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Abstract: As one of the most vulnerable components to temperature and temperature cycling
conditions in power electronics converter systems in these application fields as wind power, electric
vehicles, drive system, etc., power semiconductor devices draw great concern in terms of reliability.
Owing to the wide utilization of power semiconductor devices in various power applications,
especially insulated gate bipolar transistors (IGBTs), power semiconductor devices have been studied
extensively regarding increasing reliability methods. This study comparatively reviews recent
advances in the area of reliability research for power semiconductor devices, including condition
monitoring (CM), active thermal control (ATC), and remaining useful lifetime (RUL) estimation
techniques. Different from previous review studies, this technical review is carried out with
the aim of providing a comprehensive overview of the correlation between various enhancing
reliability techniques and discussing the corresponding merits and demerits by using 144 related
up-to-date papers. The structure and failure mechanism of power semiconductor devices are first
investigated. Different failure indicators and recent associated CM techniques are then compared.
The ATC approaches following the type of converter systems are further summarized. Furthermore,
RUL estimation techniques are surveyed. This paper concludes with summarized challenges for
future research opportunities regarding reliability improvement.

Keywords: power semiconductor device; condition monitoring (CM); active thermal control (ATC);
remaining useful lifetime (RUL); temperature; reliability

1. Introduction

Power semiconductor devices are the core of power electronic systems. The power semiconductor
devices serve as a crucial role in power conversion systems and additionally are extensively utilized in
many applications such as renewable energy systems, electric vehicles, machine drive, and industrial
equipment [1–4]. These applications offer a high demand for reliable operation of the power electronics
system. From the engineering point of view, reliability is the probability that a system or component
will carry out a required task without failure under a particular condition for a designated time [5,6].
As stated before, due to the indispensable role of power semiconductor devices of the power electronics
system, power semiconductor devices have a substantial influence on the reliability of the power
electronics system. Following a conducted survey [7], the power semiconductor devices are ranked
as the most vulnerable components in the system overall with 31% of the responders, as shown
in Figure 1. The harsh environmental conditions and thermal operating conditions can potentially
trigger both die and package-related degradation in power semiconductor devices [8,9], whereas 60%
of failures of which are caused by thermal stress [10]. For every 10 ◦C increase in temperature in
the working temperature range of power semiconductor devices, the failure probability increases
two times [11]. This is because the die and packaging of power semiconductor devices consist of

Electronics 2020, 9, 2068; doi:10.3390/electronics9122068 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1784-0842
https://orcid.org/0000-0002-2890-906X
http://www.mdpi.com/2079-9292/9/12/2068?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9122068
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 2068 2 of 37

several layers of different materials, each having different coefficients of thermal expansion. For a long
time, the accumulated damage in power devices can lead to an abrupt failure, which causes costly
system downtime and damage to other critical system components.
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Figure 1. Survey of fragile components in the power system.

According to the discussion above, it can be noticed that the reliability of the power system is
related to the reliability of the power semiconductor devices. The power converter fault is largely
due to the failure of power semiconductor devices. Therefore, increasing the reliability of power
semiconductor devices is essential to enhance the reliability of the power electronics system. Until now,
many attempts have been made to address the vulnerable problem of power semiconductor devices,
including condition monitoring (CM), active thermal control (ATC), and remaining useful lifetime
(RUL) estimation techniques, as shown in Figure 2. The basis of CM is to select a physical measurement,
which indicates that failures or degradation can occur in the power system. Based on the result of
CM, the proper actions can be applied to avoid sudden system shutdown or scheduled maintenance.
The implementation of CM requires a power semiconductor device’s failure mechanism knowledge,
which will be presented and discussed in this paper. In addition to CM, ATC is another method to
improve the reliability of power semiconductor devices. As depicted in Figure 2, the degradation
indicator information obtained from online CM techniques can be applied, to not only passively update,
but also actively control the system lifetime, using ATC. As stated before, thermal stress is the root
cause of the failures in power semiconductor devices. The ATC method eases the thermal stress of the
components either by lowering the temperature fluctuation amplitude or by lowering the average
temperature, while the converter does not need any modification, meaning that there may be no extra
cost for the enhancement of the converter design or components. However, the trade-off between the
thermal control capability and the performance of the power system should be considered. Regarding
the RUL estimation technique, it is generally utilized to design ATC and verify the effect of ATC.
The relation among the CM, ATC, and RUL techniques is described in Figure 2.

In 2010, Yang et al. conducted a review of CM approaches [12]. This study described the CM
state-of-the-art of the power electronics in addition to the benefits and limitations of currently available
CM techniques for power electronics, including insulated gate bipolar transistors (IGBTs). In 2015,
Oh et al. proposed a review of IGBT CM and prognostic principle and related physics-of-failure [13].
Meanwhile, the author in [14] focused on implementation issues of CM approaches. Another review
was proposed in [15], but concentrating on the reliability of wind turbines only. In terms of ATC
techniques, a study gave an overview of various ATC approaches based on four typical mission
profiles [16]. Furthermore, a recent comprehensive review toward the state-of-the-art in failure and
lifetime predictions of power electronics devices was introduced in [17]. It can be noticed that the
previous studies have concentrated on a specific technique corresponding to enhancing the reliability
of power electronic converters. Although the power semiconductor device reliability has been
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reviewed systematically in [18,19], the relation among techniques has not been discussed. These are the
motivations of this review paper. In this paper, new findings on CM have been reported, especially on
online CM methods for both IGBT and silicon carbide metal-oxide semiconductor field-effect transistor
(SiC MOSFET), which can be employed in real-time operation of the power converters. The various
ATC approaches are classified according to the perspective of converter type to develop an accurate
and suitable solution for extending the lifetime of converter systems. Additionally, the RUL, including
both model-based and data-driven approaches, will be reported.
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Figure 2. Relation among condition monitoring (CM), active thermal control (ATC), and remaining
useful lifetime (RUL) estimation techniques in the power system.

In light of the above, this paper presents an overview of the failure mechanisms, associated failure
indicators, and CM techniques of IGBTs and SiC MOSFETs. The ATC methods and RUL estimation
approaches are also reported. This paper is organized as Section 2 presents the failure mechanism,
failure indicators, and CM techniques of IGBT and SiC MOSFET; Section 3 summarizes the ATC
method from different types of converters; Section 4 summarizes the RUL estimation approaches;
a discussion on the reliability of power semiconductor devices and the relation among enhancing
reliability techniques is given in Section 5, and Section 6 draws the conclusion.

2. Condition Monitoring Techniques

Because of the relatively large number of publications dealing with CM, this report is therefore not
exhaustive. This study attempts to focus on recent techniques proposed since the review performed by
Yang et al. in 2010 [12], and the study simultaneously is more concentrated on online CM methods,
which can be employed in real-time operation of the power converters. The CM definition can be
explained that the technique targets tracking variations in the electrical parameters that are an indication
of device degradation or incipient fault [20]. Because monitoring all of the electrical parameters is
not practicable in a power converter, specific parameters should be recognized depending on the
dominant aging failure mechanism. In addition to the silicon (Si)-based semiconductor device such as
the IGBT based power converter, SiC semiconductor devices have been developed and commercialized
recently due to their superior properties compared to Si counterparts, like the ability to operate
at higher temperatures, increased blocking voltages, faster-switching speeds, and higher thermal
conductivity [21–24]. However, compared to IGBT, degradation monitoring methods for SiC devices
have not been reported as extensively in literature due to the relative nascence of SiC device technology.
Therefore, in this study, the failure mechanism and the CM techniques for IGBT and SiC MOSFET will
be reviewed together.
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2.1. Failure Mechanism and Indicators

IGBT and SiC MOSFET have a similar chip-level structure, except for an additional p+ layer above
the collector in IGBT and an additional body diode part in SiC MOSFET and, as seen in Figure 3a,b.
The most popular chip-level failure types in IGBT and SiC MOSFET is the gate oxide degradation
failure. The gate oxide degradation failure is caused by high temperature and high electric field stress.
Compared to IGBT, SiC MOSFETs are more often applied with the higher gate-source voltage Vgs and
a higher temperature to achieve lower on-state resistance and a smaller heat sink. This would make
the gate oxide more vulnerable [25]. The gate oxide degradation failure in IGBT and SiC MOSFET
increases the threshold voltage Vth [26,27]; gate leakage current [28–30]. Furthermore, since the gate
oxide degradation, the gate oxide capacitance increases, resulting in extending the Miller plateau
time duration tgp [31,32]. The on-state resistance can be considered as an indicator for the gate oxide
degradation failure in SiC MOSFET [32–34], but it has been more often than not utilized to identify
the package-related failures. In the SiC MOSFET, there exists a body diode formed by the n- drift
region and the well of the p-type semiconductor. In addition to the gate oxide degradation, the SiC
MOSFET body diode degradation is caused by the forward voltage bias stress [35–37] because of
the stacking fault mechanism. In this case, the forward current flowing path is blocked by these
faults. Thus, both the on-resistance and forward voltage of the body diode would increase [38].
The on-resistance [35], forward voltage [39], and drain leakage current [25] are considered as indicators
for the body diode degradation.
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Figure 3. (a) insulated gate bipolar transistor (IGBT) cross section, (b) silicon carbide metal-oxide
semiconductor field-effect transistor (SiC MOSFET) cross section.

Although some new packaging technologies are introduced, especially for power modules to enhance
the reliability, still, conventional packaging and wire bonding techniques are utilized for the majority of
commercial IGBT and SiC MOSFET. Figure 4 illustrates a typical package-level structure for both IGBT
and SiC MOSFET due to them sharing the same package-level structure. A direct copper bonded (DCB)
substrate is soldered to a baseplate. The DCB provides electrical insulation between power components
and cooling systems. Further, it conducts the current via copper tracks and also provides excellent thermal.
The baseplate provides thermal capacity and helps for the thermal spreading by increasing the contact
area to a heat-sink. IGBT and diode chips are soldered to DCB. Bond wires are commonly utilized in
order to connect the emitter of the Si/SiC chips to the substrate and in order to connect the substrate to
the terminals. The chip die and the DCB, as well as the baseplate and the DCB, are commonly attached
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by solder. It can be observed in Figure 4 that the IGBT and SiC MOSFET modules contain various
layers, and each layer has been made of different materials, resulting in a different coefficient of thermal
expansion (CTE). The switching devices produce the switching loss and conduction loss, and they produce
thermal stress in the power module [40–42]. The converter load variation, the periodical commutation of
the power switching device, and the ambient temperature change cause the temperature variation in the
power semiconductor module. The significant CTE mismatch between the bond wires and chip under the
temperature variation causes the thermomechanical stress in bond wires and, finally, leads to bond wire
lift-off or crack failure [43,44]. The bond wire failures cause an increase in the resistance of the bond wires.
Consequently, the on-state voltage will increase, which can be identified to indicate bond-wire failures
(on-state collector-emitter voltage Vce,on in the IGBT module and on-state drain-source voltage Vds,on in
SiC MOSFET module) [26,45–47]. Other indicators of the bond wire failure are listed in Table 1. Another
dominant failure mechanism that occurs in IGBT and SiC MOSFET is solder layer fatigue. The two solder
layers in the IGBT/SiC MOSFET module, as shown in Figure 4, are the die attach between the Si/SiC
die and DCB and substrate attach between DCB and baseplate. The temperature fluctuations and the
CTE mismatches between the Si/SiC chip and solder material, DCB, and solder material slowly generate
cracks and voids in the solder layer, resulting in solder layer fatigue. The solder layer failure reduces the
thermal dissipation capability, which leads to the increased thermal resistance Rth. Thus, the junction
temperature of the power devices rises. As for solder layer failure, the junction-to-case thermal resistance
(or thermal impedance) is usually utilized as an indicator to indicate the solder fatigue in IGBT and SiC
MOSFET [48,49]. Additionally, the solder layer resistance and junction temperature are utilized to indicate
the solder layer fatigue in SiC MOSFET [50] and IGBT [51,52], respectively. The typical failure indicators
of IGBT and SiC MOSFET are summarized in Table 1.
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Table 1. Typical failure indicators of IGBT and SiC MOSFET.

.5 Failure
Types

Mechanism Indicators

IGBT SiC MOSFET IGBT SiC MOSFET

Gate oxide High temperature, high electric
field

� Threshold voltage
� Gate leakage current
� Miller Plateau time duration

� Drain
leakage current

� Miller Plateau
voltage amplitude

Body diode
Forward
voltage bias
stress

� On-resistance
� Forward voltage
� Drain

leakage current

Bond wire
fatigue

Combination of CTE mismatch
and temperature fluctuation

� On-state resistance
� On-state voltage

� Miller Plateau
time duration

� Short-circuit current

� Voltage between
Kelvin, power source

� The eddy current in
bond wires

Solder layer
fatigue

Combination of CTE mismatch
and temperature fluctuation

� Junction-to-case thermal resistance

� Junction temperature
� Voltage change rate

dVce/dt
� Current change rate

dIc/dt
� Low order harmonic

� Solder
layer resistance

2.2. CM for IGBT

2.2.1. Monitoring Collector-Emitter on-State Voltage

The on-state voltage of an IGBT is a representative electrical parameter indicating the aging failures,
and it is the favored indicator for CM technique, which can be recognized by various previous studies
on Vce,on [53–56]. The increase of on-state voltage is usually utilized as an indicator for wire bonding
failure. For instance, the criterion to detect bond wire failure was a +5% [53,54] 15% [55] and 20% [53]
increment of Vce,on from the initial value. From the discussion in [13], the real-time monitoring Vce,on is
challenging because the measured value of Vce,on can be overwhelmed by signal noise or disturbance
during switching. Furthermore, the Vce,on is influenced by the junction temperature. Therefore,
the measurement of Vce,on should be carefully conducted by evaluating the effect of individual circuit
components, corresponding failure mechanism, and junction temperature.

One of the first online Vce,on measurements was proposed in [57], using two diodes derived from a
typical desaturation protection circuit. This approach can measure Vce,on under the converter operation,
but the deviation between the two diodes could lead to the measurement error. Therefore, this technique
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requires strict requirements regarding that two diodes as the similar currents flowing through, the similar
junction temperature level, and forward voltage temperature coefficients. A diode with low reverse
recovery and high blocking voltage should be used to ensure accurate measurement. In order to
resolve the previous problem of CM using Vce,on, the author in [58] proposed an intelligent on-state
collector-emitter voltage measurement circuit and CM strategies depending on converter operation
conditions. The proposed real-time measurement circuit of Vce,on is shown in Figure 5. For instance,
in order to measure the Vce,on of the upper IGBT, the drain of n-channel small-signal MOSFET in the
measurement circuit is connected with the collector of the upper IGBT (TUH). The measurement of
Vce,on is conducted during a positive ID current period as a positive value. The measurement of Vce,on for
the lower IGBT also can be implemented in the same manner. The proposed online Vce,on measurement
approach was conducted for both converter application with the fixed operating condition and varied
operating condition, considering the temperature dependence of Vce,on, which confirmed the feasibility
and effectiveness of the proposed method.
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Another real-time on-state voltage calculation based on the control variables and junction
temperature for modular multilevel converter (MMC) submodule (SM) IGBT was proposed in [59].
The on-state voltage of IGBT SMs in MMCs is calculated from the on-state resistance as follow:

Vce,on = Rce × Ic + Vce0. (1)

The correlation between the on-state resistance and the junction temperature for a new IGBT is
usually given in the datasheet. For the certain aging state as a solder layer, the on-state resistance at a
particular junction temperature can be described as following:

Rce,T = Rce,125 +
(
T j − 125

)
× kce, (2)

where Rce,T is the on-state resistance at a specific junction temperature, Tj is the junction temperature,
and kce is the slope value of Rce − Tj characteristic curve. A function sets of the on-state resistance are
deduced by applying the Kirchhoff voltage laws (KVL) in one MMC arm for positive and negative current
directions independently. Consequently, the on-state voltage is calculated following the matrix format of
the on-state resistance. The proposed measurement method is implemented repeatedly, and the results
are continuously calculated every sampling instant. Hence, the Kalman filter is utilized to enhance the
calculation accuracy. This proposed technique does not require the external circuit as the method in [59] but
needs a relatively high calculation effort in the controller. Additionally, the accuracy of results in this method
strongly depends on the measurement accuracy of junction temperature, capacitor voltages, arm voltages,
and arm currents. Compared with previous approaches, this method can reduce the costs and avoid the
modification of the system. However, it also requires to build a more complex model of the IGBT considering
the coupling relation to ensure the accuracy of measurements.
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2.2.2. Monitoring Miller Plateau Time Duration

In [60], an in situ CM technique for IGBTs based on the Miller plateau duration during the
turn-on transition was proposed. As illustrated in Figure 6, the configuration of the Miller plateau
duration detection circuit includes four main parts: the differentiator stage, the comparator stage,
the reference voltage setting stage, and the isolation stage [60]. The gate voltage signal is received
and differentiated by using a simple RC network. A fixed reference voltage, which represents the
rising rate threshold of the gate voltage signal, can be utilized for comparison. Besides, an adjustable
reference voltage that depends on the differentiator output can be generated by using a voltage
reference generating circuit and voltage divider R6, R7, R8 to implement the measurement under
different operating conditions. The comparison between the differentiator output and the adjustable
reference voltage is employed to produce the double-pulse signal, which deduces the information
of Miller plateau duration. The isolation stage is utilized to isolate the analog circuit and the digital
circuit. The main design requirements of the proposed measurement circuit can be listed as the time
constant should be less than 1/10 the width of the input signal, the differential capacitance must be
smaller than the input capacitance of the devices under tests (DUT), and the load resistance must be
small enough to achieve high bandwidth. Although this method can be used without interrupting
system operation, it requires an accurate calibration procedure to avoid the effect of the changing
operation points. Moreover, the practical implementation of this method is preferred for the IGBT in a
low-switching-speed application where the measurement uncertainty is reduced.
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2.2.3. Monitoring Threshold Voltage

The threshold voltage is the minimum gate-emitter voltage Vge required to form an inversion
layer at the interface between the substrate region and the gate oxide at the MOS-structure in the IGBT.
This inversion layer constitutes a conducting channel that allows the collector current to pass from
collector to emitter. It can be described as:

Vth = VFB + 2ΨB +

√
4εSqNAΨB

COX
, (3)

where VFB is the flat-band voltage, q is the elementary charge of the electron, εS is the silicon dielectric
constant, NA is the doping concentration, COX is the capacitance of the oxide, and ΨB is the bulk
potential. An increase in Vge,th was identified in thermal over-stress tests of IGBT components.
The increase in Vge,th is considered as an indicator for gate oxide degradation [26]. Previous studies
have to interrupt IGBT’s operation to employ the measurements of Vge,th. In order to overcome this
problem, an online measurement method for Vge,th was proposed in [61] by using an external circuit,
as shown in Figure 7. The Vge is obtained from a voltage divider stage and an amplifier. The voltage
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drop across the parasitic emitter inductance is compared with a reference voltage Vre f to capture
the voltage value at the instant of current initiation. The captured value is utilized to estimate the
threshold voltage. It should be noted that the variation of Vge,th is affected by temperature, so the effect
of junction temperature should be combined during the Vge,th measurement.
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2.2.4. Monitoring Junction Temperature and Thermal Resistance

The junction temperature during converter operation can be utilized as an indicator for the CM
technique [44,45]; however, it is difficult to measure directly. Without using an integrated sensor in
the device to avoid modifying the package or housing, the junction temperature in CM methods is
indirectly calculated by using the temperature-sensitive electrical parameters (TSEPs). The TSEPs
can be divided into two main types: static parameter based technique and dynamic parameter based
technique, as shown in Table 2. The various techniques, which use different TSEPs, are discussed below.

Table 2. Temperature-sensitive electrical parameters (TSEPs) for junction temperature estimation.

Static parameters

Collector-emitter voltage under high currents Vce,high

Collector-emitter voltage under high currents Vce,low

Gate internal resistance Rg

Short circuit current Isc

Gate-emitter voltage Vge

Dynamic parameters

Threshold voltage Vth

Miller Plateau voltage Vgp

Turn-on/turn off delay time tdon/tdo f f

• Calculate the junction temperature using the on-state collector-emitter voltage at a high current.

In [62], the relation between the Vce,high and a given current level is generated as a function to
estimate the junction temperature from a preliminary I-V characterization curve. From this relation,
the junction temperature can be estimated from the measured current and the Vce,on as follows:

T j_est = SF(I) ×
(
Vce,measured −Vce,B(I)

)
+ TB, (4)

where SF(I) is the slope factor as a function of the current, Vce,measured is the measured on-state Vce in real-time,
Vce,B(I) is the base on-state Vce as a function of current which can be chosen among the characterization curves,
and TB is the base temperature corresponding to base on-state Vce. Due to the effect of interconnection
resistance, which leads to lower Vce,high measurement. Subsequently, the estimated junction temperature
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by the Vce,high at high current is smaller than the real measured result. Compensation is needed to acquire
accurate junction temperature estimation. The internal resistance variation can be described as (5), whereas
the on-state voltage compensation can be expressed as (6):

∆Rint = α×
(
T j_est − TH

)
×RVF, (5)

Vce,comp = α×
(
T j_est − TH

)
×RVF× I, (6)

where TH is the heat sink temperature, α is the scaling factor, RVF is the resistance variation factor,
and I is the output current. Hence, the junction temperature after compensated can be calculated as:

T j_est_comp = SF(I) ×
(
Vce,measured −Vce,B(I) + Vce,comp

)
+ TB. (7)

• Calculate the junction temperature using the on-state collector-emitter voltage at a low current.

Different from the calculation of the junction temperature using the on-state collector-emitter
voltage at high current, the temperature coefficient for the low current is negative [62]. This method
is preferred due to its simplicity and adequate sensitivity which is about −2 to −2.5 mV/◦C for few
hundreds of mA sensed current [63]. Such a low current does not produce any noticeable extra heating
at the device, and it can be applied continuously when the IGBT is in on-state.

• Calculate the junction temperature using the gate internal resistance.

The previous junction temperature using gate internal resistance Rg,int studies have been reported
in [64,65]. Although these approaches have a good result, they require modifying the substrate layout
to facilitate the measurement. The proposed method in [66] considers the equivalent series resistance
of both gate emitter capacitor and gate collector capacitor as Rg,int to form the gate driver RLC without
disrupting the converter operation, as shown in Figure 8. During the turn-on delay, both Cge and Cgc

are constant before the gate voltage equals the threshold voltage Vth. The gate current Ig can be utilized
as a step response of the RLC network, and the parasitic gate inductor should satisfy R2 > 4L/C.
Subsequently, the RLC network is overdamped, and the gate current Ig can be approximated.

Ig =
V
R

e−
t

RC (8)
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Using a peak detector circuit, as shown in Figure 8, it can monitor the peak gate current by
measuring the peak value of the voltage across the external gate resistor. Hence, the internal gate
resistance can be calculated as:

Rg,int =
Vg,pos −Vg,neg

Vpeakdetector/Rg,ext
−Rg,ext. (9)

Subsequently, based on the calibration, the junction temperature can be estimated. The result in [66]
showed a strong linear relationship between the resistance and the estimated temperature. However,
due to the assumption during measurement and calibration, there might be measurement errors.

• Calculate the junction temperature using short-circuit current.

In [67], the authors proposed a method using short-circuit current-based estimation to calculate
the junction temperature in using an additional bypass switch as shown in Figure 9. The relation
between the short-circuit current and the temperature is a negative coefficient [68–70]. The bypass
IGBT is connected in parallel with the complementary IGBT and is active only when the switch
under test is in the off state to create short-circuit conditions. The short circuit current amplitude
is approximately linear, with the junction temperature with an adequate temperature sensitivity of
0.35 A/◦C. Although the duration of short-circuit time is short, the repetitive short circuit could have a
cumulative degradation effect on the device, which should be taken into consideration if the short
circuit current is adopted for online temperature measurement.
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• Calculate the junction temperature using the threshold voltage.

As stated before, the threshold voltage is the gate emitter voltage when the device begins to
turn-on. In [71,72], a SEMIKRON SKM-75GB12T4 IGBT was utilized as an experimental IGBT to
obtain the junction temperature estimation model based on Vge and tdon. By conducting an offline
calibration experiment under different temperatures and bus voltages, the negative relation between
Vge and temperature and the positive relation between Vge and bus voltage are deduced. Consequently,
a model, which presents the exact correlation between tdon, T j, and Vge can be described as follows:

T j = 1.24Vge + 132.84tdon − 23969.7. (10)

The obtained model can help measure the junction temperature without interrupting the regular
operation of IGBT. Besides, this model rejects the effect of the bus voltage and only requires measurement
of the voltage signal, Vge. Hence, the measurement circuit is easy to implement, and it is not hard to
confirm accuracy.

• Calculate the junction temperature using Miller plateau voltage.
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Following [73], the Miller plateau voltage can be calculated according to (11) using the threshold
voltage Vth and transconductance gain Kn, both of which can be influenced by the junction temperature:

Vgp =

√
Ice

Kn
+ Vth. (11)

However, the junction temperature cannot be directly estimated based on the Miller plateau
voltage calculated in (11). Due to the internal gate resistance, which is placed inside the power
semiconductor, the gate voltage is unreachable. In order to overcome this problem, the measurable
Miller plateau voltage can be utilized to estimate the junction temperature. The measurable Miller
plateau voltage can be presented as a function of the Miller plateau voltage, the gate driver voltage,
and the internal and external gate resistance:

Vm,gp = Vgp + ∆V, (12)

∆V =
(
Vd −Vgp

)
×

Rg,int

Rg,int + Rg,ext
. (13)

Consequently, the junction temperature can be estimated by using a lookup table based on the
measurable Miller plateau voltage and the device current Ice.

• Calculate the junction temperature using turn on/off delay time.

As stated in [71], the dynamic TSEPs can be influenced by the bus voltage or load current.
The turn-on delay time is calculated as the time between the rising edge of the gate-emitter voltage
and the rising edge of the collector current, or the time within the gate voltage reaching the threshold
voltage [74]. The turn-on delay time was defined which is suitable to be utilized as TSEP. The results
showed that the turn-on delay time has excellent linearity with the temperature. However, due to the
influence of the bus voltage, the measurement can only be conducted when the bus voltage is kept
constant. In order to overcome this problem, the author in [75] proposed a method, which utilized
both turn-on delay time and the maximum increasing rate of collector current to calculate the junction
temperature, eliminated the effect of the bus voltage. The relations between the junction temperature
and the turn-on delay time can be described as:

T j =
1

|a11a22 − a12a21|
× [(a22 × tdon − a12 ×VeE_max) + (a22 × b1 + a12 × b2)], (14)

where a and b are the constant coefficients after the calibration process and VeE_max is the maximum
voltage that crosses the parasitic inductor LeE.

In addition to the turn-on delay time, the turn-off delay time, which is defined from the time point
when the gate-emitter voltage falls to 90% maximum value to the time point when the collector-emitter
voltage rises to 90% off-state value. In [76], a simple measurement circuit including current/voltage
collecting part, voltage reference part, voltage divider, signal processing part, isolation circuit, and DSP
controller, was proposed to estimate the junction temperature based on the turn-off delay time as
shown in Figure 10.

Following the definition, the turn-off delay time can be calculated following as:

tdo f f = ∆t1 + ∆t2, (15)

∆t1 = RG
(
Cge + Cgc

)
ln

(0.9Vge(on) −Vge(o f f )

Vgp −Vge(o f f )

)
, (16)

∆t2 = RGCgc
0.9Vdc −Vce(on)

Vgp −Vge(o f f )
. (17)
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It can be observed that the turn-off delay time increases with increased Vdc as the turn-on delay time.
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Figure 10. Diagram of junction temperature estimation using a turn-off delay time circuit.

According to the discussions above, it can be noticed that resolving junction temperature from
the measurement of TSEPs can be challenging due to many reasons as the low sensitivity of junction
temperature, dependence on loading conditions, and measurement inaccuracies. The ideal TSEPs
can be applicable to any device type, any converter topology, suitable for any application. However,
for the case of online TSEPs measurements, the proposed solutions may only be adaptable to particular
converter topologies. Therefore, some TSEPs have advantageous qualities, but due to implementation
issues, they may only be able to be sampled periodically without causing unacceptable disruption to
normal converter operation.

• Monitoring thermal resistance.

The increase of the internal thermal resistance ∆Rth by 20% of the nominal value in [35,77] can be
adopted to indicate the solder fatigue. The thermal resistance increase usually is approximately equal to:

∆Rth �
∆TC
Ptot

, (18)

where ∆TC is the temperature change due to the increase in power loss. The detailed principle of
the method in [78] is shown in Figure 11. The power loss was first estimated from a thermal model
that utilized temperature measurements as inputs. A lookup table that provided the information of
power loss in healthy IGBT modules was subsequently incorporated, which enabled the estimation
of solder layer damage under various operating conditions. It should be noted that due to the
correlation between junction temperature, case temperature, and power loss, the measurement should
be employed correctly. The implementation of the method requires consistent measurements and
online calculation, which can be carried out by the controller digital signal processor, and an iterative
calculation is recommended to provide a running update of the changes in thermal resistance.
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2.2.5. Other Monitoring Techniques

• Embedded sensor-based CM techniques.

The first embedded sensor-based CM technique was first developed in 2003 to detect bond wire
lift-off in an operating power module [79]. Redundant bond wires are attached to the emitter of
the die. Bond wire failure was detected when the resistance between the emitter terminal and the
sensor terminal deviated from a nominal value. Although it provided accurate detection of bond wire
failure regardless of the operation, the technique required a modification of the original design of IGBT
modules and implementation of the monitoring circuit in a gate driver.

Recently, a work proposed a technique for using the already integrated current sensors in the IGBT
power module for monitoring of the bond wire lift-off failure [80]. That integrated current sensors
are giant magnetoresistive (GMR) detectors, which are utilized for current and ambient temperature
sensing [81,82]. The basic idea is that these detectors are placed near the bond wires, and the change in
the magnetic field caused by any lifted bond wires will be sensed. In [80], two GMRs are required
to sense the current, where GMR1 senses the low-frequency current, and GMR2 extends the current
sensing bandwidth. In the case of bond wire lift-off exists, the flux density sensed by one GMR will be
less because the lifted bond wires no longer carry current. The remaining GMR will have a slightly
higher flux density because the current is forced to flow through the remaining bond wires. Although
the utilization of GMR does not require modification of the IGBT module, the proposed method
requires accurately extracting the lift-off monitoring signals. The proposed method in [83] also does not
require any modification to the DCB layer compared with the technique in [79]. Besides, this approach
can identify the number of lifted bond wires and locate these lifted wires. The Kelvin connection is
realized by introducing additional terminals. The emitter side of the IGBT chip is connected with
the added Kelvin pins. When bond wire lift-off occurs at a specific chip, the corresponding on-state
voltage VcKe will decrease, whereas the remaining VcKe increases.



Electronics 2020, 9, 2068 15 of 37

• Converter output-based techniques.

The converter output-based CM technique identifies variations in the voltage and current
output of power converters. Although this approach does not need any additional sensors and
modification in switching devices, the converter output-based CM technique has to operate at a specific
condition, which makes it is hard to identify the harmonic amplitude in real-time operation. Besides,
the identification of specific aged devices requires additional tools. Therefore, the utilization of the
converter output-base technique for CM is limited. A well-known study was reported by Xiang
measuring the fifth harmonic of the output current to monitor the solder fatigue [84]. The small change
of fifth harmonic current with respect to a specific case temperature for a given load level is measured
by the converter controller. Further study is required to improve the converter output-based CM
technique to increase the number of aging indicators from converter output, conducting the approach
in real-time operation, and widely applicable to various converter types.

2.3. CM for SiC MOSFET Module

2.3.1. Monitoring Gate Leakage Current

The previous studies defined the gate leakage current ilk as an indicator of gate oxide
degradation [85]. The gate leakage current measurement does not utilize any signal from high-current
or high-voltage parts of the power stage for monitoring the device. Besides, it has very distinct values
for a healthy and aged state. In [86], the author proposed a method for the online aging detection
method using the gate leakage current. The block diagram of the proposed method in [86] is illustrated
in Figure 12. The gate leakage current is measured by using the gate resistance. A difference amplifier
senses the voltage drop on the gate turn-on resistance, then compares the sensed amplified differential
voltage to a limit voltage. The limit voltage is utilized as a threshold to indicate the aging effect.
From the aging test, it can be realized that there is no leakage current in healthy devices or before
the aging effect becomes remarkable. Since there is no current, the comparator logic output will be 0,
indicating that the switch is healthy. On the other hand, the gate current will be leaked in the range
of a few mA from the aged switch. Subsequently, the logic output from the comparator will be one
if the sensed voltage drop exceeds the limit value. This result warns that gate oxide degradation
failure might occur in the near future. It is noted that due to the relatively small value of the gate
leakage current and the high switching frequency of switch, some requirements for the amplifier,
limit voltage is required [86]. Additionally, this method can be integrated into a gate driver chip as an
extra protection layer or implemented separately on the power stage to prevent unexpected shutdown
depending on the demand.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 37 

 

The converter output-based CM technique identifies variations in the voltage and current output 
of power converters. Although this approach does not need any additional sensors and modification 
in switching devices, the converter output-based CM technique has to operate at a specific condition, 
which makes it is hard to identify the harmonic amplitude in real-time operation. Besides, the 
identification of specific aged devices requires additional tools. Therefore, the utilization of the 
converter output-base technique for CM is limited. A well-known study was reported by Xiang 
measuring the fifth harmonic of the output current to monitor the solder fatigue [84]. The small 
change of fifth harmonic current with respect to a specific case temperature for a given load level is 
measured by the converter controller. Further study is required to improve the converter output-
based CM technique to increase the number of aging indicators from converter output, conducting 
the approach in real-time operation, and widely applicable to various converter types. 

2.3. CM for SiC MOSFET Module 

2.3.1. Monitoring Gate Leakage Current 

The previous studies defined the gate leakage current 𝑖𝑖𝑙𝑙𝑝𝑝  as an indicator of gate oxide 
degradation [85]. The gate leakage current measurement does not utilize any signal from high-current 
or high-voltage parts of the power stage for monitoring the device. Besides, it has very distinct values 
for a healthy and aged state. In [86], the author proposed a method for the online aging detection 
method using the gate leakage current. The block diagram of the proposed method in [86] is 
illustrated in Figure 12. The gate leakage current is measured by using the gate resistance. A 
difference amplifier senses the voltage drop on the gate turn-on resistance, then compares the sensed 
amplified differential voltage to a limit voltage. The limit voltage is utilized as a threshold to indicate 
the aging effect. From the aging test, it can be realized that there is no leakage current in healthy 
devices or before the aging effect becomes remarkable. Since there is no current, the comparator logic 
output will be 0, indicating that the switch is healthy. On the other hand, the gate current will be 
leaked in the range of a few mA from the aged switch. Subsequently, the logic output from the 
comparator will be one if the sensed voltage drop exceeds the limit value. This result warns that gate 
oxide degradation failure might occur in the near future. It is noted that due to the relatively small 
value of the gate leakage current and the high switching frequency of switch, some requirements for 
the amplifier, limit voltage is required [86]. Additionally, this method can be integrated into a gate 
driver chip as an extra protection layer or implemented separately on the power stage to prevent 
unexpected shutdown depending on the demand. 

 
Figure 12. Configuration of the gate leakage current measurement circuit. 

2.3.2. Monitoring on-State Resistance 

The on-state resistance can be utilized as the indicator for both gate oxide degradation and bond 
wire failures [32,87]. In [88], the drain-source on-state resistance 𝑅𝑅𝑑𝑑𝑔𝑔,𝑜𝑜𝑜𝑜 is calculated by utilizing high-
frequency network reflectometry. A block diagram of the spread spectrum time domain 
reflectometry (SSTDR) mechanism [88] is shown in Figure 13, the fundamental of SSTRD is explained 
in [89]. Since the SSTDR hardware is able to detect any impedance mismatch on its path propagation, 
it can detect the drain-source on-state resistance due to degradation. By applying high-frequency gate 

Isolation 
stageController

PWM signals

+ − 

Gate driver

+

− 

Differential 
amplifier

Comparator

Voltage 
divider

Rg,off

Rg,on

SiC MOSFET

Figure 12. Configuration of the gate leakage current measurement circuit.

2.3.2. Monitoring on-State Resistance

The on-state resistance can be utilized as the indicator for both gate oxide degradation and
bond wire failures [32,87]. In [88], the drain-source on-state resistance Rds,on is calculated by utilizing
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high-frequency network reflectometry. A block diagram of the spread spectrum time domain
reflectometry (SSTDR) mechanism [88] is shown in Figure 13, the fundamental of SSTRD is explained
in [89]. Since the SSTDR hardware is able to detect any impedance mismatch on its path propagation,
it can detect the drain-source on-state resistance due to degradation. By applying high-frequency gate
signals to an entirely conducting SiC MOSFET switch, the magnitude of the bounced back voltage
is utilized to measure the device impedance variation, drain-source on-state resistance, in this case,
over aging. However, this method is not specifically suited to on-board implementation.
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In order to resolve the above problem, the author in [90] proposed a practical on-board SiC
MOSFET CM technique for aging failures indication, whereas the saturation region on-state resistance
Rds,sat is employed to indicate the die-related aging failure and the drain-source on-state resistance
Rds,on is utilized as an indicator for the detection of package-related degradation. First, the effectiveness
of Rds,sat and Rds,on as indicators for aging failures are discussed and verified through characterization
of a batch of SiC devices aged under accelerated tests. Then, an in situ measurements of Rds,sat and
Rds,on using readily available system sensors at system startup was proposed, as shown in Figure 14 [90].
As for Rds,sat measurement, on a switch of a phase leg, is turned on at a reduced gate voltage such
that it operates in a saturation region, whereas the other switch in the leg is turned on at full gate
voltage (Figure 15a). The measured results from the system current sensor and bus voltage sensor
are utilized to calculate the Rds,sat amplitude of the device operating in saturation mode. Meanwhile,
the Rds,on of the switch is calculated by sensing the Vds,on across the switch under test and dividing
it by the current value obtained from the system current sensor. The magnitude of the Vgs for Rds,sat
measurement and Rds,on measurement are shown in Figure 15a,b. Due to the combination of Rds,sat and
Rds,on measurement during startup and the use of available current and voltage sensors in the system,
this method just requires a simple voltage measurement circuit and reduces the cost of implementation.
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In [91], a drain-source on-state resistance is determined by using an integrated module. The voltage
between the drain and source Vds and the drain current Id of the switch under test are measured to
determine the drain-source on-state resistance Rds. In order to overcome the requirement of certain
minimum on-state times during drain-source on-state voltage monitoring, the authors utilized a
discontinuous modulation during a fundamental period of the modulation signal to implement
for monitoring. The utilization of discontinuous modulation allows measuring the drain-source
on-state resistance during normal operation of the converter without interruption for the CM process.
Furthermore, the yielded Rds result is stable, and measurement accuracy is not compromised. However,
the general output performance of the converter might be affected due to the discontinuous modulation.
Therefore, the trade-off should be considered carefully before implementation.

2.3.3. Monitoring Reverse Body Diode

In addition to common aging failure indicators as on-state resistance, threshold voltage, and leakage
current, the study in [92] proposed a complete CM method for SiC MOSFETs by using the reverse body
diode voltage drop at different gate bias levels. The proposed approach can indicate both the gate oxide
and packaging degradations by monitoring a single indicator. In this study, the secondary conduction
mode in the third quadrant operation is utilized to monitor the package-related degradation and
gate oxide degradation. When a gate bias is between 0 to −4 V, the current flows through the MOS
channel, whereas at a negative voltage of −5 V, the current path is through the PiN diode, which does
not include the channel as shown in Figure 16 [92]. By combining this analysis and the results from
the accelerating aging test, it can be concluded that the body diode voltage drop can detect the gate
oxide degradation when the gate bias voltage is 0 V, whereas the package-related degradation can
be detected by monitoring the body diode voltage drop at −5 V gate bias voltage. Figure 17 shows
the circuit diagram of the gate driver circuit board with a complete CM technique for gate oxide
degradation monitoring and package-related degradation monitoring [92]. The switches S1–S4 are
utilized to toggle the operation mode of SiC MOSFET and the gate bias voltage value to capture the
body diode voltage drop. Consequently, gate oxide degradation and package-related degradation are
monitored independently. Although the proposed method can utilize a single indicator to monitor
two types of degradation, further study is required to conduct the approach during converter operation.
Additionally, the complex drive control circuit is a drawback of this proposed approach.

According to the discussion above, the new findings of CM regarding online techniques for both
IGBT and SiC MOSFET are presented. The CM techniques are classified following the type of indicators
for each type of power semiconductor devices. The benefits and drawbacks of each approach are
also given.
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3. Active Thermal Control

As depicted in Figure 2, the degradation indicator information obtained from online CM techniques
can be applied to not only passively update but also actively control the system lifetime. Therefore,
ATC, which is a new idea lately introduced to adjust power losses and thermal stress, is discussed
here. The common principle is to vary temperature-related control variables of the power converter to
vary the junction temperature, which will reduce damage caused by thermal cycling [16,93]. By using
ATC, the reliability of power devices is improved, and the lifetime of the power system is extended.
Basically, the control of junction temperature, temperature variation, peak temperature, and average
junction temperature has been targeted. From the perspective of converter type, this paper divides
the ATC into three main categories: single-converters, cascaded converters, and parallel converters
systems. The classification can be described as follows:

(1) The single converter systems include the two-level, three-level converters in ship power, machine
drive applications, and buck/boost converters in the photovoltaic application.

(2) The cascaded converter systems include the cascaded H-bridge (CHB) converters and MMC.
(3) The parallel converter systems include the systems that utilize parallel structure based on two-,

three-level converters, buck/boost converters in wind power, and machine drive applications.

3.1. Single Converter System

A straightforward method to realize thermal control is to regulate the switching frequency,
which has a direct impact on the power losses without considerably affecting the working condition
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of the power system [93,94]. In [95], a switching frequency reduction method based on the junction
temperature variation for a two-level inverter in an adjustable speed drive application was proposed.
The operating switching frequency is determined through a hysteretic control as follows:

fs =


f min
s , ∆T∗j > T1

f ∗s , ∆T∗j < T2

unchange, T1 < ∆T∗j < T2

, (19)

where T1 and T2 are the upper and lower limits of the hysteretic junction temperature variations,
respectively, adjusting the switching frequency as a function of both the average temperature and
the temperature variation together, have better reliability improvement compared with the control
of a single parameter. However, the combining of control parameters increases the complexity and
calculation burden of the control system.

A different manner is to modify the modulation methods and utilize modern control methods.
In [96], a pulse-width modulation (PWM) strategy for redistribution of losses for the three-level
neutral-point-clamped (3L-NPC) inverter, named active lifetime extension (ALE), without any
additional hardware for the modulation range 0.5 < m < 1 was proposed. There is a total of
27 different arrangements of the switches in the 3L-NPC, as shown in Figure 18. The use of different
switching states allows reducing the switching losses or conduction losses. For example, the region,
highlighted in blue, presents redundant switching states. If the conduction losses have to be reduced,
the switching states yielding higher conduction losses are eliminated from the switching sequence.
Conversely, if the reduction of switching losses has the priority, the corresponding states are forbidden,
as shown in Figure 19.
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The author in [97,98] utilized the redundant switching states in the inner hexagon (region is
highlighted in orange) of the space vector diagram to alter the current paths flowing in the power
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devices and thereby reducing the conduction losses or switching losses of the device. This control
scheme is especially suitable for the ride-through operation, during the grid faults for grid-tied
converters, or the startup operation of motor drives where the modulation index is low, and the voltage
reference is located in the inner hexagon in Figure 18.

The control scheme in Figure 20 shows a junction temperature controller using the finite control set
model predictive control (FCS-MPC) to control the amplitude of thermal cycles in a two-level three-phase
inverter-based machine drive [99]. The load current, junction temperature, and the resulting thermal
stress are predicted for all space vectors of the next sampling instant. These predictions are utilized
to derive the FCS-MPC cost function parameters that include the error from the current reference,
the thermal stress on the device, the temperature difference between the chips on a power module,
and the total power losses from switching and conduction of the semiconductors. These parameters are
weighed, and the space vector with the lowest cost function is directly applied to the power converter.
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Based on this concept, a sequence of control for a current-source active rectifier was utilized as a
control algorithm in [100]. The working principle of the sequence control approach is based on a finite
number of switching states of the power converter. To select the optimal switching state, an objective
function that computes the error between predicted values and reference values of both electrical
and thermal objectives. It can be seen that, by minimizing the multi-objective weighted cost function,
the electrical and thermal objectives can be achieved. However, it should be noted that the output
performance of the power converter system might deteriorate and the computational burden might be
relatively heavy.

3.2. Cascaded Converter System

Modular/cascaded power converters have been gradually utilized in medium- and
high-voltage/power applications. The most popular topologies are CHB converters and MMCs.
Due to containing many cells/SMs in the power converter system, the unequal thermal stress among
cells/SMs exerts a negative impact on the switching devices and the lifetime of the power converter.

The author in [101] proposed a technique, named power routing, to implement ATC through
unevenly loading the modules of the modular/cascaded configuration. The power routing method is
the optimization technique in which each module processes a quantified amount of power with the
aim of improving the system’s efficiency and reliability [101], as depicted in Figure 21. The module
can be connected in series or parallel or a combination of both. As for the series connection, the same
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current is shared among modules, but each module has the degree of freedom to control its output
voltage. Thus, the power of the individual module can be regulated by varying the module’s output
voltage. Similarly, regarding the parallel configuration, the cells share the same voltage, but each
module has the degree of freedom to control its output current, the parameter utilized to control cell
power is the current instead of the voltage. Based on this technique, the power routing method is
applied to CHB converters [102], 3-stage modular smart transformer comprising a CHB for medium
voltage AC (MVAC) to medium voltage DC (MVDC) conversion [103], and dual active bridges (DAB)
for MVDC to low voltage DC (LVDC) conversion [104]. Thanks to this method, the most damaged
cells can be preserved.
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Regarding MMC, this type of multilevel converter has received a great deal of study in terms of
various aspects as output performance improvement [105–108], reduced computational burden [109–111],
power losses balancing among SMs [104,112,113], etc. Due to the relatively large number of SMs, the ATC is
usually conducted to achieve similar thermal stress distribution among the different SMs to enhance the
lifetime of the power system [104]. In [114], the unbalanced thermal distribution among SMs, induced by
the mismatch in the SM parameters, was analyzed. Due to the SM capacitors are not identical, the switching
losses and conduction losses of associated SMs will be different, resulting in unbalanced thermal distribution
among SMs. In order to solve that problem, an active thermal balancing control was proposed by combining
the junction temperature of lower IGBT and the capacitor voltage to the sorting algorithm by using a weight
function. The weight factor is altered between zero and a predefined value to guarantee both the capacitor
voltage balance and equal thermal distribution among SMs:

Li = (1− α) × vi
norm − α× Ti

norm × sign(iarm), (20)

where α is the weighting factor, vi
norm and Ti

norm are the deviation in the capacitor voltage and the
junction temperature, respectively. The acquired experimental results under different cases with
different capacitances in SM capacitors validated the proposed thermal balancing control methods by
equally distributing the temperature among SMs. However, the capacitor voltages are less balanced,
which is a trade-off when the thermal balancing control approach is adopted. Another thermal balancing
strategy was presented in [115], integrated the junction temperature to the capacitor voltage balancing
algorithm to achieve similar thermal distribution among SMs. Different from [114], the temperature
of devices in SM is integrated separately to associated capacitor voltage, forming four cost functions
corresponding to the upper IGBT, upper diode, lower IGBT, and lower diode. The cost function is
selected for each sampling instant by taking into account the arm current direction and whether SMs
have to be inserted or bypassed. The proposed control approach sharply reduced the inhomogeneity
and temperature spread among the SMs.

A method proposed in [116] achieved SM thermal balancing by regulating the capacitor voltage of
each SM in an arm while keeping the sum of the SM capacitor voltages at nominal value to control the
dc-link voltage. As shown in Figure 22, the temperature of each SM TSM,i is compared with the average
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temperature of all SMs Tavg in the arm, and the difference fed to a proportional-integral (PI) controller,
which will determine the voltage differential to be added to each individual SM voltage reference [116].
The capacitor voltages are regulated following [117] but with additional terms corresponding to the
temperature. Although the temperature among SMs was balanced, a distorted multilevel arm voltage
waveform was produced from unbalanced capacitor voltages.
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Figure 22. The SM temperature control diagram.

In [118], the study revealed that thermal stress distribution inside the SMs of hybrid MMC
(Figure 23) becomes more unbalanced under a high voltage modulation index. The ATC for both
half-bridge SMs (HBSMs) and full-bridge SMs (FBSMs) was proposed to solve this problem. As for
FBSMs, the two kinds of bypassed switching modes were altered to form a symmetrical switching
arrangement when arm voltage is positive [118]; as shown in Figure 24, the same procedure is applied
when arm voltage is negative. The symmetrical switching arrangement does not deteriorate the
converter output performance, whereas the distribution of power losses in FBSM is more balanced,
resulting in the thermal reduction of the most stressed devices.
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Meanwhile, a thyristor with high current withstand capacity was connected in parallel with the
lower IGBT/diode in Figure 25. The positive arm current will be bypassed by the thyristor to reduce
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the thermal stress on the lower IGBT. The utilization of a parallel thyristor in HBSM is also applied in
the MMC high voltage DC (HVDC) system to protect the lower diode under the DC short-circuit fault.
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3.3. Parallel Converter System

The problem of high-current low-output-voltage conversion at the point-of-load is commonly
resolved by using a parallel connection of multiple converter units. The parallel converter systems
offer a reliability improvement as redundancy quite easily can be implemented. Although the
load sharing technique is utilized to distribute the load current and achieve equal sharing of load,
it does not guarantee even distribution of thermal stress among parallel converters. The cause of
this problem might be the variation in the parameters in the power converters and also the aging
effect, which produces the temperature mismatches. In order to overcome this problem, an active
thermal sharing was proposed [119–121] for a parallel DC-DC converters system. In this method,
the load current is redistributed between parallel converters using the temperature values of the power
converters. The current and temperature information were mixed together, and the new information is
utilized in the average load sharing (Figure 26). This control scheme tends to equalize the thermal
stress among the parallel converters. The advantage of this approach is straightforward to implement
in the existing system; however, there might be a possibility of a slight increase in the individual
converter failure rate.
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The system reliability can be improved by using an ATC method-based droop control
scheme [122,123]. In [124], a load sharing control scheme among converters was reported. The droop
gain will be updated according to the calculated consumed lifetime of the converters. Here, the droop
gain was calculated following the accumulated consumed lifetime (ACL) by:

Rd,k = ACLk(pu) ×Rdo, (21)

where Rdo is the maximum allowable droop gain. Following the ACL of each converter,
the corresponding droop gains need to be adjusted to achieve an equal ACL for all converters.
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Thus, the load sharing among the converters is achieved based on thermal stress on the semiconductor
switches; hence, by actively controlling the loading of converters, the ACL of converters can be
equalized, and the overall system reliability can be enhanced.

In addition to the thermal control based load sharing technique, the power routing method is
also adopted in the parallel converter system to balance the aging of converter cells. Similar to the
power routing principle in the cascaded/modular converter system, the authors in [125,126] utilized
power routing in parallel DC-DC converters system and two-level voltage source inverter (2L-VSI) in a
triple modular permanent magnet synchronous motor (PMSM) drive system, respectively. The power
routing method, based on the aging status of each converter cell in a parallel system, redistributes
the power to each converter cell by adjusting the duty cycle to generate the switching patterns in the
modulation stage. Consequently, the lifetime of the most aging converter cell is increased to improve
the reliability of the whole system.

The parallel converters system for wind power applications in Figure 27 has suffered from a
considerable temperature variation due to the wind speed fluctuation. In [127–130], the ATC is applied
in the wind power system by means of reactive power to smooth the temperature fluctuation of power
devices during wind speed variation, as shown in Figure 27. In the parallel converter, the reactive
power delivered can significantly influence the loading of components, and it is not restrained to the
existing mechanical/electrical power processed by the converter system so that it is suitable to achieve
ATC. The reactive power will not only adjust the phase angle between the output voltage and current
of the converter but also change the current amplitude flowing in the power devices, which are all
associated with the power loss and thermal stress of power devices. By introducing a certain amount of
underexcited reactive power to heat up the device during the low power period, the overall fluctuation
of device temperature can be significantly reduced. The disadvantage of reactive power cycling is that
it can only be applied in the parallel converter system, and the thermal load of the diode is increased.
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4. Remaining Useful Lifetime Estimation

The RUL of an asset is defined as the length of time from the present time to the end of useful
life [131]. The need for RUL estimation is evident because it relates to a frequently asked question
in the industry, which is how long a monitored asset can survive based on the available information.
Based on the RUL estimation, appropriate actions can be planned. The reported RUL techniques
include both model-based and data-driven approaches.

4.1. Model-Based Methods

Atypical flowchartofRULestimationmodel-basedtechniques is illustrated inFigure28. Inmodel-based
approaches, typically, junction temperature information is mandatory and utilized in analytical lifetime
models such as Coffin–Manson [132] or more detailed Bayerer [133] models, which estimate the number of
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cycles to failure under given junction temperature swing amplitude. The junction temperature is estimated
by computing the power losses and thermal impedance model of the switch following a mission profile
of the power converter system. Meanwhile, temperature cycles are counted using the rain-flow counting
algorithm [134]. The accumulated damage as a result of different thermal swings is found by using simple
linear damage models such as the Palmgren–Miner model [135].

Electronics 2020, 9, x FOR PEER REVIEW 25 of 37 

 

different thermal swings is found by using simple linear damage models such as the Palmgren–Miner 
model [135]. 

 
Figure 28. Typical diagram of remaining useful lifetime (RUL) estimation technique. 

As analyzed in [136,137], correct transforming the mission profile of the converter in the real 
application as wind power into the corresponding loading profile of the power devices is a 
challenging task. According to the main causes of loading in a power converter of wind turbine 
applications, the thermal behavior of power electronic components can be generally classified into 
three times constant: long term, medium term, and short term. Normally, a 1-year mission profile 
and hourly mission profile are utilized to estimate the RUL of the power converters. In order to exact 
the temperature profile from the mission profile, in [138], the electrical parameters are extracted from 
the mission profile by using the mechanical system, power converter system, and controller. The loss 
models are used to calculate the losses in the switches and diodes using extracted electrical 
parameters. The thermal loading or junction temperature can be extracted from the power losses by 
using the thermal model as Cauer model or Foster model in Figure 29a,b [139]. In [138], the utilized 
thermal model use mix of both Cauer and Foster thermal models to solve the shortcoming of the two 
stated models, as shown in Figure 29c. Consequently, the junction temperature of power devices can 
be obtained. 

 
(a) 

 
(b) 

Power loss model

Palmgren- Miner 
linear accumulation 

damage model 

Power converter in wind-turbine application system

IG
GB

Thermal model

Rainflow counting algorithm

Wind-speed mission profile

Electrical parameters

Power losses

Junction 
temperature Lifetime

Analytical lifetime model

Temperature 
fluctuation

Number of 
cycle to failure

Temperature 
cycle 

distribution

Rth1 Rth2 Rth,n

Cth1 Cth2 Cth,nPloss Tcase

Rth1 Rth2 Rth,n

Cth1 Cth2 Cth,n

Ploss Tcase

Figure 28. Typical diagram of remaining useful lifetime (RUL) estimation technique.

As analyzed in [136,137], correct transforming the mission profile of the converter in the real application
as wind power into the corresponding loading profile of the power devices is a challenging task. According
to the main causes of loading in a power converter of wind turbine applications, the thermal behavior of
power electronic components can be generally classified into three times constant: long term, medium
term, and short term. Normally, a 1-year mission profile and hourly mission profile are utilized to
estimate the RUL of the power converters. In order to exact the temperature profile from the mission
profile, in [138], the electrical parameters are extracted from the mission profile by using the mechanical
system, power converter system, and controller. The loss models are used to calculate the losses in the
switches and diodes using extracted electrical parameters. The thermal loading or junction temperature
can be extracted from the power losses by using the thermal model as Cauer model or Foster model in
Figure 29a,b [139]. In [138], the utilized thermal model use mix of both Cauer and Foster thermal models
to solve the shortcoming of the two stated models, as shown in Figure 29c. Consequently, the junction
temperature of power devices can be obtained.

As mentioned earlier, the lifetime of the power converter is related to the magnitude and the
frequency of these temperature cycles. Each cycle applies different stresses to the module and further
leads to a particular lifetime consumed. There are several cycle counting methods being developed for
the study of fatigue damage, such as level crossing counting, peak counting, simple range counting,
and the rainflow counting. The rainflow counting algorithm in Figure 30 is usually adopted to extract
the thermal cycles from the acquired thermal profile. This algorithm was initially named the “Pagoda
Roof Method.” It can be explained as a random stress S(t) representing a series of roofs onto which
water falls, with time being the vertical axis. The detailed principle of using the rainflow counting
algorithm is presented in [140] and not repeated here.
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Figure 30. Example of the rainflow counting algorithm.

By employing the rainflow counting algorithm, the decomposed temperature cycles distributed
into the rainflow histogram according to their amplitudes are acquired. In order to calculate the
lifetime, the analytical model is adopted to describe the dependence on the number of cycles to failure.
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Among the analytical modeling methods, the Coffin–Manson model [124] is the most widely utilized
technique, presented as:

N f = α×
(
∆T j

)−n
, (22)

where ∆T j is the fluctuation of the junction temperature, whereas coefficients α and n can be fitted by
simulation or cyclic experiment. Although the Coffin–Manson model is the simplest model, it does not
take the frequency of cycles and heating and cooling times into account, resulting in a low accurate
result. Another model from Coffin–Mason–Arrhenius [141] considers the mean junction temperature
besides the temperature variation, described as:

N f = α×
(
∆T j

)−n
× e

Ea
kTj,m , (23)

where k is the Boltzmann constant and Ea is the activation energy parameter.
The Norris–Landzberg model is based on (23) and additionally takes into account the cycling

frequency of the junction temperature, as shown in (24):

N f = A× f−n2 ×

(
∆T j

)−n1
× eEa/(kT j,m), (24)

where f is the frequency of the junction temperature; n1 and n2 are constant fitted by experimental data.
The most complicated model, the Bayerer model [134], has a large number of parameters and

considers more detailed information during the power cycling tests and power module characteristics,
written as follow:

N f = K ×
(
∆T j

)−β1
× eβ2/(T j,max+274K)

× tβ3
on + I−β4 + V−β5 + D−β6 , (25)

where T j,max is the maximum junction temperature, ton is the heating time, I is the applied DC current,
V is the blocking voltage, and D is the diameter of the bond wire. These constants β are fitted by
experimental data.

Then, the lifetime is presented as the inverse of the total damage accumulated within a power
module until the suspension of its normal operation by using Miner’s rule [127], whereas the total
consumed lifetime (CL) or damage can be defined as the sum of all the fractional damages, described
as following:

Damage = CL =
∑ Ni

N f
, (26)

where Ni is the number of cycles in the stress range and N f is the number of cycles to failure. The lifetime
of the devices LF can be simply calculated as follows:

LF =
1

CL
. (27)

4.2. Data-Driven Based Methods

Different from the model-based method, the data-driven methods involve the processing of
experimental data to derive an empirical degradation model from estimating the RUL of the
power module. The degradation data are usually the on-state resistance variation for the power
MOSFETs [142,143], on-state voltage [144].

The author of [142,143] proposed an RUL estimation approach for MOSFETs based on the on-state
resistance variation. In the first step, cyclic thermal stress is conducted for several days to a few weeks
to measure the on-state resistance. In this experiment, the thermal swing amplitude has been kept
constant throughout the aging. In order to observe the on-state variation under thermal swings with
variable amplitudes, another test has been performed on the power MOSFET, which experienced ten
consecutive thermal cycles of different amplitudes.
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In the second step, from the collected on-state resistance data through the exhaustive experiments,
an empirical model is built to estimate the RUL of the switches. In [142], an exponential degradation
model is generated from the experimental data, described as the following:

Rds,on(k + 1) = Rds,on(k) × (1 + ∆tβ) −Rinitβ∆t. (28)

A Kalman filter is applied to the empirical model given in (28) to calculate the empirical coefficients
by the least-squares method. KF is a widely acknowledged optimal state estimator assuming a Gaussian
distribution through minimizing the mean square error (mse) of the estimates considering the errors in
the measurements and the model. Using the computed empirical coefficients up to the current time
step, the RUL of the degraded switch is predicted.

Another aging precursor is the collector-emitter voltage drop utilized in [144] to estimate the
RUL of discrete IGBT devices based on the Gaussian process. Similar to the utilization of on-state
resistance in [142], the impact of accelerated thermal aging test on the on-state voltage drop is analyzed.
The resulted behavior of the on-state voltage drop can be generalized, as illustrated in [144]. This generic
behavior is critical to analyze for generating an early warning signal to the end-utilizer before complete
device failure. Based on the collected data from accelerated thermal aging tests, an RUL estimation
model based on Bayesian inference under the notion of Gaussian process regression was utilized.

The data-driven methods do not require the junction temperature measurement, they utilize the
physical parameters as on-state resistance or on-state voltage drop instead. However, the variation
of on-state resistance or on-state voltage drop under thermal tests is sensitive to the applied power
level and changes in the temperature. Due to this fact, although the physical parameters as on-state
resistance or on-state voltage drop can be utilized to get the RUL indication, it requires applying
modern methods to increase the accuracy of RUL results.

5. Discussion of Enhancing Reliability Techniques

The performance of CM techniques varies with different application domains as it is corresponds to
the maintenance availability, measurement uncertainties, and cost. In terms of maintenance availability,
because the power systems need to be maintained as quickly as possible after the degradation
has been detected since the degradation will speed up the wear-out process. If the maintenance
cannot be achieved quickly, the converter may break down first, making it unreliable. This means
that the more difficult the maintenance available, the poorer the performance of CM. Regarding
measurement uncertainties, it can be noticed that the CM indicators can be affected by numerous
degradation mechanisms instead of a specific one. For example, resolving junction temperature from
the measurement of TSEPs can be challenging due to many reasons as the low sensitivity of junction
temperature, dependence on loading conditions, and measurement inaccuracies. The ideal TSEPs
can be applicable to any device type, any converter topology, suitable for any application. However,
for the case of online TSEPs measurements, the proposed solutions may only be adaptable to particular
converter topologies. Therefore, some TSEPs have advantageous qualities, but due to implementation
issues, they may only be able to be sampled periodically without causing unacceptable disruption to
normal converter operation. Furthermore, some indicators are difficult to measure under real working
conditions. This leads to the current state of online CM technique development not being technically
feasible enough. In some practical applications, as in industry, the cost is an indispensable factor in
addition to the performance. Regarding CM techniques, the complicated external circuits might be the
trouble in practical implementing. In this sense, the CM approaches with simple and low-cost external
hardware are better for those applications that are cost-limited, volume-limited, and weight-limited.

Based on the CM result of power semiconductor devices, the output of the converter can be
reduced to avoid significant stress on the components. This allows the power system can work for a
longer time than expected. However, the reduced output of the converter exerts a negative impact
on the overall performance of the power system. In this case, the ATC can be applied to extending
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the lifetime of the power system without modifying the design of the converter or external hardware,
meaning that there is an additional cost. However, the trade-off between the output performance
of the power system and extending lifetime should be carefully considered. The utilization of ATC
without deteriorating the power system performance is a critical aspect. The potential of a specific ATC
algorithm is highly dependent on the type of converter and corresponding applications. For example,
electric drive applications require an immediate effect. Thus, the switching frequency control is
promising. Meanwhile, the change of the modulation method is limited and might affect the losses of
power semiconductor devices. Further quantitative comparison among different ATC methods should
be investigated to make a reasonable tradeoff among lifetime, efficiency, and power density for various
applications of power converter system.

The CM and ATC techniques are proposed to extend the lifetime of the power converter system.
Meanwhile, the RUL estimation techniques can be used to decide whether to apply maintenance or ATC
and verify the effect of ATC. The basic advantage of the data-driven-based method is that it does not require
junction temperature information but involving the processing of experimental data to derive an empirical
degradation model. Furthermore, the data-driven-based method can be integrated into a low-cost controller
for real-time failure prognosis, which would significantly increase the reliability of the power converter
system. According to the discussion above, it can be noticed that the correlation among techniques aims at
increasing the reliability of the power converter system to be closed.

6. Conclusions

The reliability of the power converter system is becoming increasingly important for power
electronics and has attracted much interest. A literature overview of the reliability improvement
for the power converter system based on increasing the reliability of the power semiconductor
devices is presented. The IGBT and SiC MOSFET chip-level, package-level structure, and associating
failure modes and mechanisms are summarized. The power semiconductor devices are the most
fragile components to examine. Based on the individual failure mode, the failure indicators and
corresponding CM techniques are discussed. Although CM techniques have been developed in
earlier work, they are mainly implemented in controlled offline conditions, which makes high cost
and infeasible implementation. The recent CM methods, which can be implemented in real-time
operation of the converters, concerning TSEPs and other failure indicators, for both IGBT and SiC
MOSFET, are reviewed. Furthermore, the ATC techniques, classified into three main categories
following the structure of power converter systems, are investigated. In addition to the converter
type, the application and the trade-off between thermal controllability and general output performance
should be investigated further. Finally, the two types of RUL estimation techniques for the power
converter are summarized. The model-based lifetime estimation approach is preferred over the
data-driven based method due to its simplicity and accuracy. Based on the aforementioned analysis,
in addition to the advances in reliability improvement techniques, some challenges are discussed to
address in the future.

Challenges:

(1) Based on the basics of existing CM techniques, it is still required to find out more failure
indicators that can more accurately indicate the health condition, especially for the SiC
devices—understanding the effect of failure and other impacts such as temperature on changes of
failure indicators.

(2) It is significantly required to find a method to monitor many failures at the same time by using one
or more failure indicators. Therefore, an accurate and reliable decoupling of the failure indicators
and TSEPs should be investigated.

(3) In addition to the CM at the device level, the converter-based or system-level CM techniques
need to be further developed to find out more failure indicators based on the power system
output performance. Furthermore, an approach utilized to locate the failure devices should be
investigated to assist the system-level CM approaches.



Electronics 2020, 9, 2068 30 of 37

(4) The need for a CM method when the power converter is working is significant. Apparently,
the variation of electrical and thermal parameters during system operation, especially in
photovoltaic and wind turbine applications, complicates the CM techniques.

(5) In terms of the ATC, the trade-off among ATC efficiency, output performance, and cost should
be considered. The utilization of ATC without deteriorating the power system performance
is a critical aspect. Furthermore, the verification of ATC with practical applications should be
more investigated.

(6) The linear damage accumulation method, such as the Palmgre–Miner model, is widely utilized.
Besides, the non-linear damage accumulation methods need to be developed to increase the
accuracy of the lifetime modes.

Opportunities:

(1) The advances in semiconductor materials and packaging technologies provide more aspects for
exploring them as far as reliability issues are concerned.

(2) New technologies with measurement circuitry for high-frequency applications are further
developed, which provide an open window to apply them in terms of CM techniques without
interrupting the operation of the power converter system.

(3) Further development of a real-time monitoring system helps obtain better mission profile data
for various types of power converter systems to improve RUL estimation accuracy.
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