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Abstract
Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from 
arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied 
previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters 
and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared 
and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, 
combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. 
These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is 
compared. For different combinations of neural networks and input parameters, another research question is to identify the 
input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detec-
tion rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final 
detection rate is identified.
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1  Introduction

Arcs may cause electrical fires in power systems. An arc is 
caused by the heat of an insulation breakdown, which car-
bonizes the line and results in a gap. The sparks generated 
in an arc fault potentially lead to fire and may cause damage 
to property and human life. The two main types of arcs are 
parallel and series arcs. Parallel arcs occur when an insula-
tion breakdown between two or more lines occurs because 
of an external force or heat, a gap is generated, a line is 
formed, and the current flows through it. Series arc is a simi-
lar phenomenon that occurs in a single line. An insulation 
breakdown is also caused by an external force or heat, a gap 
appears in the line, and the current flows through the gap.

Both series and parallel arcs are difficult to detect with 
conventional detection equipment. To prevent such an acci-
dent, the series arc should be detected rapidly. Extensive 

literature on this topic is available. For example, many 
studies have investigated the detection of shouldering phe-
nomena in AC currents. Several representative methods are 
as follows. A series arc was detected by passing through 
a harmonic filter when an AC current arc occurred [1] or 
by analyzing the harmonic components of the current fun-
damental wave using the chirp Z-transform [2]. Series and 
parallel arcs were identified by measuring the current when 
an arc occurred and detecting nonstationary components of 
the phase [3]. Series, parallel, and ground arcs were detected 
using wavelet transform [4–6]. Moreover, arcs were detected 
using the current characteristics [7–11]. A study compared 
the current and previous values to find the moving average 
of the current and identify a stationary frequency component 
[12]. Other studies calculated the RMS of the current [13] or 
used statistical characteristics [14]. Some other arc detection 
methods were based on previous methods and used signal 
processing and artificial neural networks. A study identi-
fied whether the heart rate was standard by classifying the 
electrocardiogram using long short-term memory (LSTM), 
which is a type of recurrent neural network (RNN) [16]. 
RNNs were also used in the research on speech recognition 
[17].
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Many studies investigated techniques using a multilayer 
perceptron (MLP). A method of detecting a series arc used 
the zero-crossing period (ZCP) of the current as a parameter 
in a deep neural network (DNN), a type of MLP. In [18–20] 
series arcs were detected using the current ZCP, maximum 
slip difference (MSD), and fast Fourier transform (FFT) as 
input parameters in a DNN [21]. A technique for detecting a 
series arc using an RNN has been studied using time–domain 
current data as input parameters without modification [22]. 
Another DNN-based method for detecting series arcs used 
the current data whose fundamental wave component was 
attenuated by passing the time–domain current data through 
the high pass filter (HPF) as an input parameter [23]. The 
occurrence of a series arc was detected in a DC converter 
[24]. Support vector machines (SVMs) were also used [25].

We compared arc detection for different types of input 
variables and artificial neural networks. The following 
ten types of input parameters were included: (1) instan-
taneous frequency, (2) signal entropy, (3) MSD, (4) FFT, 
(5) frequency average, (6) ZCP, (7) FFT + MSD, (8) 
FFT + frequency average, (9) FFT + MSD + ZCP, and 
(10) time–domain current. We compared the performance 
of different combinations of neural networks and input 
parameters.

The remainder of this paper is organized as follows. 
"Series AC arc characteristics" describes the shape of the 
voltage and the current of each part of the circuit, which 
changes in the time and frequency domains when a series 
arc occurs owing to a line failure. "Arc detection using neu-
ral network" shows the types of artificial neural networks 
and the parameters used as inputs. "Series arc detection" 
describes the detection of bounded and unbounded cases 
of series arcs. Moreover, it presents the change in accuracy 
depending on the number of training data. Finally, "Conclu-
sion" explains the suitability of parameter types depending 
on artificial neural networks and summarizes the perfor-
mance for different types of input variables and networks.

2 � Series AC arc characteristics

Figure 1 shows a circuit diagram used to obtain the actual 
data of the series arc. When an arc occurs in a circuit, it has 
the same effect as the impedance inserted into the circuit. 
Accordingly, the voltage across the load and the size of is(t) 
decreases. Therefore, some power is lost in the arc, and the 
power delivered to the load is reduced.

In the series arc experiment, as shown in Fig. 1, the arc 
generation experiment setup is composed of an AC supply, 
arc generator, and load. An arc fault of the arc generator 
occurs when the arc rods are slowly separated and an arc is 
generated. An oscilloscope is used to collect and transfer 
data to a computer for arc detection. Figure 2 shows the 

waveforms of the load voltage, load current at 8 A, and 
their FFT analysis before and after arcing. The distortion 
occurred when an arc appeared in the waveform of the load 
voltage and the load current; it took the form of a sine wave 
in the normal state. When the arc rods are separated, an arc 
is generated, and harmonic components are added to the load 
voltage and load current. The length of the period when the 
voltage passes through the zero points is increased. Simi-
larly, current is(t) has a longer period passing through the 
zero points during the arc generation. The phenomenon of 

Load

AC Source

Arc Generator
Oscilloscope Computer

Fig. 1   Series arc schematic

Fig. 2   Characteristics of the load voltage and the current: a load volt-
age, b, c FFT of the normal-state and the arc-state load voltage. d 
Load current. e, f FFT of the normal-state and the arc-state load cur-
rent
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lengthening the section passing through zero points is called 
shouldering. This phenomenon occurs due to the influence 
of the voltage varc(t) given that the arc generated from the arc 
rod acts as an impedance. FFT was applied to determine the 
frequency changes before and after arcing. The data before 
and after arcing are marked in green and red, respectively. 
The multiples of the switching frequency are smaller before 
arcing and larger after arcing.

3 � Arc detection using neural network

3.1 � Neural network structures

DNN and RNN were used as artificial neural networks, and 
the ZCP and frequency average were used as parameters. In 
addition, FFT was applied, and the performance was com-
pared using MSD, instantaneous frequency, and entropy 
[18–20].

Figure 3 shows the basic structure of an MLP: it accepts n 
parameters as inputs, passes them through a neural network 
composed of N layers, and derives results. The state of first 
layer was as follows:

where X is the input parameter, WT
1
 is the weight of the first 

layer, and b1 is the bias in the first layer. h1 is the output of 
the first layer, which is transferred to the second layer. This 
process was repeated N times. The basic method of train-
ing artificial neural networks is to perform one epoch, and 
then use the error to update weight and bias in the direction 
of reducing the error in each layer. This method is called 
error backpropagation. Figure 4 shows the structure of a 
single neuron in a fully connected layer (FC). This simplest 
structure has an important role in simulating a function: it 

(1)h1 = f1
(
W

T
1
X + b1

)
,

connects all cells located before and after it. If the neurons 
of all layers are composed of FCs, then the correspond-
ing neural network is called a DNN. hn,m is the output of 
the mth neuron of the nth layer. In addition, Wn,m and bn,m 
represent the weight and bias of the mth neuron of the nth 
layer, respectively. Figure 5 shows the structure of a single 
neuron in LSTM. The LSTM structure can achieve efficient 
feedback of adequate information through selective forget-
ting and memory mechanisms. Thus, the network achieves 
the approximation of complex time-varying nonlinear func-
tions better. In the case of LSTM, long-term and short-term 
memory are managed separately. ht−1 and ht are the short-
term memory states at the previous moment and at present, 
respectively. Ct−1 and Ct are the long-term memory states at 
the previous moment and at present, respectively.W0 and bo 
are the current weight and bias of the current LSTM cell, 
respectively. xt represents the input data, which come from 
another LSTM cell. yt represents the output data, which are 
sent to another LSTM cell.

where σ is a variable that determines how much the weight 
and bias values are changed for the data received in one 
iteration as the learning rate. Figure 6 shows the structure of 
a gated recurrent unit (GRU) neuron. Different from LSTM, 
GRU is characterized by combining the long-term and short-
term memory of the LSTM. ht−1 and h

t
 are the memory states 

(2)yt =
(
�
(
ht−1xt +W0ht−1 + CtCt−1 + bo

))
tanh

(
ct
)
,

1st State

Kth State

Arg. 1

Arg. n

Neuron

1st Layer N-1th Layer Nth Layer
Input
Layer

Output
Layer

Error Back Propagation

Fig. 3   Basic structure of artificial neural networks

Fig. 4   Fully connected layer structure of DNN

Fig. 5   Structure of LSTM
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at the previous and present time, respectively. zt and ĥt are 
the update gate vector and candidate activation vector, and 
xt is the current input. Equation (2) shows the output of each 
GRU neuron.

In this study, four artificial neural networks were used to 
verify the performance. As shown in Table 1, the structures 
are DNN (100, 50, 2), DNN (4, 5, 5, 2), LSTM (16, 16, 8, 8, 
2), and GRU (16, 16, 8, 8, 2). Here, DNN (100, 50, 2) rep-
resents a three-layer DNN structure, and each layer contains 
100, 50, and 2 neurons. A similar explanation is provided for 
the three other network structures. We denote DNN (100, 50, 
2) as DNN1, DNN (4, 5, 5, 2) as DNN2, LSTM (16, 16, 8, 8, 
2) as LSTM, and GRU (16, 16, 8, 8, 2) as GRU to simplify 
the notation. The depth and width of the hidden layers were 
selected by trial and error. The chosen layers showed the best 
performance among various structures. Interestingly, other 
suitable layer configurations exist.

(3)ht = ztĥt +
(
1 − zt

)
ht−1

3.2 � Input parameters

The power supply current is measured to detect the series 
arc. When a series arc occurs, the ZCP tends to increase 
because of the shouldering in the power supply current. As 
a result, many parameters can be used to detect a series arc. 
The input parameters for series arc detection were as fol-
lows: time–domain current data, ZCP and FFT, frequency 
average, MSD, instantaneous frequency, and entropy.

Figure 7 shows the signals of the input parameters used 
for arc detection. The current data in the time domain have a 
1 × N array structure. N is 4165, which is the number of data 
per period (16.66 ms) of the current measured as 250,000 
samples per second. The ZCP represents the time close to the 
current zero point, which indicates the time when the current 
passes ± 1/10 of the maximum value in one cycle. The ZCP of 

Fig. 6   Structure of a gated recurrent unit (GRU)

Table 1   Structures of artificial neural networks used for arc detection

DNN1 DNN2 LSTM GRU​

1st layer/
# of neurons

FC/
100

FC/
4

FC/
16

FC/
16

2nd layer/
# of neurons

FC/
50

FC/
5

LSTM/
16

GRU/
16

3rd layer/
# of neurons

FC/
2

FC/
5

FC/
8

FC/
8

4th layer/
# of neurons

N/A FC/
2

LSTM/
8

GRU/
8

5th layer/
# of neurons

N/A N/A FC/
2

FC/
2

Fig. 7   Input parameters in normal (left) and arc (right) states: a cur-
rent waveform; b ZCP of current; c entropy of current; d instanta-
neous frequency of current; e MSD of current; f FFT of current; g 
frequency average of current



Deep learning‑based series AC arc detection algorithms﻿	

1 3

the normal-state current is maintained at approximately 1 ms, 
whereas the ZCP of the current is maintained up to approxi-
mately 4–5 ms when an arc occurs. The size of the ZCP array 
is 1 × 1.

Entropy is an indicator used in the information and commu-
nication theory to represent the uncertainty of a signal. When 
the probability of a specific event i is pi , it can represent the 
expected value of a specific event. Entropy tends to increase 
as it deviates from its expected value. In other words, it tends 
to increase as it deviates from the average [17]. This can be 
represented by the following equation:

Instantaneous frequency is a concept from signal theory, 
and it is the amount of phase change of a function in the com-
plex coordinate plane [7]. In (8), when the phase of an arbi-
trary function over time is ϑ(t), it can be obtained by differen-
tiating it at a discrete time, as in (3).

Comparing Fig. 7d, we conclude that the component of the 
instantaneous frequency fluctuates significantly in the shoul-
dering section when an arc occurs.

The MSD can check the degree of a sudden change in the 
current using the arc detection method suggested in [19]. In 
addition, this parameter allows the observation of a sudden 
change in the current before and after shouldering owing to 
high-order harmonics or shouldering. MSD can be calculated 
as follows:

where Ii is the ith current value. The value of the MSD of 
the normal-state current is maintained below 0.5 in all sec-
tions. However, in the section, where the shouldering of the 
arc current occurs, the MSD has a shape similar to a pulse 
exceeding 0.5. The size of the MSD is an array of 1 × 4165.

FFT is a technique applied to analyze the frequency band 
of a signal. The analyzed signal has only a maximum of N 
frequency components, and the spectrum is limited to a 2π 
section and is repeated periodically [15, 26].

(4)H = −
∑

i

pi log2 pi.

(5)�(t) = �t + θ

(6)instFreq =
1

2�

Δ�

Δt
= �

(7)MSD = max

���
���

∑i+4

i
Ii −

∑i+9

i+5
Ii

5

���
���

,

(8)X[k] =

N−1∑

n=0

x[n]e−j2�kn∕N , 0 ≤ k ≤ N − 1,

where x[n] is a discretized current signal with a 1 × N size, 
N is the size (4165) of one cycle of the current, and k repre-
sents the frequency band.

The frequency average is obtained using (9), as follows:

First, the current of the nth cycle is collected. Then, FFT 
is performed to extract only the 1–3 kHz band and obtain 
the frequency average IFreqAvg . This value is compared with 
the threshold value Ith. If it is higher than the threshold, 
then it is judged as an arc [27, 28]. The frequency average 
of the normal-state current is maintained at approximately 
0.005, whereas the frequency average of the current reaches 
approximately 0.02 when an arc occurs. The size of the fre-
quency average is 1 × 1.

Table 2 presents the order of time required to process one 
cycle of the current as an input parameter. The fastest time 
to process the power current waveform, which includes raw 
data, was 0.2 ms. On the contrary, the slowest time to obtain 
the instantaneous frequency was 40 ms.

4 � Series arc detection

4.1 � Bounded cases

In arc detection using an artificial neural network, two types 
of data can be distinguished, namely, (1) data from a cat-
egory that has already been learned and (2) data from a cat-
egory that has not been learned. They are referred to as the 
bounded and unbounded cases.

Figure 8a shows the distribution of training and test data 
for detecting the series arc in the bounded case. When the 

(9)IFreqAvg =

√√√
√

N∑

k=l

IFreq(k)
2

N − l

Table 2   Order of input parameters used in series arc detection versus 
time complexity

Order Input arguments Time for 
calculation 
[ms]

1 Current @time domain 0.2
2 FFT 2.2
3 Frequency average 2.9
4 FFT + frequency average 3.1
5 ZCP 4
6 MSD 6.3
7 MSD + FFT 8.6
8 MSD + ZCP + FFT 12.8
9 Entropy 17
10 Instantaneous frequency 40
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load current was 1, 2, 3, 4, 5, 6, 7, and 8 A, 90% of the 
normal-state and arc-state current data were used as a train-
ing set, and the remaining 10% was used as a test set. Fig-
ure 8b shows the distribution of the training and test data 
for the series arc detection in the unbounded case. In the 
unbounded case, the training set included the data for the 
cases when the load current was 1, 2, 3, 4, 5, 6, 7, and 8 A. 
On the contrary, the test set included the normal-state and 
arc-state current data when the load current was 10 A. As 
shown in Fig. 8a, the detection rate was compared for dif-
ferent input parameters and neural networks in the bounded 
cases. A total of 3630 data sets were used for training, and 
404 data sets for testing.

Figure 9 shows the detection results of series bounded 
cases. The parameter with the highest detection rate for 
DNN1 is the frequency average and the combination of the 
FFT and frequency average, with a detection rate of 99%, 
outperforming the raw current presented in this study by 
37%. The parameter indicating the highest detection rate 
for DNN2 is a combination of FFT and frequency average, 
and FFT shows the highest detection rate of 98%. This 
result shows a 42% higher detection performance than the 
raw current presented in this study. Compared with the 
case of using the time–domain current as the parameter 
of LSTM, the detection rate is 100%, which is 1% higher 
than the raw current used in this study, when the combi-
nation of the FFT, ZCP, and MSD is used as parameters. 
Compared with the time–domain current as a parameter 
in the GRU structure, the detection rate is 100%, which is 
2% higher than that of the raw current, when the combina-
tion of the FFT, ZCP, and MSD is used as the parameter. 
LSTM and GRU have high detection rate for a combina-
tion of parameters as well as the raw current, but the dis-
advantage is that they require a longer time for training. 
On the contrary, DNN1 and DNN2 required less time to 
learn the same training data.

Fig. 8   Classification of training and testing data: a bounded case; b 
unbounded case

62%

91% 96% 97%
89%

98% 99% 97% 99%
88%56%

90% 95% 93% 88%
98% 93% 97% 98%

88%

99% 50% 98% 97% 97% 50% 98% 98% 97% 100%
98% 50% 98% 95% 98% 50% 99% 98% 98% 100%

SERIES ARC BOUNDED CASES DETECTION RESULTS

Fig. 9   Detection results of series arc bounded cases
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4.2 � Unbounded cases

This section compares the detection rate for different input 
parameters and neural networks in unbounded cases. A total 
of 4034 data sets are used for training used, and 626 data sets 
are used for testing.

Figure 10 shows the detection results of series unbounded 
case. For DNN1, the parameters showing the highest detec-
tion rate (100%) were the FFT and the MSD, the combina-
tion of FFT and frequency average, and the combination 
of FFT and MSD. This finding is 38% better detection per-
formance than the time–domain current presented in this 
study. The highest detection rate for DNN2 was achieved 
by a combination of FFT and MSD and by MSD at 100%. 
This result has 44% higher detection performance than the 
time–domain current presented in this study. Compared with 
the case of using the time–domain current as the parameter 
for the LSTM structure, the detection rate is 6% higher when 
the FFT and MSD combination was used as a parameter. 
Compared with the time–domain current as the parameter 
of GRU, when the combination of entropy and instantaneous 
frequency, FFT, and MSD was used as parameters, the detec-
tion rate is the same as in the combination of FFT and MSD 
at 98%. Similarly, in the bounded cases, LSTM and GRU 

have high detection rate, but the disadvantage is that they 
require longer time for training. On the contrary, DNN1 and 
DNN2 require less time to learn the same training data. The 
input parameters (time–domain current, entropy, instantane-
ous frequency, MSD, and frequency average) with continuity 
over time show high detection rates for LSTM and GRU. 
In addition, the input parameters (ZCP, MSD, instantane-
ous frequency, FFT, and frequency average) with prominent 
features show a high detection rate for the DNN structures. 
In particular, the performance of combining two or more 
input parameters was better than that of one input parameter.

4.3 � Detection rate considering the number 
of training data

This section discusses the change in the detection rate 
depending on the number of training data used to train the 
artificial neural network. The number of training data used to 
detect series arcs in the bounded case was 3630, the number 
of test data was 404, and the change from 0.5 to 100% in the 
number of training data was examined. In the unbounded 
case, the number of data for learning is 4034, and the num-
ber of test data is 626. The detection rate of training data 
varied from 0.5 to 100% as the bounded case was executed.

62%

91% 89% 94%
100% 100%

84%

100% 100% 99%

56%

90% 94% 87%
100% 99%

93%
100% 95% 98%

92% 50% 97% 97% 94% 50% 81% 98% 96% 97%

98% 50% 98% 98% 96% 50% 89%
98% 96% 97%

SERIES ARC UNBOUNDED CASES DETECTION RESULTS

Fig. 10   Detection results of series arc unbounded cases
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Figure 11 shows a plot of the relative accuracy band 
(RAB), indicating the extent to which the final detection rate 
was reached. The RAB indicates a band in the range of ± 5% 
of the final accuracy of the final detection rate.

In Fig. 11, the accuracy remains within this band for the 
minimal dataset size of 2.5%. This dataset is called the mini-
mum range of the dataset required to reach the RAB.

In addition, according to (10), the detection rate fluc-
tuation ΔAccuracy is the maximum value of the different 
detection rates after the minimum range of the dataset that 
reached the RAB (hereinafter, the minimum range of the 
dataset) between the maximum value of the detection rate 
max(accuracy) and the minimum value of the detection rate 
min(accuracy) . As shown in Fig. 11, in four cases, the detec-
tion rate is located outside the RAB after the minimum range 
of the dataset.

In addition, the number of samples out of the band after 
the minimum range of the dataset that reached the accuracy 
band and the data beyond the range (the union of the datasets 
located within and outside the accuracy band) are expressed 
as a percentage, and the percentage of data outside the band 
can be determined by (11).

Table 3 presents the variation in the detection rate of the 
relative accuracy band depending on the input parameters of 
the bounded case using various neural network types. The 
combination of the FFT and MSD shows the lowest detec-
tion rate fluctuation for DNN1, and the percentage of sam-
ples out of the RAB is 0%. Furthermore, the minimum range 
of dataset is only 10%, which is lower than the other input 
parameters. For DNN2, the FFT shows the best performance 

(10)ΔAccuracy = max (accuracy) −min (accuracy)

(11)% of data out of band =
# of data out of band

(# of data in the band + # of data out of band)

with the lowest detection rate fluctuation, and the percentage 
of samples out of the RAB is 0%. Interestingly, the combi-
nation of the FFT and frequency average also shows high 
performance with low detection-rate fluctuation at 4.48%, 
which is only 1% higher than that of FFT. The instantaneous 
frequency provides the lowest detection rate fluctuation for 
LSTM. However, the percentage of minimum range of the 
dataset is 60%. Thus, the combination of the FFT and MSD 
shows the best overall performance. Similarly, the ZCP and 
the FFT offer high performance for GRU. Table 3 shows 
that the combination of FFT and MSD and the combination 
of FFT and frequency average show high performance for 
DNN1, DNN2, and LSTM. However, the ZCP and the FFT 
show high performance for GRU. The variation in the detec-
tion rate of the relative accuracy band depends on the input 
parameters of the unbounded case, and the neural network 
type is also presented in Table 3. According to the table, the 
combination of FFT and MSD shows the high performance 

for DNN1 and LSTM. The FFT and combination of FFT and 
frequency average show high detection rate for DNN2, and 
the percentage of samples out of the band is 0%. In addition, 
the ZCP shows a low detection rate fluctuation for LSTM 
and GRU.

5 � Conclusion

This study investigated the performance of various meth-
ods for detecting a series arc. Combinations of four types 
of artificial neural networks and ten input parameters were 
examined. In the case of a bounded series arc, the combina-
tion of FFT and MSD and the combination of FFT and the 
frequency average had high detection rate. In the unbounded 
case, the combination of FFT and MSD and the combina-
tion of FFT and frequency average, FFT, and MSD had high 
detection rates regardless of the neural network structure. 
The study also examined the arc detection rate depending 
on the number of training data. The results showed that the 
combination of FFT and MSD and the combination of FFT 
and frequency average can be used as input parameters in 
the training data regardless of the network structure. For the 
DNN structures, the use of the current waveform as an input 
parameter resulted in poor performance for the bounded 
case, and the detection accuracy was high with a small num-
ber of unbounded cases. Moreover, the use of ZCP and FFT 
for LSTM and GRU structures resulted in the lowest accu-
racy among the ten input parameters for the bounded and 
unbounded cases. In addition, the combination of FFT and Fig. 11   Relative accuracy band
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MSD and the combination of FFT and frequency average 
showed lower detection rate fluctuations than the remaining 
input parameters. Therefore, when detecting an arc using 
artificial neural networks, the accuracy detection was higher 
in the case of the combination of MSD and FFT and the 
combination of FFT and the frequency average for all net-
work structures. The input parameters (time domain current, 
entropy, instantaneous frequency, MSD, and frequency aver-
age) with continuity over time show high detection rates for 
LSTM and GRU. In addition, the input parameters (ZCP, 
MSD, instantaneous frequency, FFT, and frequency aver-
age) with prominent features show high detection rate for 
the DNN structures. In particular, the performance achieved 
by combining two or more input parameters was higher than 
that of one input parameter. The structure of a neural net-
work was essential. The GRU required the smallest amount 
of training samples to reach the final detection rate. How-
ever, LSTM and GRU generally required longer time than 
DNNs to train the same data samples. Assuming that all 
input parameters show equivalent performance, the DNNs 
can deliver the results faster than LSTM and GRU.

Generally, the use of a combination of FFT and MSD or a 
combination of FFT and the frequency average for all neural 
networks owing to their high performance is reasonable.
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