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ABSTRACT Modular Multilevel Converter (MMC) is an emerging converter topology for medium and high
voltage applications. Nearest level Modulation (NLM) is the conventional control topology used to control
the MMC that produces the N+1 AC output waveform. In previous research work, the Modified NLM has
been already proposed, producing a 2N-+1 and 4N+1 output waveform while utilizing a half-bridge (HB)
submodule (SM) topology. However, half-bridge-based MMC has a similar behavior as two-level Voltage
Source Converter (VSC) and cannot block DC fault current in case of DC-side short circuit fault. So, in recent
years, full-bridge-based MMC topology is preferably used by manufacturers as it has DC fault blocking
capabilities. This paper presents the Modified NLM for Full bridge (FB) SM topology to take the critical
benefits of FB SM topology and improve power quality. The proposed method is simpler to implement and
produces a 4N+1 AC output waveform. The THD of the output voltage and current reduces to half compared
to the conventional NLM method. The proposed method is verified using LabVIEW Multisim co-simulation

and as well as real-time simulation.

INDEX TERMS Modified NLC, full bridge, HVDC MMC, hardware-in-loop simulation.

I. INTRODUCTION
Modular Multilevel Converter (MMC) is a promising con-
verter topology used nowadays, especially in the applica-
tions of High Voltage Direct Current (HVDC) Transmission
systems and in multi-terminal DC (MTDC) grids due to its
various advantages over conventional converters [1]. Series
connected identical submodules (SMs) make its design sim-
pler, modular, easily scalable in voltage and current, and
provides redundancy [2], [3].

Generally, fundamental switching frequency methods
such as space vector modulation, selective harmonic
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elimination (SHE), and nearest level modulation (NLM) are
preferred in MMC to limit the switching losses [4]-[9]. For
MMC with a high number of SMs, the NLM modulation
method is given preference due to its attractive features such
as simple implementation, not involving complex mathemat-
ics as in the SHE modulation method, and natural capacitor
voltage balancing [10], [11]. In NLM, the three-phase grid
voltages are taken as a reference, fed back to a modulator.
These voltages are converted to the staircase waveform using
a round function. The switching pulses for all SMs present
in the upper and lower arm of the MMC are generated.
Finally, the SMs are inserted and bypassed using a conven-
tional sorting algorithm depending upon arm current polarity,
SM voltage, and voltage required at the output [12], [13].
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The conventional NLM method generates N+1 AC output
levels (N is the number of SMs in the upper/lower arm) [14].
More SMs are employed to raise the number of levels in
the output, which increases the number of switches, capac-
itors, and gate driver circuitry and, therefore, the system’s
complexity [15], [16]. To increase the number of levels,
the power quality of the output voltage and current Modified
NLM methods are presented in various research articles.
For instance, the authors in [15] proposed modified NLM
for Half Bridge (HB) MMC to produce 4N+1 level output
AC waveform. However, HB MMC cannot block dc fault
currents in case of dc short circuit fault. The authors in [17]
proposed the binary, trinary, and modified MMC-based topol-
ogy to improve power quality and reduce circuit complex-
ity. The proposed method involves complex calculations and
gives higher THD. The reference [18] presented a modified
NLM to improve the power quality, but this study lacks
experimental verification. The research reported in [19] pro-
vided an improved NLM with fewer SMs, although their
technique had a larger THD and no experimental valida-
tion. The authors in [20] also presented an increased NLM
method with fewer SMs and less THD. In various other
articles [21]-[25], the authors presented the Modified NLM
method to improve the power quality and reduce the circuit
complexity.

Nevertheless, the studies presented were only limited to
the half-bridge topology of MMC. Full bridge SM topology
has many advantages such as inherent DC fault blocking
capability, increased AC output voltage, and twice the number
of output voltage levels [26], [27]. Thus, there is a tire need to
develop a Modified NLC method for full-bridge SM topology
to get the above-discussed features of full-bridge topology.
In this paper, a modified NLC approach to operate full-bridge
SM-based MMC HVDC is presented. The proposed modified
NLC produces a 4N-+1 AC output waveform which improves
the power quality of the voltage and currents.

Offline simulation is done using LabVIEW Multisim
Co-simulation to evaluate the efficacy of the proposed
technique, in which the control algorithm is created in
LabVIEW and the circuit is implemented in Multisim.
The results are obtained for conventional and modified
NLC control with various levels, and comparisons are
drawn between both techniques. The Modified NLC is then
implemented in FPGA-based controller Compact Reconfig-
urable input/output (CRIO), and the circuit is implemented
in NI PXI for real-time results verification.

Il. WORKING PRINCIPLE OF MMC

The topology of FB-based HVDC MMC is shown in Fig. 1.
It consists of three phases, with each phase includes the upper
and lower arm connected in series through an inductor. The
arms are formed using FB SMs. Each SM contains four
switches and a capacitor connected across them. To derive
output voltage and current equations, use Kirchhoff’s voltage
law (KVL) and current law (KCL) in the upper and lower
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FIGURE 1. Three-phase MMC HVDC with FB SM topology.

arms of any phase. The equations can be written as

N 1 di
Vx_upper = - Z] VSMiN + Evdc — Lam u;fer , (D
M 1 dij
Vx_lawer = Zl VSM_M - EVdC + Larm%v (2)

where, Vy_ypper and Vi _jower are the output voltage of the
upper arm and lower arm, V. is the total DC link voltage,
Lgrm is the inductance of inductor connected to the arm, i,pper
and ijyyer are the upper and lower arm currents and Vs,
and Vgy,, are the SM voltages of the upper and lower arm,
respectively. Depending upon the switches, the voltages of
SMs i.e., Vsy, and Vsyy,, can be positive, negative, and zero.
Thus, the output current can be found by equation (3).

Iy = iupper — Liower 3)

From equation (1) and (2), the output voltage can be written

as
1 M N 1 diy
V, = E <Z] VSMM - Z] VSMN> + zLarmE- @
The ac equivalent voltage can be calculated by

1 M N
Vae = 5 (Zl Vsity =), VSMN> : ®)

In general, ac equivalent voltage is found as

mVy,

v = cos (wt). (6)
The reference voltages for upper and lower arm operation
are written as

Ve

Visher = 3511 = moos @), 7
Va
lt)e;/];er = TC[I + mcos (wt)]’ (8)

where m is the modulation index in the range 0 < m < 1 and
w is the angular frequency.
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Ill. NLM METHOD
The following formulae can calculate the number of SMs
inserted in the upper and lower arm

di

Nupper = (m [1 — mcos (wt)]Dround(0.5)- 9
Vi

Niower = (50— [1 + mcos (@)D round0.5)-  (10)

2Vsm

In both the equations, Vsys is the SM capacitor voltage.
The round function rounds the real number to the closest
available integer as per its decimal fraction. The conventional
NLM method produces N+1 AC output waveform as shown
in the Fig. 2. Where N is the number of SMs in either arm.

ref
Lower VTef
i Upper

_Vac
2

FIGURE 2. Conventional NLM method.

IV. PROPOSED MODIFIED NLC

The proposed Modified NLC method for FB SM-based MMC
is derived by adding a small phase shift in reference wave-
forms for the left and right arms of the FB SM. As shown
in Fig. 1, the switches in the FB SMs are named Sy and Sy 2
for the left arm and Sr; and Sgry for the right arm, respec-
tively. The initial phase shift is introduced in the reference
waveforms for all the FB SMs, as shown in Fig. 3. This phase
shift produces 2N+1 AC output levels in voltage and current
waveform.

Ve
Vi, = 11 = meos (wi+ 0] (1)
Ve
Nright = (ZVSM [1 — mcos (wt+ O<)])r0und(0.5) (12)

The above equations (11) and (12) are used for the right
upper and lower arm, and equations (7) and (8) are used for
the left upper and lower arm of the FB MMC. The complete
schematic layout of the Modified NLC for full-bridge is
implemented in LabVIEW is shown in Fig. 4.

As shown in the above closed-loop LabVIEW program,
three-phase voltage and current are measured and feedback
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FIGURE 3. Modified NLC in FB SM for 2N+1 levels.
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FIGURE 4. Modified NLC in LabVIEW for FB SM for 2N+1 levels.

to generate the reference signal for Modified NLC. The ref-
erence signal for right and left arm are then generated, and
a phase shift is added in either of the respective arm (right
arm in our case). The control signals are then generated and
sent to the voltage balancing algorithm to select respective
FB SMs. To extract the required phase shift i.e. value of the
angle o, the THD of the voltage is measured and dispatched
to the selection block containing previous and current value
of THD. If the previous THD is less than the current value,
the phase shift is retained to its previous value, otherwise
the phase shift is increased by some value. To ensure the
minimum THD, the phase shift is not kept constant but it is
varied between 9.5 to 11 degrees, where optimum value of
angle « lies.

Moreover, to produce 4N+1 AC output levels, more phase
shift is introduced in half of the SMs of the upper arm and
half of the SMs in the lower arm of FB based HVDC MMC.
The complete process is further illustrated in Fig. 5. When the
controller achieves a stable value of the angle alpha, the levels
are raised from 2N+1 to 4N41 by inserting a small phase
shift for half of the SMs in the upper and half of the SMs in
the lower arm.
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FIGURE 5. Modified NLC in LabVIEW for FB SM for 4N+1 levels.
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FIGURE 6. LabVIEW multisim co-simulation method.
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FIGURE 7. Three-phase output voltage with 9 levels and 17 levels.
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FIGURE 8. Three-phase output current with 9 and 17 levels.

V. LabVIEW MULTISIM CO-SIMULATION RESULTS
To validate the simulation results, LabVIEW Multi-
sim Co-simulation is carried out, as shown in Fig. 6.
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FIGURE 9. Three-phase output voltage with 17 and 33 levels.
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FIGURE 10. Three-phase output current with 17 levels and 33 levels.
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FIGURE 11. Three-phase output voltage with 23 and 49 levels.
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FIGURE 12. Three-phase output current with 23 and 49 levels.

Modified NLC is designed in LabVIEW, and MMC circuit is
designed in Multisim. Both modified and conventional NLM
method is designed in LabVIEW and activated to verify the
proposed algorithm. Different AC output levels have been
simulated to observe the behaviour and effectiveness of the
Modified NLC.

The system parameters are shown in table 1, and simulation
results are compiled using different FB SMs in the arm, such
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FIGURE 13. Real-time simulation Setup for result verification.

TABLE 1. Conventional and modified NLM in terms of THD.

Item No Parameter Value
1 Nominal Power 15 MVA
2 Grid Voltage 42kV
3 DC Link Voltage 10 kV
4 System Frequency 50 Hz
5 SM Voltage 2kV
6 SM capacitance 5000uF
7 Arm Inductance SmH

TABLE 2. Conventional and modified NLM in terms of THD for offline
simulation.

‘E” Conventional NLM Modified NLM
%) % THD % THD

Current Voltage Current Voltage
4 6.36 9.50 3.14 4.71
8 3.17 4.60 1.57 221
12 1.52 2.19 0.80 1.09

as 4, 8, and 12, to obtain different AC output levels. It should
be noted that prior to 0.04 seconds, conventional NLM is
activated. It generates 2N+1 level AC output waveform,
having 9.5% voltage THD and 6.36% current THD as shown
in Fig. 7 and Fig. 8. Modified NLM is activated after 0.04 sec-
onds. Modified NLM produces 4N+1 level and generates
high-quality AC waveforms closed to the reference sinusoidal
waveform. Therefore, Modified NLM has improved power
quality and reduced harmonic content as compared to conven-
tional NLM. THD of the voltage and current reduces to 4.71%
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FIGURE 14. Three-phase output voltage with 9 and 17 levels.
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FIGURE 15. Three-phase output current with 9 and 17 levels.

and 3.14%, respectively in modified NLM. The results are
further shown from figure 9 to 12 and compared in Table. 2
for the different number of levels.

VI. REAL-TIME SIMULATION RESULTS

The setup for real-time simulation is shown in Fig. 13. The
three-phase MMC circuit designed in Multisim is loaded in
NI PXI, an FPGA-based floating-point solver that creates a
bit file of the circuit and runs it at nanoseconds on FPGA.
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FIGURE 16. Three-phase output voltage with 17 and 33 levels.
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FIGURE 17. Three-phase output current with 17 and 33 levels.
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FIGURE 18. Three-phase output voltage with 23 levels and 49 levels.
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FIGURE 19. Three-phase output current with 23 levels and 49 levels.

The early designed Modified NLC is then loaded on an
FPGA-based Compact RIO controller to control the circuit
running in PXI. The real-time simulation results are obtained
from Figures 14 to 18. Conventional NLM is activated ini-
tially, and then the modified NLM is turn on at 0.04 seconds
to achieve 4N+-1 levels. The results are obtained and summa-
rized in Table 3 for different number of AC output levels to
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FIGURE 20. Current waveform showing load variation with 9 and 17
output levels.
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FIGURE 21. Current waveform showing load variation with 17 and 33
output levels.
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FIGURE 23. Voltage THD in offline and real-time simulation for Modified
and convention NLM.

show the effectiveness of the modified control. It should be
noted that THD is reduced and the power quality is improved
by increasing AC output levels as shown in Table 3. It can be
seen from figure 14 to 19 that due to the step size of nanosec-
onds, ripples appeared in voltage and current. Therefore slight
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TABLE 3. Conventional and modified NLM in terms of THD for real-time
simulation.

ﬁ Conventional NLM Modified NLM
7] % THD % THD

Current Voltage Current Voltage
4 6.45 9.59 3.26 4.83
8 331 4.71 1.68 2.35
12 1.61 2.28 0.93 1.18

difference in THD for offline and real-time simulation can
be observed. This slight difference is clearly shown graph-
ically for current and voltage THD, considering offline and
real-time simulation in Fig. 22 and 23 respectively. The load
is also varied to validate the performance of proposed method.
The results are shown in Fig. 20 and 21 for different number
of AC output levels.

VIi. CONCLUSION

Compared to previously presented Modified NLM, which
was only confined to HB SMs in HVDC MMC, the Modi-
fied NLM method is developed and applied for Full Bridge
MMC configuration in this paper. The Modified NLM is
simple to implement and produces 4N+1 AC output lev-
els. The method is initially verified with offline simulation
using LabVIEW Multisim co-simulation and later executed
in NI PXIe for real-time simulation and verification of results.
Finally, the results are compared for both offline and real-time
simulation in terms of THD.
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