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Background: Dual energy X-ray absorptiometry (DXA) has evolved from pencil-beam 
(PB) to narrow fan-beam (FB) densitometers. We performed a meta-analysis of the avail-
able observational studies to determine how different modes of DXA affect bone miner-
al density (BMD) measurements. Methods: A total of 1,233 patients (808 women) from 
14 cohort studies were included. We evaluated the differences in BMD according to the 
DXA mode: PB and FB. Additionally, we evaluated the differences in BMD between the 2 
types of FB mode: FB (Prodigy) and the most recent FB (iDXA). Pairwise meta-analysis 
was performed, and weighted mean differences (WMD) were calculated for (total lum-
bar, total hip, and total body). Results: No significant difference was observed in total 
lumbar (pooled WMD, -0.013; P=0.152) and total hip BMD (pooled WMD, -0.01; P=0.889), 
between PB and FB. However, total body BMD was significantly lower in the PB com-
pared to the FB group (pooled WMD, -0.014; P=0.024). No significant difference was ob-
served in lumbar BMD (pooled WMD, -0.006; P=0.567), total hip (pooled WMD, -0.002; 
P=0.821), and total body (pooled WMD, 0.015; P=0.109), between Prodigy and iDXA. 
Conclusions: The results of this study warrant the recommendation that correction equa-
tions should not be used when comparing BMD from different modes. Further research 
is still needed to highlight the ways in which differences between DXA systems can be 
minimized.
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INTRODUCTION

Bone mineral density (BMD) is the primary determinant in the assessment of 
osteoporosis. Dual energy X-ray absorptiometry (DXA) is the most common mo-
dality for quantitative BMD.[1] It is a safe, accurate, and precise technique. Never-
theless, errors related to this exam are still very common and may significantly 
impact the final diagnosis and therapy.[2,3] Similar to other imaging modalities, 
DXA may be influenced by technical errors, and imaging artifacts may arise and 
accuracy and precision of the results may be influenced.[4]
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Since its introduction in 1987, DXA has been improved 
over time, most evidently in reduced scan times.[5] Repre-
sentatively, Pencil-beam (PB) DXA had been replaced with 
instruments that rely solely on fan-beam (FB) technology.
[6,7] As the technology has developed, the focus of devel-
opment has shifted to image quality, which has improved 
through advances in detector design, yielding a higher 
pixel density. A new detector and X-ray filter provide im-
proved resolution and image quality by better bone edge 
detection.[8,9]

However, it has been verified that differences in BMD oc-
cur when PB DXA machines from the same and also from 
different manufacturers. Many cross-calibration studies 
have reported that systematic differences between the in-
struments may even exceed the annual biological BMD 
changes.[5,10-13] Considering the increased number of 
osteoporosis patients, it is important to determine wheth-
er and how DXA mode affect the BMD. 

To the best of our knowledge, no meta-analysis has been 
published to determine if there are any systematic differ-
ences between 2 different modes of DXA scanner (FB and 
PB). Therefore, we performed a systematic review and me-
ta-analysis of the available observational studies, evaluat-
ing the cross-calibration study difference between 2 dif-
ferent modes of DXA scanner, including the most recent 
model.

METHODS

1. Search methods for the identification of 
studies

This meta-analysis was conducted according to the up-
dated guidelines of the Preferred Reporting Items for Sys-
tematic Review and Meta-Analysis Protocols (PRISMA-P). 
Two researchers (YBH, KYD) independently searched MED-
LINE (PubMed), EMBASE, and Cochrane Library databases 
in September 2020. An overview of the search strategy is 
presented in Supplementary 1. Articles that met the selec-
tion criteria (not limited to randomized studies, including 
prospective and case-control studies) were included in the 
meta-analysis. We attempted to obtain complete data for 
the analysis by contacting the authors of articles with in-
sufficient or missing data.

2. Study selection criteria
Studies were screened and selected by all investigators on 

the basis of a priori criteria. Inclusion criteria were as follows: 
(1) the study was a comparative that investigated the BMD 
of normal adults or adolescents who underwent DXA; (2) at 
least one of the following main clinical outcomes was re-
ported: the mean of BMD and standard deviation (SD). We 
did not include European Spine Phantom as a population.

Exclusion criteria were as follows: (1) the study accessing 
patients using another device: including Q-computed to-
mography, ultrasonography, or multi-frequency bioelectri-
cal impedance; (2) the study reported unavailable data in-
cluding intraclass correlation coefficient, coefficient of vari-
ation (CV), and standard error of measurement; (3) the study 
used national registry data; and (4) the article was a review, 
expert opinion, case report, or basic science study.

3. Outcome measures and data extraction
The primary outcome for the meta-analysis was the dif-

ference of BMD in total lumbar, total hip, and total body, 
which were compared between several models. The analy-
sis was done in the 2 groups; 1. FB vs. PB 2. FB vs. most re-
cent FB.

For every eligible study, the following data were extract-
ed and entered into a spreadsheet by 2 reviewers: the fam-
ily name of the first author, year of publication, country, 
number of patients, device and program, sample charac-
teristics (age, sex ratio, body mass index), and mean and 
SD in BMD (g/cm2). When BMD was measured at various 
sites, we included data from the sites where the highest 
values in each site were measured because these should 
best reflect. PB mode includes Lunar DPX-L (GE Healthcare, 
Madison, WI, USA), Lunar DPX-IQ (GE Healthcare), Hologic 
QDR-1000, and Hologic QDR-2000. FB mode includes Ho-
logic QDR-4500A, Lunar Prodigy (GE Healthcare). Lunar 
iDXA systems (GE Healthcare) is classified as the most re-
cent model.

4. Quality assessment and publication bias
Two of the authors (YBH, KYD) independently evaluated 

the quality of all studies, using the Newcastle-Ottawa Scales. 
This tool comprises three parameters: selection, compara-
bility, and outcome. Each parameter consists of subcatego-
rized items; selection has a maximum of 4 stars, compara-
bility has a maximum of 2 stars, and exposure or outcome 
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Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram details the process of relevant study selection.

Initial results of publication searches (n=965):
PubMed (n=293), Embase (n=254);

Cochrane Library (n=148), Web of Science (n=211);
KoreaMed (n=54), Bibliographies (n=5)

Exclude duplicated articles (n=560)

Records screened (n=405)

Exclude according to selection criteria (n=356)

Full-text articles assessed for eligibility (n=49)

Full-text articles excluded 
   Not report the outcome of interest (n=13)
   Other device (ultrasonography or Q-CT) (n=7)
   Animal study (n=7)
   Reviews (n=8)

Included studies (n=14)
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Table 1. Characteristics of included individual studies

References Year Country Type of DXA machine Sample size  
(female/total)

Mean BMI  
(kg/m2)

Mean age  
(yr)

Morrison et al.[16] 2016 UK Prodigy vs. iDXA 56/92 26.5 39.8

Watson et al.[14] 2017 UK Prodigy vs. iDXA 36/69 26.1 37.8

Saarelainen et al.[15] 2016 Finland Prodigy vs. iDXA 72/72 25.3 42.2

Hind et al.[27] 2015 UK Prodigy vs. iDXA 85 NA NA

Rhodes et al.[17] 2014 UK Prodigy vs. iDXA 43/63 25.6 45.1

Huffman et al.[20] 2005 UK DPX-L vs. Prodigy 34/72 25.9 35.9

Pludowski et al.[18] 2010 Poland DPX-L vs. Prodigy 97/212 1.2 10.8

Cho et al.[19] 2009 Korea Prodigy vs. iDXA 66/100 24.5 49.6

Crabtree et al.[21] 2005 UK DPX-L vs. Prodigy 58/110 NA NA

Blake et al.[22] 2004 UK DPX-L vs. Prodigy 104/135 26.8 57.1

Oldroyd et al.[23] 2003 UK DPX-L vs. Prodigy 44/72 21.6 32.9

Tothill et al.[24] 2001 UK QDR-1000W vs. QDR-4500A 24/41 NA 32.9

Ruetsche et al.[25] 2000 Switzerland QDR-2000W vs. QDR-4500A 63/63 29.3 48

Ellis and Shypailo [26] 1998 USA QDR-2000W vs. QDR-4500A 26/47 NA NA

DXA, dual energy X-ray absorptiometry; BMI, body mass index; NA, non-available.

has 3 stars. We assessed the presence of publication bias 
using Begg’s funnel plot and Egger’s test.

5. Statistical analysis	
The primary analysis (continuous outcomes) involved a 

pair-wise meta-analysis of the data from all relevant stud-
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ies that reported the BMD data, and the studies were wei
ghted according to the number of included patients The 
effect sizes were calculated as Hedges adjusted (g) weight-
ed mean difference (WMD), which represents the magni-
tude of the difference between the comparative groups, 
for each outcome.[10] The WMD was computed separately 
for all available control and treatment groups in each study. 
All types of effect sizes were presented along with their 
95% confidence intervals (CIs). 

A fixed-effects or random-effects model was used to 
quantify the pooled effect size of the included studies, de-
pending on the heterogeneity of the data. Heterogeneity 
between comparable studies was tested using χ2 and I2 
tests; P>0.1 and I2<50%, respectively, were used as estab-
lished criteria to determine statistical heterogeneity. All 
analyses were performed using STATA software (version 
14.0; Stata Corp., College Station, TX, USA). This study was 
exempted from Institutional Review Board review since it 
did not involve any human subjects.

RESULTS

1. Description of the included studies 
The primary search of the databases yielded 965 records. 

After duplicates were removed, 560 articles were screened 
by title and abstract. As a result, 49 full-text articles were 
selected and reviewed for eligibility. A total of 14 studies 
were finally included in the systematic review (Fig. 1).[14-
27] The studies identified for the meta-analysis involved 
1,233 participants, with women comprising 808 (65.5%) of 
the sample population. Among the 14 studies, 8 articles 
compared PB and FB modes and other 6 studies compared 
FB and most recent FB mode (Table 1).

2. PB vs. FB
Eight studies, involving a total of 752 patients, reported 

data on BMD (Table 2).[18,20-26] In total lumbar BMD, there 
is no significant difference PB (Prodigy) and FB (pooled 
WMD, -0.013; 95% CI, -0.031 to 0.005; P=0.152) No signifi-
cant difference also observed in total hip (pooled WMD, 
-0.01; 95% CI, -0.018 to 0.016; P=0.889). However, BMD 
was significantly lower in the PB group compared to those 
in the FB group in total body (pooled WMD, -0.014; 95% CI, 
-0.025 to -0.002; P=0.024) (Fig. 2).
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Fig. 2. Forest plots of the changes of bone mineral density (BMD) determined between pencil-beam mode and fan-beam mode: (A) Total lumbar 
area. (B) Total hip area. (C) Total body. Effect sizes are indicated as Hedges’ g weighted mean differences and 95% confidence interval (CI).
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B
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Fig. 3. Forest plots of the changes of bone mineral density (BMD) determined between fan-beam (FB) mode (Prodigy) and most recent FB mode 
(iDXA): (A) Total lumbar area. (B) Total hip area. (C) Total body. Effect sizes are indicated as Hedges’ g weighted mean dif ferences and 95% confi-
dence interval (CI). 

A

B
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3. FB vs. most recent FB 
Six studies, involving a total of 481 patients, reported 

data on BMD.[14-17,19,27] In total lumbar BMD, there is no 
significant difference FB (Prodigy) and most recent FB (iDXA) 
(pooled WMD, -0.006; 95% CI, -0.026 to 0.014; P=0.567) No 
significant difference also observed in total hip (pooled 
WMD, -0.02; 95% CI, -0.017 to 0.14; P=0.821) and total body 
(pooled WMD, 0.015; 95% CI, -0.03 to 0.34; P=0.109) (Fig. 3).

4. Quality assessment and publication bias
In terms of the methodological quality, the mean value 

of the awarded stars was 6.5 (5 studies had 6 stars, 9 stud-
ies had 7 stars). The Begg’s funnel plot was not asymmetri-
cal, and the P-values for bias were not significant for all out-
comes (Fig. 4).

DISCUSSION

Each densitometer manufacturer uses its X-ray source 
and a specific methodology to obtain the 2 required ener-
gies.[22,28] Many previous studies investigating the agree-
ment of BMD measurements between different modes of 
devices, but discrepancies exist among studies.[29,30] Thus, 
we want to investigate the continuity of the BMD calibra-
tion when a newer model replaces an older DXA scanner. 
In the present meta-analysis, we found no significant dif-
ferences between the measured BMD regardless of the 
mode. 

PB DXA is an established technique used for studies of 
bone mineral and body composition. PB technology has 
all but been replaced with FB systems due to faster scan 
times, improved image quality, and greater measurement 
precision.[22,31] The FB mode uses a greater photon flux 
and improved photon detection and consequently provides 
higher image resolution. Thus, FB DXA compared with PB 
DXA tended to overestimate BMD, whereas the area of both 
regions of interest was underestimated. Bone edge detec-
tion and exclusion of transverse processes through analy-
sis probably play the key role. This discrepancy in bone edge 
detection represents a major explanation for BMD differ-
ences that can be found between the 2 modes.[29,32,33]

In the present study, the difference between PB and FB 
was only found in total BMD. It is suggested that a calibra-
tion offset was not responsible for the differences between 
2 modes, as there was no significant difference in phantom 

scans.[7,34,35] The difference in BMD was probably owing 
in part to the significant difference in measured area be-
tween the 2 modes. The variation introduced by the rela-
tive position of each individual in the FB but not PB path 
owing to the height of the spine from the scanning table 
also can be more prominent in the total body area.[1,8,28, 
31] And these differences between the FB and PB modes is 
more likely to be evident at low-density values than high-
density value.[36,37] 

The currently available GE Lunar system uses narrow-an-
gle FB geometry. The excellent BMD correlation between 
iDXA and Prodigy is well-demonstrated in previous stud-
ies, but the inconsistencies of BMD between 2 machines 
are an ongoing issue.[14-16,35] The smaller pixel size fur-
ther enhances the bone edge detection of iDXA, which 
stands out for small bones such as the hands and feet.[38] 
However, edge detection might be attenuated as the auto-
mated analysis techniques might place edges or regions of 
interest more in large bones. Further research in this field 
is needed for a clearer understanding of the underlying 
mechanism.[39] 

The present study has several limitations. First, factors 
other than BMD, including accuracy or precision of differ-
ent modes of DXA scanner have not been included in this 
meta-analysis. Second, we could not perform a sub-group 
analysis that women with osteoporosis who are known to 
be susceptible for erroneous to switch from one mode to 
another. Finally, there are numerous different brands of 
DXA scanners (Hologic Inc., Bedford, MA, USA) are available 
but our analysis was limited to 2 brands. 

CONCLUSIONS

In conclusion, no significant difference of BMD was found 
between different modes of DXA scanner. To ensure high 
quality DXA acquisition and interpretation, further research 
is needed to highlight ways in which differences between 
DXA systems can be minimized.
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