to strong attraction between the
s-SWCNTs by the van der Waals and π-π interaction [14,26]. After the thermal treatment,
the aggregation of the s-SWCNTs occurs and then the precipitated SWCNT was collected.
As a result, a significant portion of P3DDT molecules which are bound to the s-SWCNTs are
reduced during this process, providing high-purity s-SWCNTs (step 4). Finally, the purified
s-SWCNTs were collected by centrifugation and re-dispersed in a pure solvent by sonication
(step 5). Note that the re-dispersion for high purity s-SWCNTs was not influenced by the
reduction of the P3DDT molecules (Figure 1b). Figure 1c shows the light absorption spectra
of s-SWCNT solutions purified with or without the heat-assisted polymer removing or
heat-assisted purification (HAP) step. The light absorption spectra are mainly composed
of two s-optical transitions (S11 and S22) corresponding to s-SWCNTs (λ = 605–1500 nm),
one m-optical transition (M11) corresponding to m-SWCNTs (λ = 540–605 nm), and a
characteristic peak corresponding to P3DDT (λ = 400–520 nm). The results show that in
both solutions, the m-SWCNTs and SWCNT bundles are effectively reduced during the
purification. More importantly, it was found that the peak corresponding to P3DDT was
substantially decreased with the HAP process, indicating that a large portion of P3DDT
was reduced from the s-SWCNTs during the heat treatment. It is to note that sufficient
thermal energy is required to agglomerate the s-SWCNTs and detach the P3DDT molecules
(Figure S2). To find an appropriate temperature range, Raman spectroscopy was carried out
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for s-SWCNTs which are processed at different temperatures (Figure 1d). From the Raman
spectra, it was observed that the characteristic peak associated with P3DDT (1450 cm−1)
was noticeably reduced when the temperature was 140 and 80 ◦C. However, despite the
decrease of the P3DDT at a lower temperature (80 ◦C), the thermal energy is not sufficient
to separate the P3DDT. This indicates that a sufficient thermal energy is required to detach
the P3DDT molecules from the s-SWCNTs. At an optimal temperature (140 ◦C) for the
aggregation of the s-SWCNTs, the side chain melting transition of the P3DDT polymer may
occur and then allow both s-SWCNT interactions and aggregation simultaneously [22].
However, despite the optimal temperature for high purity s-SWCNTs proposed by our
experimental results in this study, the corresponding correlation is accurately not addressed,
which will be future work.
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Figure 1. (a) High-purity s-SWCNT solution fabrication procedure; (b) Photographs of pristine,
thermal treated pristine, and high-purity s-SWCNT solutions. The inset is a chemical structure of
P3DDT; (c) Absorption spectra of the pristine and high-purity s-SWCNT; (d) Raman spectra of the
pristine (black), 80 ◦C (pink), and 140 ◦C (red) temperature treated s-SWCNT at 532 nm excitation.

To determine the effects of heat-assisted purification of s-SWCNTs on their electrical
properties, bottom-gate/bottom-contact structure FETs were fabricated. As channel layers,
s-SWCNTs obtained with and without the HAP process were used. Here, Al2O3 was used
as a gate dielectric layer and the channel width (W) and length (L) of the FETs were 100 and
10 µm, respectively (Figure 2a). From the atomic force microscopy (AFM) analysis, it was
confirmed that the s-SWCNT film had a uniform two-dimensional network structure with
root-mean-square roughness of approximately 1.01 nm. The areal density of s-SWCNTs
was >20 nanotubes per µm2. Figure 2b,c shows the transfer characteristics of SWCNT
FETs without and with the HAP process, respectively. The HAP-processed SWCNT FETs
exhibited saturation field-effect mobility of 1.52 cm2·V−1·s−1 with a current on/off ratio
of ~106, while, without the HAP process, the FETs showed reduced field-effect mobility
of 0.44 cm2·V−1·s−1 (Figure 2b and Figure S3). The improved mobility in HAP-processed
SWCNT FETs can be attributed to the substantial reduction of P3DDT bound to s-SWCNTs
which can act as the charge blocking elements within the nanotube network as well as at
the contacts between the source/drain electrodes and the s-SWCNT channel. Figure 2d
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shows the variations of contact resistance (Rcontact) and the channel resistance (Rchannel)
by the HAP process. Here, resistance values were extracted using the transmission line
method (TLM) where the total resistance (Rtotal) is defined as Rtotal = Rchannel + 2Rcontact
(Figure S4). As shown in Figure 2d, both the Rcontact and Rchannel decreased from 75 to
25 kΩ and from 37.8 to 5.5 kΩ·µm−1 with the HAP process, respectively, indicating that the
reduction of P3DDT had significant effects on improving the charge transport in SWCNT
FETs. Figure 2e illustrates the possible mechanism for the enhancement of charge transport.
With the P3DDT attached to the s-SWCNTs, the hole injection from the Au electrode to
the s-SWCNTs can be hindered by an energy barrier of ~0.1 eV. Additionally, between the
s-SWCNTs, an energy barrier of ~0.5 eV is formed. In addition, the side chains of P3DDT
are electrically insulating which may inhibit efficient hole transport between the s-SWCNTs.
In contrast, without the P3DDT, the hole injection from Au electrode to s-SWCNTs can
occur without an energy barrier, and also, the hole transport in the s-SWCNT network can
be enhanced. However, despite the notable increase in the field-effect mobility, significantly
large hysteresis was still observed in the transfer characteristics. Particularly, the HAP-
processed SWCNT FETs exhibited hysteresis of 6.8 V which was comparably larger than
that without the HAP process (6.0 V). In CNT-based FETs, the hysteresis behavior is
attributed to the interfacial charge traps present at the CNT/gate dielectric interface and
the adsorption of water molecules on the SWCNT surface [27–30]. Therefore, the slightly
larger hysteresis in HAP-processed SWCNT FETs can be explained by more adsorption of
water molecules on the s-SWCNT surface with less amount of P3DDT attached.
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Figure 2. (a) A schematic of the SWCNT FET device and an AFM image of the s-SWCNT network.
The transfer characteristics of the SWCNT FETs (b) without and (c) with the HAP process, respectively
(W/L = 100/10 µm, VDS = −10 V). (d) Comparison of contact and channel resistance for the pristine
(w/o the HAP) and high-purity s-SWCNT FETs. (e) Energy band diagrams of the s-SWCNT indicating
the possible mechanism for the enhancement of charge transport by the HAP process.

The structure of semiconductor/gate dielectric interface has a great influence on
the electrical performance of SWCNT FETs, particularly with the staggered bottom-gate
structure [31–33]. This is mainly due to the stacking structure of the SWCNTs where the
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nanotubes are overlapped with each other. As a result, nano-gaps can be formed between
the SWCNTs and the bottom gate dielectric layer, causing a weak gate-field applied to
the SWCNTs [34]. Meanwhile, using top-gate structure and soft gate dielectrics such as
polymers and ion-gels, more intimate contacts between SWCNTs and gate dielectric can be
made by conformally surrounding the SWCNTs with the soft gate dielectric [35–37].

Accordingly, compared to the staggered bottom-gate structure, nano-gaps may be
relatively suppressed by a structural feature of the top-gate structure. To evaluate the
influence of using a soft gate dielectric on the electrical performance, both bottom-gate and
top-gate structured s-SWCNT FETs were fabricated as shown in Figure 3a,d using CYTOP
as a gate dielectric, respectively. Here, the bottom-gate and top-gate FETs were designated
as ‘on-dielectric’ and ‘in-dielectric’ structures depending on the position of SWCNTs in
respect to the gate dielectric layer. Note that s-SWCNTs with the HAP treatment was used
for this test. As shown in Figure 3a, in the case of on-dielectric FETs, nano-gaps with
the length of ~50 nm which is estimated by the AFM data exist between the SWCNTs
and the gate dielectric, resulting in a weak gate-field and reduced charge accumulation.
On the other hand, with the in-dielectric structure (Figure 3d), the CYTOP gate dielectric
conformably covers the SWCNTs and more effective charge accumulation can be possible.
To verify the effect of FET structure on the charge accumulation, electrical simulations using
the finite-element analysis (FEA) method were performed as shown in Figure 3b,e (also,
Table S1). It was found that the top-gated in-dielectric device showed a higher capacitance
(38.2 pF) compared to bottom-gated on-dielectric devices (28.3 pF) by the suppression of
the nano-gaps. Following, SWCNT FETs with on-dielectric and in-dielectric structures
were fabricated and their transfer characteristics were analyzed (Figure S5). As shown in
Figure 3c,f, the in-dielectric structure FETs exhibited higher average field-effect mobility of
4.07 (standard deviation of 0.65 cm2·V−1·s−1 ), and reduced hysteresis behavior (~8.76 V),
which can be attributed to the higher number of holes accumulated in the s-SWCNT
channel and the reduction of surface trap states caused by the air exposure.
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Figure 3. Schematics of SWCNT FETs with CYTOP (a) on-dielectric and (b) in-dielectric configuration.
Corresponding charge accumulation data obtained from the FEA simulation of (c) on-dielectric and
(d) in-dielectric configuration. The transfer characteristics of the SWCNT FETs with (e) on-dielectric
and (f) in-dielectric configuration (W/L = 1000/50 µm, VDS = −40 V).

To further improve the electrical properties of SWCNT FETs and to realize a low-
voltage operation, high-k ion-gel film was employed as a gate dielectric. Since the ion-gel
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gate dielectric can be fabricated at a low-temperature using a solution process similar
to the CYTOP gate dielectric, SWCNT FETs with a top-gate-like structure can be fabri-
cated as shown in Figure 4a. In particular, after depositing the Cr/Au source/drain and
gate electrodes, HAP-processed s-SWCNTs were spin-coated as a channel layer. Then, a
negative photoresist was coated and patterned as a bank to isolate the ion-gel gate dielec-
tric. Finally, an ion-gel solution consisting of 1-ethyl-3-methylimidazolium bis(trifluoro-
methylsulfonyl) imide ([EMIM][TFSI]), polyethylene glycol diacrylate, and 2-hydroxy-2-
methylpropiophenone was drop-casted at the bank region and photo-polymerized by UV
exposure (Figure 4b). When a negative gate voltage is applied, an electrical double layer
(EDL) is formed at the s-SWCNT/ion-gel interface, inducing accumulation of positive hole
charges in the s-SWCNT channel. Figure 4c–f shows the transfer and output characteristics
of the ion-gel-gated SWCNT FETs, respectively. The devices exhibited the improved elec-
trical properties such as field-effect mobility of 8.19 cm2·V−1·s−1 and current on/off ratio
of ~105 and a low threshold voltage (Vth) of −0.2 V, attributing to the high capacitance
of the ion-gel gate dielectric as well as the conformal contact between the ion-gel and the
s-SWCNTs (Figure 4).
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Figure 4. (a) Schematic of a side gate high-purity SWCNT FET using ion-gel gate dielectric layer and
the optical image of the device (bottom). (b) The side view of ion-gel gated SWCNT FET with the
channel accumulation by ions in the ion-gel gate dielectric and a chemical structure of EMIM-TFSI.
The electrical characteristics: (c) a transfer (W/L = 1000/100 µm, VDS = −0.5 V) and (d) output curves
of ion-gel gated SWCNT FET. Statistics data for (e) saturation mobility and (f) threshold voltage.

To further explain the variations of hole accumulation and transport properties de-
pending on the HAP process and the device structure (on- or in-dielectric) with the gate
dielectric materials (Al2O3, CYTOP, or ion-gel), schematics of the mechanism of gate mod-
ulation on hole-charge carriers in the s-SWCNT networks and the corresponding energy
band diagram models were constructed as shown in Figure 5a–d. Firstly, in the case of
the SWCNT FETs on Al2O3 gate dielectric without the HAP treatment, hole-carriers can
be accumulated near the Al2O3/s-SWCNT interface under a negative gate bias (VGS < 0)
to form a current pathway. As aforementioned, however, the charge carrier transport
would be interrupted by the P3DDT polymer bound to s-SWCNTs which plays a role as a
block-barrier for hole carriers. Additionally, the P3DDT may prevent gate-field from being
induced charges at the interface, resulting in a small number of accumulating hole-carriers
(Figure 5a). On the other hand, as shown in Figure 5b, the s-SWCNTs with the HAP
treatment could lead to a number of charges induced by gate-field as well as enhance
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the charge-carrier transport due to the reduced P3DDT. However, it is noteworthy that
compared to the s-SWCNT without the HAP treatment, a larger area of the s-SWCNT
channel layer would be exposed to ambient gases by the reduction of P3DDT, causing
a large hysteresis behavior, which is in agreement with the transfer curve of s-SWCNT
TFTs with the HAP process (Figure 2c). In addition to the effect of the HAP process on the
electrical characteristics of the SWCNT FETs, device configurations significantly influence
the entire properties of the TFTs. Figure 5c and d shows the comparison of CYTOP on- and
in-dielectric configurations for the accumulation of hole-carriers, respectively. In the case
of CYTOP gate dielectric and on-dielectric device structure, nano-gaps exist between the
s-SWCNT channel and the CYTOP as shown in Figure 5c, causing reduced gate-field in the
s-SWCNT channel and smaller number of accumulated holes. With the in-dielectric struc-
ture, however, the formation of the nano-gaps is suppressed by the conformal contact made
between the CYTOP gate dielectric and the s-SWCNTs (Figure 5d). Subsequently, more
numbers of holes are accumulated in the channel layer resulting in improved field-effect
mobility. Similarly, with the ion-gel gate dielectric and in-dielectric device structure (a
side-gated in-plane structure), cations migrated to the s-SWCNT/ion-gel interface under a
negative gate bias and relatively high number of holes can be accumulated in the s-SWCNT
channel even at a low gate bias (Figure S6a).
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Figure 5. Schematics of the mechanism for the accumulation of hole-carriers in the s-SWCNT (a)
w/o and (b) with the HAP treatment. The energy band diagram models of CYTOP gate (c) on- and
(d) in-dielectric configuration. The C-V characteristics for Al2O3 gate dielectric with (e) w/o and (f)
with the HAP treatment, and CYTOP gate dielectric with (g) on- and (h) in-dielectric configuration.
Induced charge density of the s-SWCNT FETs with (i) Al2O3 and (j) CYTOP gate dielectric. Interface
trap density of the s-SWCNT FETs depending on (k) the HAP process and (l) device configuration.

To verify the above the mechanisms and energy band models, capacitance-voltage
(C-V) characteristics of metal-insulator-semiconductor (MIS) devices with Au/(Al2O3,
CYTOP or ion-gel)/s-SWCNTs structures were analyzed. As shown in Figure 5e–h, in
all cases, the number of accumulated hole carriers increased with negative gate biasing.
Additionally, the capacitance value was significantly decreased with the applied frequency.
The increase of capacitance at low frequency is attributed to the interface states that cannot
respond quickly. In contrary, at the low frequency, the charges can follow the ac signal
easily and the interface state capacitance can be considered to the total capacitance. The C-V
characteristics were largely varied with the presence of P3DDT in the s-SWCNT channel.



Materials 2021, 14, 3361 10 of 13

Particularly, with the HAP-processed s-SWCNTs, higher capacitance value was obtained
compared to the s-SWCNTs with P3DDT (Figure 5e,f). As described, compared to the
pristine s-SWCNTs without the HAP treatment, the s-SWCNTs with the HAP treatment
could be exposed to air through the reduced P3DDT bound to s-SWCNT, resulting in
higher area capacitance. This result is due to an increase in the effective contact area
between s-SWCNTs and gate dielectric. However, despite such positive features, the
reduction of the P3DDT would negatively affect a hysteresis of the SWCNT FETs due
to the direct adsorption of water molecules on the s-SWCNT surfaces, which is in tune
with the hysteresis characteristic of HAP-processed SWCNT FETs. In addition, the device
configuration has a significant impact on the C-V characteristics. As shown in Figure 5g,h,
with the in-dielectric FET structure completely covering the s-SWCNTs with the CYTOP
gate dielectric, the capacitance value was increased in all frequency domains compared
to the on-dielectric device, supporting the elimination of the nano-gaps. Additionally,
the ion-gel gated s-SWCNTs showed a similar trend to the in-dielectric structure and the
highest areal capacitance value (~50 µF·cm−2) due to a high-k ion-gel film (Figure S6b,c).

Additionally, from the C-V characteristics, we extracted the induced charge density
(Qind) in the s-SWCNT channel layer using the following Equation (1) [35,38],

Qind = CGD (VG − Vth) (1)

where CGD and Vth are the areal capacitance of gate dielectric and the threshold voltage
in the linear region, respectively. As a result, both the HAP process reducing the P3DDT
polymer, and the in-dielectric device structure providing the conformal contact at the
interface improved the Qind, resulting in a lot of the accumulated hole carriers and the
enhanced charge transport of the s-SWCNT (Figure 5i,k). Additionally, for further analysis
of the interface between the s-SWCNT and gate dielectric, the interface trap density (Dit)
has been investigated from the C-V characteristics using the Equation (2) below [38,39],

Dit =
CLF − CHF

q
(

1 − CLF
Cdi

)(
1 − CHF

Cdi

)
WL

(2)

where CLF, CHF, Cdi, and q are the low-frequency, high-frequency, gate dielectric capaci-
tance, and electron charge, respectively. The results indicate that the interface trap density
considerably increased as the P3DDT polymers bonded with the s-SWCNTs were reduced
by the HAP process, as shown in Figure 5j. It means that a clean s-SWCNT surface with
the reduced P3DDT can lead to active adsorption of water molecules, causing a larger
hysteresis behavior. Therefore, it is important to reduce Dit, which degrades electrical
performance. Figure 5i shows the comparison of the Dit depending on device configuration
(on- and in-dielectric). As expected, with the in-dielectric configuration covering the entire
s-SWCNT channel layer, the Dit decreased considerably. This result is attributed to both a
conformal/imitate contact mitigating nano-gaps that can interrupt inducible charges at the
interface and the passivation effect that can prevent the absorption of ambient molecules
on the s-SWCNT channel surface. Similarly, for the ion-gel gated s-SWCNTs FETs, the
interface trap density would be positively relieved due to more conformal contact with an
ion-gel dielectric.

4. Conclusions

In summary, we achieved high purity semiconducting s-SWCNT solution by a facile
heat-assisted purification (HAP). Through Raman analysis and absorption spectroscopy, it
confirmed that conjugated P3DDT polymer wrapped s-SWCNT was successfully decreased
after the HAP process. In addition, in order to investigate the effect of the reduction of the
P3DDT on the electrical characteristics, we fabricated s-SWCNT FETs on an ALD-Al2O3/Si
substrate using the HAP-processed s-SWCNT solution. As a result, the HAP-processed s-
SWCNT FETs exhibited improved electrical performances due to the considerable reduction
of P3DDT interfering with the charge transport within the SWCNT network. However,
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a large hysteresis was still present as well as it was more deteriorated than that without
the HAP process. This result would be attributed to the adsorption of water molecules on
the clean SWCNT surface with less P3DDT attached, causing a large interface trap density.
Furthermore, by comparing the induced charge and interface trap densities extracted
from finite-element-analysis (FEA) computer simulation and the C-V characteristics of
the on-dielectric and in-dielectric configuration of s-SWCNT FETs simultaneously, it was
founded that conformal contact between the gate dielectric and the SWCNT network not
only provides a higher gate-field effect to the SWCNT layer, but also lowers the interface
trap density. Finally, to ensure the viability of the more favorable gate-field-induced
semiconducting surface behaviors of s-SWCNT, we implemented conformally gated highly
capacitive s-SWCNT FETs with ion-gel dielectrics, demonstrating field-effect mobility of
~8.19 cm2/V·s and on/off current ration of ~105 along with negligible hysteresis. We
believe that the understanding the configuration of the s-SWCNT FETs is crucial to achieve
a facile route to high-performance and stable solution-processed semiconductor devices
with marginal complexity, offering compatibility with standard CMOS processing and
large-scaled on-chip device applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14123361/s1, Figure S1: Capacitance per area-frequency (C–F) characteristics of (a) Al2O3;
(b) CYTOP, and (c) ion-gel gate dielectric layers using a metal/insulator/metal (MIM; Au/Al2O3,
CYTOP, or ion-gel/Au) structure, Figure S2: Optical image of heat-assisted s-SWCNT solutions
with different temperature of 80, 100, 120, and 140 ◦C. The aggregation of the s-SWCNTs increases
with increasing temperature, Figure S3: Statistical distribution of (a,c) saturation mobility and (b,d)
threshold voltage (VTH) of the s-SWCNT FETs on Al2O3 gate dielectric layer without or with the HAP
treatment, Figure S4: Total resistance (Rtotal) extracted by transmission line method (TLM) of the
s-SWCNT FETs (a) without and (b) with the HAP treatment. The insets are the energy band diagrams
of the s-SWCNTs, Figure S5: Statistical distribution of (a,d) saturation mobility, (b,e) threshold voltage
(VTH), and (c,f) hysteresis for the s-SWCNT FETs on CYTOP gate dielectric with different device
configurations: on- and in-dielectric configuration, Figure S6: (a) An energy band diagram model of
a side gate high-purity SWCNT FET using ion-gel gate dielectric layer. (b) The C–V characteristic
and (c) induced charge density of ion-gel gated s-SWCNT FETs, Table S1: Properties of the materials
used for COMSOL simulation.
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