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Entropy‑based dynamic graph 
embedding for anomaly detection 
on multiple climate time series
Gen Li & Jason J. Jung*

Abnormal climate event is that some meteorological conditions are extreme in a certain time interval. 
The existing methods for detecting abnormal climate events utilize supervised learning models 
to learn the abnormal patterns, but they cannot detect the untrained patterns. To overcome this 
problem, we construct a dynamic graph by discovering the correlation among the climate time series 
and propose a novel dynamic graph embedding model based on graph entropy called EDynGE to 
discriminate anomalies. The graph entropy measurement quantifies the information of the graphs and 
constructs the embedding space. We conducted experiments on synthetic datasets and real-world 
meteorological datasets. The results showed that EdynGE model achieved a better F1-score than the 
baselines by 43.2%, and the number of days of abnormal climate events has increased by 304.5 days in 
the past 30 years.

Climate events commonly include meteorological conditions such as precipitation, water vapor pressure, atmos-
pheric temperature, and humidity. Abnormal climate event is that some meteorological conditions are extreme 
in a certain time interval. It endangers the balance of the natural ecosystem and threatens humans’ survival. 
Abnormal climate event detection can help people analyze the patterns of the abnormal meteorological and 
extract useful features from these patterns1. As a research issue of data mining, anomaly detection has been 
widely applied to abnormal climate event detection. The object of anomaly detection is to identify the data that 
are significantly different from most observations.

Existing data analysis methods for anomaly detection are based on machine learning models2. The supervised 
learning methods learn the patterns of abnormal climate events and fit the non-linear models. These methods 
require that the data has been labeled as anomalies. The semi-supervised learning methods utilize a few labeled 
data to fit the models and detect the abnormal climate events on the unlabeled data. These methods are com-
monly constructed by using the autoencoder. If the loss of the data point is greater than the threshold, the data 
point is detected as an anomaly. These methods are impossible to detect the anomaly without untrained patterns. 
Climate events comprise the multiple meteorological data, and the correlation between these data also plays an 
essential role in anomaly detection. To address this problem, we propose using a graph to model the correlation 
among multiple time series. Graph model integrated dynamical analysis has been demonstrated as an effective 
tool in data mining fields and industrial processing monitoring, such as seen in the papers3,4. They proposed a 
graph-based change detection for monitoring the statement of machines and diagnosed the faults by detecting 
the changes in the dynamic graph constructed using the mechanical vibration signals. In our issue, we aim to 
detect an abnormal graph from the dynamic graph instead of detecting when the dynamic graph changes.

To solve this problem, we propose to construct a dynamic graph by discovering the correlation between the 
meteorological time series in the previous research5. The idea mainly consists of three steps. Firstly, the dynamic 
graph is constructed by identifying the spurious relationship between meteorological data in which two correla-
tion data are not causally related6. The causation has been widely analyzed on multiple time series such as the 
paper7 applied the causation from the time series to the earth sciences to detect and attribute climate change. 
The vertices of the graphs indicate meteorological data, whereas the edges indicate the spurious relationship 
between two vertices. Since there are some limitations to detect anomaly only by using the adjacency matrices 
of the graph, we calculate the graph entropy using the spurious correlation coefficient to measure the similarity 
between two graphs. Then, we propose a dynamic graph embedding model based on graph entropy to construct 
an embedding space for discriminating the anomaly. Finally, we apply the existing outlier detection methods on 
the embedding space to detect the anomaly. The abnormal climate event is detected as a graph in a certain time 
interval where the entropy is different from most other graphs, which is defined as follows.
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Definition 1  (Abnormal climate event) An abnormal climate event is defined as a graph Gi in the i-th time interval 
in which the weights of the edges are significantly different from those in other time intervals. It is formulated 
as |e(Gi)− e(Gi−1)| > θ or |e(Gi)− e(Gi+1)| > θ , where e(Gi) is the entropy of the climate event Gi and θ is the 
threshold for detecting the abnormal climate event.

Figure 1 shows a toy example of the climate events in three time intervals by using the synthetic data where 
T indicates temperature, P indicates pressure, S indicates wind speed, Gi indicates the climate event in the i-th 
time interval, and the weight of an edge indicates the spurious correlation coefficient. The temperature at G2 
increases by 2 ◦ C, which leads to a difference in the weights of edges and those of the other two time intervals. 
This indicates that the climate event at G2 is abnormal.

The main contributions of this work are as follows.

•	 We present the graph entropy to measure the information of climate events, which is calculated using the 
spurious correlation coefficient.

•	 We propose an entropy-based dynamic graph embedding model (EDynGE) to cluster the climate events. 
The abnormal climate events are far from the most observations and can be detected by applying an outlier 
detection method.

•	 We conducted experiments on synthetic datasets and real meteorological datasets. The results showed that 
the proposed method achieved better performance on the two kinds of the datasets than the other dynamic 
graph embedding models, and the days of the abnormal climate events exhibit an upward trend from 1990 
to 2020.

The remainder of this paper is organized as follows. In the next section, the experimental results are described. 
Then, the conclusions, limitations, and future works are provided. Finally, the methodology of entropy-based 
dynamic graph embedding for detecting abnormal climate event is detailed.

Results
Since the graphs with similar neighbor structures may have significantly different entropies, only using the 
adjacency matrices of the graphs cannot detect the anomaly. Therefore, we discriminate the anomaly by using 
the EDynGE model. To detect the anomaly in the embedding space, we applied the existing outlier detection 
methods, which are local outlier factor (LOF)8, isolation forest (IF)9, and box-plot (BP)10. IF method mentions 
that the distribution of outliers is sparse, and these outliers are far away from the normal observations with high 
density. Thus, the outliers can be easily separated. LOF detects outliers based on the density of the data points. 
The BP method is based on statistical indices for detecting outliers and requires the dataset to have a normal 
distribution.

Datasets.  For evaluating the proposed model, we utilized two kinds of datasets to conduct the experiments. 
Firstly, the performance of the proposed model is obtained by using synthetic climate data. Then, we applied 
the proposed model on the real-world daily climate data. The synthetic datasets are generated by using the 
LARS-WG weather generator that is a stochastic weather generator11. It can simulate the climate scenarios based 
on global or regional climate models and comprises the climate projections from the coupled model intercom-
parison project 5 (CMIP5)12. In this study, we utilized the datasets generated from 5 different institutions in 
the CMIP5 to conduct the experiments, which are Australian community climate and earth-system simulator 
model (ACCESS), Beijing climate center and China meteorological administration (BCC), Canadian center for 
climate modeling and analysis (CanCm4), Euro Mediterranean climate change Center (CMCC), and national 
meteorological research center (CNMR). Each dataset includes four-time series in 100 years, namely precipita-
tion, maximum temperature, minimum temperature, and radiation.

The real-time daily climate data from the Chinese surface stations of ten provinces were used to conduct 
experiments. According to the nationwide surface climate statistical method13, these datasets were derived from 
various provincial meteorological bureaus through statistical compilations. The datasets were collected from 194 
basic and reference surface meteorological observation stations and automatic weather stations in China from 

101

P (kPa)

3.5

S(km/h)

200

T (◦C)

101 3.5

20

P (kPa) S(km/h)

20

T (◦C)

101 3.5

22

P (kPa) S(km/h)

22

T (◦C)

0.7

0.6

0.4

0.7

0.6
0.4

0.6

0.4

0.3

G0 G1 G2

Figure 1.   Example of an abnormal climate event.
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1951. Each dataset included 18 elements, including mean pressure, mean temperature, precipitation and so on. 
In this study, we collected meteorological data from 1990 to 2020 to evaluate the EDynGE model.

Evaluation metrics.  Because the datasets are unlabeled, we propose using two different ways to evaluate 
the EDynGE model. The first way is to label a certain number of data points as outliers. These data points are 
embedded vectors of climate events. Since there are 1–10% anomalies in a dataset14, we conduct the experiments 
to validate the performance of the proposed model by selecting 1–10% anomalies. For example, we assume that 
10% of data points are selected as outliers in each dataset. The embedding vector of the t − th graph is denoted 
as gt . The center of the embedding vectors can be formulated as c = 1

T

∑T
t=1 gt , where T is the number of time 

intervals. If the entropies of the graphs are similar, the embedding vectors of these graphs are close to each other, 
and the outliers are far from the normal observations. The 10% data points farthest from the center are selected 
as outliers. The EDynGE model can be evaluated using precision, recall, and F1-score.

In the second way, we propose a hypothesis based on global warming that with increasing temperature, 
the number of days of abnormal climate events also increases. We counted the number of days with abnormal 
climate events every year, every 5 years, and every decade. If the number of days of abnormal climate events 
detected by using our model exhibit an upward trend, it indicates that the proposed model is possible to detect 
the abnormal climate events.

Baselines.  To conduct a comparison, we utilized a graph convolutional neural network (GCN) and a dynamic 
graph to a vector-based model (dyngraph2vec) as baselines15,16. The GCN uses convolutional kernels to capture 
the spatial information of vertices in the graph. Because GCN is applied to the static graph, it does not consider 
the temporal information of the dynamic graph. Dyngraph2vec is an unsupervised learning model for embed-
ding dynamic graphs. It provides the twp dyngraph2vec-based models, which are autoencoders (Dyn2vecAE) 
and the autoencoder-based recurrent neural network model (Dyn2vecAERNN). Dyn2vecAE cannot extract the 
temporal information from the dynamic graph since the model computes the embedding vectors by reconstruct-
ing the graphs. Dyn2vecAERNN utilizes the idea of the skip-gram to consider the temporal information of the 
graphs17. It computes the embedding vector of the current graph by using the graphs around the current graph.

Results on synthetic data.  To obtain the performance of the proposed method with different ratios of 
anomalies, we select the ratio of anomalies from 1 to 10% to conduct the experiments, and the results are shown 
in Fig. 2. According to the results, the LOF method achieved the best F1-score and precision. The BP method 
showed an upward on the precision for the dataset of BBC. Since the BP method detects anomalies based on the 
distribution of the datasets, if the number of anomalies selected in the datasets is low, the BP method’s precision 
is low, and the recall of the BP method is high. With the increase of the number of anomalies, the recall of the 
BP method showed a downward trend, and the precision has an upward trend. LOF and IF methods can control 
the ratio of anomalies detected so that the performance of these two methods are not affected by selecting the 
different ratio of anomalies. Overall the performance for the dataset of BCC, LOF method performed better than 
the other two methods on precision and BP method exhibit a non-linear increase tend.

Since the ratio of anomalies is not more than 10% data points, we selected 10% of data points as anomalies 
in the synthetic dataset to evaluate the proposed model. Table 1 shows the comparison results on the synthetic 
climate data with respective to F1-score. According to the results, the EDynGE-based LOF method achieved 
the best F1-score on all synthetic climate datasets. The reason is that the proposed dynamic graph embedding 
model considered the similarity between two graphs on the entropy so that the graph with an abnormal graph 

Figure 2.   Performance for the dataset of BCC.
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was far from most normal observations. In this case, the graphs nearby the anomalies are less than the normal 
graphs, and the density of the anomalies is low. Therefore, the LOF method achieved a better F1-score than the 
other two methods. Overall, the BP method achieved the worst F1-score. Because the BP method requires that 

Table 1.   Comparison results on synthetic datasets (the bold scores indicate the best performance with the 
given datasets).

Datasets

EDynGE Dyn2vecAE GCN Dyn2vecAERNN

LOF IF BP LOF IF BP LOF IF BP LOF IF BP

ACCESS 1 0.74 0.55 0.89 0.70 0.48 0.98 0.88 0.34 0.93 0.92 0.53

BCC 0.98 0.76 0.67 0.94 0.80 0.73 0.97 0.78 0.60 0.78 0.80 0.62

CanCM4 1 0.78 0.62 0.98 0.92 0.68 0.86 0.89 0.61 0.86 0.90 0.56

CMCC 0.99 0.80 0.58 0.94 0.81 0.60 0.81 0.99 0.81 0.87 0.85 0.78

CNMR 1 0.75 0.67 0.94 0.52 0.43 0.95 0.82 0.56 0.95 0.41 0.61

Figure 3.   Days of abnormal climate events in the four provinces.
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the dataset has a normal distribution and the dataset is not a normal distribution, the BP method cannot perform 
better than the other two methods.

Results on real‑world data.  Figure 3 shows the days of abnormal climate events in the four provinces 
obtained using the IF method. The results of every year show that the frequency of abnormal climate events 
exhibits an increasing trend. We calculated the days of abnormal climate events every 5 years. The results showed 
that four provinces exhibited a non-linear increasing trend. However, a local minimum value in Guangzhou 
and Shanghai was observed from 2005 to 2010, and Beijing had a local minimum value from 2000 to 2005. The 
results of every decade indicated that three provinces Beijing, Shandong, and Shanghai showed an upward trend. 
Guangzhou showed a falling trend first followed by a rising trend. According to the experimental results, the 
detected abnormal climate events conform with the hypothesis in most cases.

Table 2 shows the F1-score of the models under 10% outliers. According to the experimental results, the 
EDynGE model exhibited the best performance in seven provinces, of which the EDynGE-based LOF method 
has the best performance in six provinces. The F1-score of the proposed method performed worse than the 
DynvecAE method on Jiangsu, Nei Mongol, and Shanxi provinces. The DynvecAE method utilized two auto-
encoders to map the dynamic graph into an embedding space. Therefore, two graphs with a similar neighbor 
structure are close to each other in the embedding space. In this case, the abnormal graph is scattered and can 
be correctly detected. The proposed method clustered the graph based on their entropy. The graphs with the 
similar graph are far from the most observations but not scattered. Therefore, if the entropy of the abnormal 
graphs is similar, the performance of the proposed method is affected. The anomalies in Jiangsu, Nei Mongol, 
and Shanxi provinces have similar patterns, so the proposed method cannot outperform the DynvecAE method. 
In addition, based on the experimental results of the synthetic datasets and real-world datasets, the baselines 
have significant differences in the BP method. According to the results, the F1-score of the synthetic datasets 

Table 2.   Comparison results on real-world meteorological datasets (the bold scores indicate the best 
performance with the given datasets).

Dataset

EDynGE DynvecAE GCN Dyn2vecAERNN

LOF IF BP LOF IF BP LOF IF BP LOF IF BP

Beijing 1 0.92 0.56 0.97 0.76 0.22 0.59 0.43 0.36 0.97 0.68 0.22

Shanghai 0.97 0.77 0.59 0.76 0.85 0.25 0.50 0.74 0.34 0.90 0.64 0.26

Guangzhou 0.97 0.85 0.51 0.93 0.78 0.13 0.83 0.72 0.85 0.79 0.65 0.21

Shandong 0.97 0.97 0.70 0.76 0.84 0.52 0.69 0.34 0.55 0.93 0.60 0.13

Hebei 1 0.67 0.70 0.97 0.72 0.46 0.57 0.50 0.11 0.97 0.72 0.11

Jiangsu 0.92 0.71 0.60 0.93 0.85 0.26 0.43 0.13 0.14 0.71 0.70 0.25

Nei Mongol 0.88 0.70 0.25 0.60 0.92 0.26 0.33 0.16 0.14 0.58 0.69 0.41

Shanxi 0.69 0.65 0.56 0.61 0.73 0.59 0.39 0.25 0.33 0.96 0.59 0.41

Zhejiang 0.67 0.81 0.67 0.33 0.62 0.29 0.59 0.74 0.26 0.50 0.67 0.26

Tianjin 0.62 0.77 0.52 0.71 0.80 0.60 0.67 0.50 0.21 0.88 0.63 0.25

Figure 4.   Performance for the city of Beijing.
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performed better than the real-world datasets. The reason is that the synthetic datasets consist of four-time series 
that are much less than the real-world datasets. Therefore, with the increase of the number of time series, the 
performance of the BP method shows a downtrend. But the proposed method can overcome this problem by 
obtaining the experimental results.

In the real-world climate data, we obtained the performance of the EDynGE model with different ratios of 
outliers. Figure 4 shows the performance of the model on Beijing province by choosing different ratios of outli-
ers. According to the results, the LOF method achieved the best performance on the ratio of 1%, 2%, and 10% 
with the F1-score of 1. When we selected 1% and 2% anomalies, these data points are most far from the center 
of the embedding space, and the density of these points is low so that the LOF method can exhibit the best per-
formance on these two ratios. With the ratio of anomalies increasing, some of the normal data points far from 
the center are wrongly detected as the outlier. Therefore, the performance of the LOF method is affected. As the 
ratio of anomalies continues to increase, these points are labeled as anomalies. Therefore, the performance of 
the LOF method showed an upward trend after a downward trend. The F1-score of the IF method is more stable 
than the LOF method, but the IF method’s maximum value is lower than the LOF method. The performance of 
the BP method also showed an upward trend that is the same as the synthetic data. In addition, the precision 
of the LOF method is better than the other two methods. Overall, the conclusion of experimental results for 
the dataset of synthetic data and real-world data are the same, which LOF method outperformed the other two 
methods with respect to F1-score.

Discussion
In this study, we proposed an EDynGE model to detect abnormal climate events. The model uses the spurious 
correlation coefficient to calculate the graph entropy and reduces the distance between two climate events with 
similar graph entropy. We conducted experiments to validate the performance and stability of the EDynGE model 
for abnormal climate event detection. The results showed that the LOF method exhibited better results than the 
IF and BP methods by 12.3% and 66.2% with respective to F1-score, respectively. The EDynGE model performed 
better than the other dynamic graph embedding models by 43.2% with respective to F1-score. Based on global 
warming, we hypothesized that with an increase in temperature, the number of days of abnormal climate events 
exhibits an upward trend. The experimental results showed that the number of abnormal climate event days 
increased by 304.5 days from 1990 to 2020, which agreed with the hypothesis. This indicates that the EDynGE 
model can detect abnormal climate events. According to the experimental result, the proposed model achieved 
the same conclusions on the synthetic datasets and real-world meteorological datasets.

This study has some limitations. The EDynGE model can cluster graphs based on graph entropy. However, 
graphs with different neighbor structures have the same graph entropy in some cases. The EDynGE model cannot 
detect outliers with an abnormal neighbor structure. This indicates that the EDynGE model ignores the spatial 
information of the dynamic graph. To overcome this issue, we plan to construct a hybrid model that consists 
of the neighbor structure similarity and graph entropy similarity for detecting outliers in multiple time series. 
The second limitation is that the EDynGE model is based on an autoencoder that does not capture the temporal 
information from the dynamic graph. Although the temporal information is negligible in the research problem, 
it also needs to be considered in dynamic graph embedding. To overcome this problem, we plan to construct 
an autoencoder model using the long short-term memory architecture to discover temporal features from the 
dynamic graph.

We propose a novel idea to detect outliers from multiple time series. It utilizes the correlation of the time 
series to construct a dynamic graph and detects the outlier from the dynamic graph. The outlier detection 
problem is transformed from the multiple time series domain to the dynamic graph domain. It can help people 
find the causes of the outliers by obtaining the evolution of graphs. For example, abnormal trends in the stock 
market can be detected and analyzed using the EDynGE model in the financial time series. Furthermore, the 
digital twin technology is developing rapidly. It utilizes sensors to record the digital information for simulating 
the condition of the object in the physical space. The proposed is able to detect the anomalies from the recorded 
digital signals to diagnose faults from the physical. For example, the transmission failure in the machines and 
the structural damage in the buildings can be detected by using the proposed idea.

Methods
This section describes the dynamic climate graph, graph entropy, and EDynGE model. A dynamic graph is used 
to model climate events in each time interval to detect the abnormal climate event. The graph entropy measures 
information regarding the climate event. The meteorological datasets are allowed to collect from the China 
meteorological data service center (http://​data.​cma.​cn/​en) by registering an account. The proposed consists of 
three processes. Firstly, the dynamic graph is constructed by identifying the spurious relationship between the 
time series and compute the graph entropy. Then, to discriminate the anomalies, we propose a novel dynamic 
graph embedding model based on the graph entropy. Finally, the anomalies are detected by applying the existing 
outlier detection methods.

Graph construction.  The graph is denoted as G(V, E), where V and E denote the vertices and edges, respec-
tively. For a climate event, the vertex indicates the meteorological data, the edge denotes the spurious relation-
ship, and the weight w indicates the spurious correlation coefficient. The coefficient is calculated based on the 
causality and correlation between two time series, x and y. The time series causality is defined as follows.

Definition 2  (Time series causality) The causality of two series is defined as that if one of the series improves the 
prediction of the other, which is formulated as

http://data.cma.cn/en
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where x and y are two time series, C(x, y) indicates the causality between them, and p is the probability that the 
two series are not causally related.

The Granger causality test is utilized to calculate the short-run causality between two meteorological time 
series, x and y18. The test makes a null hypothesis that the two series are not causally related and includes two 
predictions. Firstly, it uses the past values of the series y as variables to predict the current y. Then, it uses the past 
values of series x and y as variables to predict the current y. If the prediction result obtained using the temporal 
information of two series x and y is better than the prediction only using the series y, then x helps predict y. The 
t-test was utilized to compare the difference between two prediction results19. The p value was used to denote 
the probability of the null hypothesis. If the p value was more than 0.05, then the two series x and y were said to 
not be causally related20.

The weight value of an edge in the graph indicates the spurious correlation coefficient that is calculated using 
the causality and Pearson correlation coefficient (PCC)21, which is formulated as follows.

where C(x, y) indicates the causality between the two series x and y. R(x, y) indicates the spurious correlation 
coefficient between the two series. The spurious correlation coefficient is inversely proportional to the causality 
between the time series x and y. If the causality C(x, y) between two series x and y is 0, then there is no spurious 
correlation between the two series. In this case, the corresponding spurious correlation coefficient R(x, y) is 1.

Graph entropy.  The graph entropy is calculated based on information entropy22. We assume that there are 
two independent events, x and y. The information of these events should be satisfied as h(x, y) = h(x)+ h(y) , 
where h(x) indicates the information of the event x, and h(x, y) indicates the information of these two events 
occurring at the same time. The probability of these events should be satisfied as p(x, y) = p(x)× p(y) , where 
p indicates the probability of the event. The information of the event x can be measured as h(x) = −log2p(x) . 
Information entropy can be represented as the information of the event x times the probability of x, which 
is formulated as e(x) = −p(x)log2p(x) . For a set of events X, the information entropy is formulated as 
e(X) = −

∑N
i=1 p(xi)log2p(xi) , where N indicates the number of events in the set and xi indicates the i-th event.

To calculate the graph entropy, we calculated the entropy for each vertex in the graph. The definition of the 
vertex entropy is defined as follows.

Definition 3  (Vertex entropy) Given a graph G = (V ,E) , the entropy of the vertex vi is defined based on the 
weight between the vertices vi and vj , which is formulated as e(vi) =

∑N
j=0,j �=i −wi,j log2wi,j , where N indicates 

the number of vertices. The weight value wi,j equals R(vi , vj) , which denotes the spurious correlation coefficient 
between two vertices vi and vj.

The graph entropy is calculated by summing the entropy of all vertices, which is formulated as 
e(G) =

∑N
i=0 e(vi) . The dynamic graph entropy is composed of the graph at time interval t ∈ [0,T] , which 

is formulated as E = {e(Gt)|t ∈ [0,T]} . The information of the climate event can be quantified using graph 
entropy. When one of the meteorological data points changes, the spurious relationship coefficients change, and 
the graph entropy also changes at the corresponding time interval. The abnormal climate event can be detected 
by obtaining graph entropy.
Entropy‑based graph embedding.  The dynamic graph consists of graphs Gt in the time interval 
t ∈ [0,T] , which is formulated as G = {Gt |t ∈ [0,T]} . Dynamic graph embedding is used to capture the tem-
poral information of the dynamic graph G for learning a mapping function f : Gt → gt , where gt is an embed-
ding vector of the graph Gt . The similarity of the entropy between the two graphs is formulated as 
d(e(Gi), e(Gj)) =

√
||e(Gi)− e(Gj)||

2
2 . The object of the entropy-based graph embedding reduces the distance 

between two graphs with similar entropy. Therefore, for one graph, we have to find a corresponding graph most 
similar to it. Then, we reduce the distance between these two graphs in the embedding space by establishing the 
loss function. For example, given a graph Gi at the i-th time interval, we can find a graph Gj at the j-th time inter-
val that is the most similar graph with Gi . Since the graphs Gi and Gj has a similar entropy, the embedding vectors 
gi and gj have a short distance in the embedding space by minimizing the loss function. To address this problem, 
we construct a dynamic supervised graph, which is defined as follows.

Definition 4  (Dynamic supervised graph) Let G = {Gt |t ∈ [0,T]} denote the dynamic graph at time interval 
t ∈ [0,T] . For the graph Gt , the corresponding graph Gi can be found from the dynamic graph G , where the 
similarity d(e(Gi), e(Gt)) of the entropy between the two graphs is the smallest. The supervised graph is defined 
as the corresponding graph Gi which is denoted as St = argmin

Gi

(d(e(Gi), e(Gt))) . The dynamic supervised matrix 

is a set composed of the graph Gi , which is formulated as S = {St |t ∈ [0,T]}.

(1)C(x, y) =

{
1 if p ≥ 0.05
0 otherwise

(2)R(x, y) =

{
1 if C(x, y) = 0
C(x, y)− |PCC| otherwise
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As shown in Fig. 5, the dynamic graph is formulated as G = �G0,G1,G2� . The entropy of vertex v0 in the 
climate event G0 is calculated as e(v0) =

∑2
j=0,j �=i −w0,j log2w0,j = −0.6× log20.6− 0.4× log20.4 = 0.292 . 

The entropies of the vertices v1 and v2 in G0 can be calculated as e(v1) = 0.241 and e(v2) = 0.267 , respec-
tively. The entropy of graph G0 is e(G0) = 0.292+ 0.241+ 0.267 = 0.800 . The entropy of graphs G1 and G2 are 
e(G2) = 0.796 and e(G2) = 0.848 , respectively. The similarity of the entropy between the graphs G0 and G1 is 
d(e(G0), e(G1)) = 0.004 . The similarity between the graphs G0 and G2 is d(e(G0), e(G2)) = 0.048 . Therefore, the 
nearest graph from G0 is G1 , the nearest graph from G1 is G0 , and the nearest graph from G2 is G0 . The dynamic 
supervised matrix is thus denoted by S = �G1,G0,G0�.

We utilize two autoencoders to reconstruct the dynamic graph and supervised graph. The two autoencoders 
share parameters with each other. Figure 6 shows the architecture of the EDynGE model, where Gt and St indicate 
the climate graph and the supervised graph, respectively. The embedding vectors of Gt and St are denoted as gt 
and st , respectively. The autoencoder includes an encoder and decoder. We use yi to indicate the i-th layer of the 
encoder, and ŷi is used to denote the i-th layer of the decoder. The autoencoder reconstructs the input data using 
the encoder and decoder to calculate the graph’s embedding vector. The encoder uses non-linear functions to 
extract the features for mapping the graphs into the embedding space, which are formulated as

where δ is an activation function. Wi and bi indicate the weight and basis in the i-th layer, respectively. The 
ReLU function is utilized as the activation for making the neural network non-linear, which is formulated as 

(3)y1 =δ(W1Gt + b1)

(4)yi =δ(Wiyi−1 + bi)
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f (yi) = max(0, yi)23. The decoder reconstructs the graph from the embedding vector, which is calculated by 
reversing the encoder’s computation.

The purpose of dynamic embedding is to reduce the distance between two graphs that have a similar entropy 
in an embedding space. Therefore, we establish a loss function based on the similarity of the graph entropy in 
the embedding layer, which is formulated as Ls =

1
T

∑T
t=1 ||gt − st ||

2
2 , where T indicates the number of time 

intervals. The graph Gt and supervised graph St have the smallest similarity on graph entropy. Thus, the func-
tion Ls reduces the loss between at and st to reduce the distance between two graphs in the embedding space. 
An autoencoder is used to reconstruct the input so that we have to establish a loss function for reducing the 
loss between the input and output, which are formulated as L1 =

1
T

∑T
t=1 ||Gt − Ĝt ||

2
2 . To avoid overfitting, 

we establish a regularization term that is formulated as Lreg =
1
2

∑I
i=0(||W

i||22 + ||Ŵi||22) , where Wi and Ŵi 
indicates the weight of the encoder and decoder in the i-th layer. The joint loss function is established using the 
functions Ls , L1 , and Lreg , which is formulated as

We utilize the gradient descent algorithm and backward propagation algorithm24,25 to train the model. Gradi-
ent descent is used to calculate the weight and basis in the output layer, which are formulated as WI = WI − η

∂L

∂WI  
and bI = bI − η

∂L

∂bI
 , where I indicates the output layer. Each layer’s weight and basis are calculated using the 

backward propagation algorithm, which calculates the partial derivation of the loss function based on the chain 
rule for updating each layer’s weight and basis.

Data availability
The real-meteorological datasets used in this study are available to be collected from the China Meteorologi-
cal Data Service Center and allow the authors to download the data from the website http://​data.​cma.​cn/​en by 
registering an account.
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