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ABSTRACT Key-Value store (KV store) is becoming widely popular in both academia and industry due to
its fast performance and simplicity in data management. To improve the performance of KV stores, recent
Serial Advanced Technology Attachment (SATA) and Non-Volatile Memory express (NVMe) Solid-State
Drives (SSDs) have been widely adopted. In contrast to the existing Hard-Disk Drives (HDDs), SSDs have
unique characteristics which must be carefully considered to exploit the full performance. For example, due
to the erase before write constraint, the access pattern of workloads impacts the performance and endurance
of SSDs. Thus, the performance of SSD with the sequential workload is higher than that with the random
workload. In this paper, we propose a key reshaping technique to improve the performance of KV stores
with high performance storage devices. By reshaping keys, our scheme allows KV stores to process the
random insert requests into sequential insert requests, improving request processing and Input/Output (I/O)
performance. Our experimental results show that the proposed scheme can improve the performance of KV
store by up to 106% and 281% compared with the existing scheme, in the case of SATA and NVMe SSDs,
respectively.

INDEX TERMS Flash-based SSDs, key-value store, non-volatile memory, database.

I. INTRODUCTION
As recent applications produce a large amount of data, it is
crucial to efficiently store and access the data. To do this,
relational databases [1], [2] are widely used to manage the
data. However, as relational databases support rich relation-
ships, it can be difficult to manage large amounts of data
with efficiency and high performance. To improve efficiency,
KV stores are widely used in both industry and academia
due to simpler data management and higher performance
compared with relational databases.

To improve the performance of KV stores further, emerg-
ing high performance storage devices such as SATA and
NVMe SSDs are widely adapted as storage devices. Com-
pared with the existing HDDs, SSDs offer low latency and
high bandwidth. However, SSDs have unique characteristics
that should be carefully considered. For example, in SSDs,
the performance of random write workload is far less than
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the performance of sequential write workloads [3], [4]. This is
due to the erase-before-write constraint of NANDflashwhich
constitutes an SSD. Thus, to fully exploit the performance of
SSD, it is critical to consider the access pattern of workload.

There have been many studies that improve the perfor-
mance of KV databases with SSDs. Wisckey [5] is SSD opti-
mized KV store that separates keys and values and manages
keys in the LSM tree. By onlymanaging keys in the LSM tree,
it reduces the size of LSM tree and improves the performance
of general tree operation. KVSSD and NVMKV [6], [7]
propose new architectures for SSD that integrate KV store
with SSD. By redesigning the flash translation layer (FTL)
in SSD, these schemes provide tight integration between KV
store and emerging high performance SSDs. Our study is in
line with these studies in terms of optimizing KV stores for
emerging high performance storage devices. In contrast to
these studies, our study focuses on reshaping key to improve
the performance of KV stores.

In this paper, we propose a key reshaping scheme for
KV stores with emerging high performance storage devices.
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Our main scheme reshapes random insert requests issued by
clients to sequential insert requests by allocating the sequen-
tial reshaped key to the incoming requests. This allows KV
stores to insert the key value pairs efficiently and reduce the
number of memory operations. In addition, KV stores with
our proposed scheme perform sequential I/O operations even
when clients are issuing random insert operations, improv-
ing the data locality inside SSD. We apply our scheme to
WiredTiger which is a widely used KV store and a default
storage engine of MongoDB [8]. For evaluation, we use
SATA and NVMe SSDs. The evaluation results show that
our scheme can improve the performance by up to 106% and
281% compared with the existing scheme using SATA and
NVMe SSDs, respectively.

Our contributions are as follows:

• We propose a key reshaping technique that transforms
random insert workloads into sequential insert work-
loads.

• We propose a remapping table to support correct read,
update and delete requests.

• We evaluate our reshaping scheme using a widely used
KV store with SATA and NVMe SSDs.

The rest of the article is as follows: Section II describes
the background. Section III shows the overall design of our
proposed scheme. Section IV presents the experimental result
using our proposed scheme. Section V discusses the related
work and Section VI.

II. BACKGROUND AND MOTIVATION
A. KEY-VALUE STORE
KV stores are designed to efficiently handle increased data
volume produced by recent applications and users. Previous
studies stated that the traditional relational database model is
unnecessary in many cases due to the simple request pattern
of applications [9], [10]. To reduce the overhead of supporting
complex relations and data types that are not used by appli-
cations, KV stores only support a single data type called a
key value pair. A key value pair is constituted by a key which
is an index to search the data and a value which is the data
associated with the key. This relationship between a key and
value is the only relationship supported by KV stores and
key-value pairs do not have any relation to each other. This
allows KV stores to provide higher performance and lower
data management overhead compared with the traditional
RDBs.

When managing key value pairs in KV store, there are
two widely used data structures which are B+ tree and LSM
tree [11]. B+ tree is a widely used data structure which
is a variant of self-balancing trees. By balancing the tree
when a new insert, update, and delete request comes, B+
tree can have a high balancing overhead but can have better
read performance compared with LSM tree as the tree is
balanced. In contrast, LSM tree buffers the data in memory
and flushes the data to the disk periodically in a sequential
manner. The flushed data is managed using Sorted String

Tables (SSTables) which contain sequentially written key
value pairs. As the data is buffered and written sequentially,
LSM tree can have better insert performance compared with
B+ tree. However, since multiple SSTables exist in a disk,
multiple SSTables can be accessed to find data which can
result in low read performance [12]. Due to these charac-
teristics, B+ trees are often used in various areas including
file systems and KV stores that require high read perfor-
mance [13].

FIGURE 1. Performance of WiredTiger with B+ tree and LSM tree.

Figure 1 shows the motivational evaluation results that
measure the operation per second using B+ tree and LSM
tree as the data structure. For evaluation, we used a machine
with an Intel i7 CPU with 4 cores and Samsung 840 Pro SSD.
We used WiredTiger as KV store as it supports both B+ tree
and LSM tree as the data structure. For a benchmark, we used
dbbench benchmark from levelDB and configured the bench-
mark to insert 100 million key-value pairs with a value size
of 100 bytes [14]. As shown in the figure, wiredtiger with
B+ tree shows better read performance while wiredtiger
with LSM tree shows better insert performance. In addition,
the effect of the access pattern was greater when B+ tree was
used. This is because B+ tree is a self-balancing tree and the
access pattern of the workload affects the node access pattern
within the tree. For example, when sequential insert workload
is used, a certain subtree containing the target key is accessed
which can be cached on memory. In contrast, random insert
workloads can incur random node accesses which can result
in multiple subtree accesses that can incur high memory foot-
print and disk cache access. This can result in high balancing
overhead with lower performance compared with sequential
insert workloads [15], [16]. This evaluation shows that the
impact of access pattern is greater when KV store with B+
tree is used compared with KV store with LSM tree.

In the existing KV store as shown in Figure 2, random
key-value pairs with values V0, Vi, and Vn are being inserted
by client 1 through n. To insert pairs in random key order,
random index nodes and leaf nodes need to be accessed,
resulting in random access patterns. As shown in the figure,
to find the leaf node to insert the key-value pair with V0,
the KV store first searches head and finds the index node with
a key close to K0. After finding the leaf node to insert the pair
with V0, the pair is inserted to the leaf node and the pointer
to the leaf node (K0 and P0) is created in both the head node
and the index node. Thus, when inserting key value pairs with
random keys, random index nodes and leaf nodes need to be
accessed, resulting in random node access patterns.
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FIGURE 2. Overall architecture of existing KV store. (K: key, V: value,
P: pointer).

In addition to the random node access, random insert
workload can result in random write requests. As shown
in the figure, newly inserted values (V0, Vi, and Vn) are
stored in pages that are located in different flash blocks.
As values within the block must be ordered, the blocks must
be updated. As they are in different flash blocks, when a
read-modify-write operation is needed, multiple flash blocks
must be updated as the updates are scattered to multiple
blocks. The KV store is issuing random I/O requests which
increase the number of I/O requests, reducing the overall SSD
performance. Also, when the data pages need to be reclaimed,
two GC operations should be performed for two flash blocks
instead of one block, reducing GC operation efficiency. Thus,
random insert workloads can create random node access and
random write requests, degrading the performance of KV
store compared with the sequential insert workloads.

B. SOLID STATE DRIVES
SSDs are becoming widely adopted in both industry and
academia due to their fast performance and low latency com-
pared with traditional HDDs. Compared with HDDs, SSDs
are often constituted by NAND flash blocks and controllers
which do not include any moving parts. This allows SSDs
to access multiple flash blocks in parallel, providing faster
performance compared with HDDs.

However, as SSDs use flash blocks to store the data,
the characteristics of flash blocks must be carefully con-
sidered to exploit the performance of SSDs. For example,
once data is written in a flash block, the data cannot be
updated in an identical block due to the characteristics of
NAND flash. To update saved data, the original block must
be first read, and the modified data must be written to another
block. Then, the original block with old and unmodified data
must be cleared for future usage which is called garbage
collection (GC) operation. This update procedure is called the
out-of-place update procedure.

Since the entire block must be updated regardless of the
size of updated data, it is more efficient to update an entire

FIGURE 3. Overall architecture of the proposed scheme.

block rather than multiple blocks. Even if the amount of data
that must be updated is identical, the performance can be
different based on the data locality and the access pattern of
workloads [3], [17]. Thus, it is important to consider the data
locality and the access pattern of workloads to fully exploit
the performance of SSDs.

III. DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation of
our proposed key reshaping scheme for KV stores with SSDs.

A. BENEFITS OF THE PROPOSED SCHEME
Figure 3 shows the overall architecture of the proposed key
reshaping scheme. As shown in the figure, our proposed
scheme reshapes the incoming keys into sequential keys, cre-
ating sequential request patterns. Through this, our scheme
can transform the access pattern within the B+ tree and
improve the data locality for the underlying SSD.

1) SEQUENTIAL ACCESS PATTERN IN B+ TREE
In our proposed scheme, the random insert requests from the
clients are transformed into sequential requests through key
reshaping operations. After the reshaping operation, the key
of the new request is reshaped to have a higher key than the
existing keys. Thus, when inserting the reshaped key, the leaf
node of the key is placed at the rightmost of the B+ tree
which reduces random access patterns to find the location of
a new request. For example, in the existing KV store as shown
in Figure 2, to insert K0, Ki, and Kn, index nodes (K0-P0,
Ki-Pi, andKn-Pn) must be accessed to find the location of leaf
nodes (K0-V0, Ki-Vi, and Kn-Vn). However, in the proposed
KV store as shown in Figure 3, only a single index node
(Ko-Po) is needed to be accessed. This is because the key
of the new request (Kp, Kq, and Kr ) is always higher than
the highest keys (K1. . .Ko) that already exists in B+ tree.
Thus, the proposed scheme can improve the overall perfor-
mance of KV store by creating sequential access pattern in
B+ tree.
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FIGURE 4. Insert Operation.

2) IMPROVING DATA LOCALITY IN SSDs
Transforming random requests into sequential requests is
also beneficial to the underlying storage devices, especially
for flash-based SSDs. As mentioned in Section II, SSDs
can benefit from high data locality due to the out-of-place
characteristics of NAND flash blocks.

In contrast, in the proposed KV store as shown in Figure 3,
the newly inserted values (V0, Vi, and Vn) can be issued
by a single large sequential write request. This reduces the
number of I/O requests and improves the I/O performance.
In addition, as the data pages are stored in a single flash block,
if the pages need to be reclaimed, only a single GC operation
can reclaim all the data pages, improving the efficiency of the
GC operation. Thus, our scheme can improve the overall per-
formance of KV store by creating a sequential access pattern
in B+ tree and improving data locality in the underlying SSD.

B. DATABASE OPERATION
We will explain the overall procedure of insert, search,
update, and delete operations of the proposed scheme.

1) INSERT OPERATION
When a client issues an insert request, the existing KV store
receives a key-value pair. The value of the key is stored in the
storage and the pair of key and pointer to the stored value is
inserted into B+ tree. To do this, the existing KV store stores
the value data, allocates a node with key and pointer to the
value data, finds the location for the pair, and inserts the new
KV pair. Since the B+ tree in KV store is a self-balancing
tree when insert requests of random keys are issued by the
client, KV store experiences performance degradation.

To improve the performance of random insert operation,
our proposed scheme transforms random insert requests into
sequential insert ones by reshaping the keys of requests. To do
this, we first find the last key generated by the last insert
operation. Then, we increment the found last key and replace
the newly inserted key with the incremented key. For future
requests (i.e., search, update, and delete), we store the remap-
ping information of original and reshaped keys to remap from
the original key issued by the client again to the reshaped
key. To store the information of the original and reshaped
key, we created a remapping table which is a red-black tree.
After the information is inserted into the remapping table,
we perform the insert operation with the reshaped key to B+

FIGURE 5. Search Operation.

tree in KV store. Since the reshaped key always increments,
the KV store can perform the sequential inserts, improving
the insert operation performance.

Figure 4 shows an example of insert operation in the pro-
posed scheme. As shown in the figure, a client is issuing an
insert request with the key of K6 and the value of V6 (¶).
To reshape the key, we first find the latest key which is K1
according to the current status of the remapping table. Thus,
the original key of K6 is reshaped to K2 by incrementing
K1 (·). Then, we insert the reshaped key information of the
original key (K6) and reshaped key (K2) into the remapping
table (¸). Finally, the reshaped key of K2 and its value of
V6 is inserted into the existing B+ tree by updating P2 and
connecting K1 and K2, which will create a sequential access
pattern.

2) SEARCH OPERATION
When a client issues a search request, the KV store receives
a key and needs to return the value paired with the key. To do
this, the KV store searches the key from the B+ tree, finds
the value pointer that has the location of the value data, reads
the data from the storage device and returns the value to the
client.

In our proposed scheme, since our scheme inserts the
reshaped key value pair into the B+ tree in KV store, the
original key cannot be used to access the requested value.
To access the requested value, the reshaped keymust be found
first before performing the read operation to the B+ tree.
To do this, we first find the reshaped key associated with
the original requested key. With the reshaped key, the read
request is sent to the B+ tree. Then, we perform the read
operation with the original value pointer that is paired with
the reshaped key. Finally, the original value data is returned
to the client, guaranteeing correct read operation.

Figure 5 shows an example of the search operation in the
proposed scheme. As shown in the figure, a client is issuing
a read request with the key of K6 and the KV store needs to
return the value that was paired with it (·). However, since
the K6 is reshaped during the insert operation, the reshaped
key index must be found first. Thus, we first find the reshaped
key index by searching the remapping table with the origi-
nal key (K6) and find the reshaped key (K2) (¸). Then, with
the reshaped key of K2, we perform the read request in B+
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FIGURE 6. Update Operation.

tree (¹). Finally, since the V6 is paired with the reshaped
key of K2, the KV store reads the V6 and returns the value
data to the client (º). Thus, by referencing the remapping
table first and finding a reshaped key, our proposed scheme
can ensure the correct read operation of the reshaped keys.

3) UPDATE OPERATION
When the client issues an update request, the KV store
receives a key value pair and the value that was originally
paired with the key must be updated to the new value. To do
this, similar to the read operation, the KV store searches
the key from the B+ tree, finds the value pointer that
has the location of the value data, and updates the data.
Thus, the update operation is similar to the read operation
but after the requested key is found in B+ tree, the value is
updated rather than returned to the client.

Similar to the read operation, in the proposed scheme,
the key is reshaped to have a sequential access pattern before
being inserted into the B+ tree. Thus, the reshaped key must
be found first to update the value to the new value. To do
this, we first find the reshaped key from the remapping table.
With the found reshaped key, we send the update request with
the reshaped key and the new value from the client. Then,
the original value data which is paired with the reshaped key
is updated with a new value from the client.

Figure 6 shows an example of the update operation in the
proposed scheme. As shown in the figure, a client is issuing an
update request with a key of K6 and a new value of V60 (·).
The KV store needs to update the value that was originally
paired with K6 to V60. To find the original value, we first find
the reshaped key of the original key by finding the remapping
table (¸). Since the reshaped key of the original key (K6) is
K2, we send the update request to B+ tree with a key of K2
and the new value V60 (¹). Finally, the new value is written
to the storage and the value pointer of K2 gets updated to V60
in the B+ tree. Thus, our proposed scheme can accurately
update the value of the existing key by finding a reshaped
key through the remapping table.

4) DELETE OPERATION
When a client issues a delete request, the KV store receives
a key and both value data associated key and the KV pair in
B+ tree must be deleted. To do this, the KV store, similar
to the read and update operation, KV store searches the key

FIGURE 7. Delete Operation.

from the B+ tree, finds the value pointer that has the location
of the value data, and removes the data and KV pair from the
disk and B+ tree.
Similar to the read and update operation, in the proposed

scheme, the reshaped key must be found first to locate the
value data associated with the original key. To do this, we find
the reshaped key associated with the original key from the
delete request. Then, a delete request with the reshaped key
is sent to B+ tree, deleting both the value data and KV node
with reshaped key and value pointer. Finally, the remapping
information with the original and reshaped key is deleted
from the remapping table.

Figure 7 shows an example of delete operation in the
proposed scheme. As shown in the figure, a client is issuing a
delete request withK6 (·). To delete the value paired withK6,
we first find the reshaped key from the remapping table (¸).
Then, with the found reshaped key (K2), we send a delete
request with K2 to B+ tree (¸). After the value data of V60
and KV pair with K2 is deleted from B+ tree, we delete the
remapping information by deleting a node with the original
key of K6 and reshaped key of K2. Thus, our scheme can
delete the existing KV pair and remapping information by
searching reshaped key first and deleting KV pair associated
with the reshaped key.

C. CLEANING OPERATION
In the existing log-structured systems [18]–[20], the random
write requests are transformed into sequential write requests
by writing data in an append only manner. Thus, when a data
block that is already written is updated, the data block must
be invalidated. To remove the invalid data blocks, a cleaning
operation is needed. In our proposed scheme, we perform
the cleaning operation whenever the update operation is per-
formed. Thus, we invalidate and remove the value associated
with removed keys immediately after performing the update
operation. By doing so, our scheme supports this cleaning
operation on the fly in contrast to existing log-structured
systems.

When reshaping the key value, we use a global atomic int
value and increase the value by 1 using atomic instruction to
ensure the correct key value with multiple threads. However,
since the size of the key is limited, the global int value can
reach its maximum size as KV store operates. To overcome
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this issue, we perform a key cleaning operation when the
global int value cannot be increased due to overflow. To do
this, we create a new database with a new B+ tree. Then,
we read the valid key from the old database and insert the
valid key value pair into a newB+ tree. By doing so, the inval-
idated keys can be reclaimed and can be used for future
requests.

D. CRASH CONSISTENCY
In the existing KV stores, crash consistency is provided using
Write-ahead Logging (WAL). When a client starts a trans-
action, WAL first records transaction begin to denote that
a transaction has begun. Then, as the client issues requests,
WAL records the type of requests, and KV pairs. Finally,
when the client commits a transaction, WAL records the
transaction commit. By doing so, the KV store can guarantee
consistency and recover a consistent state when a system
failure occurs.

In our proposed scheme, it is important to guarantee the
consistency of the remapping table. Because we utilize a
remapping table to reshape the original keys to sequential
keys, the remapping table must be restored to access the
original key. To guarantee the consistency of the remapping
table, we flush the remapping table to the persistent stor-
age device when the transaction is committed. By flushing
the remapping table before committing a transaction, our
proposed scheme can guarantee crash consistency on the
remapping key information of the committed transaction.

IV. EVALUATION
In this section, we present evaluation results with the exist-
ing and proposed scheme. For evaluation, we used a single
machine equipped with Intel(R) CPU i7-4790 @ 3.6GHz
processors which has 4 physical cores and 8 cores with
hyper-threading. The machine is equipped with 8GB of
DRAMmemory. To evaluate our schemewith various storage
devices, we used a Samsung 840 PRO SSD which is a widely
used SATA SSD, and Samsung PM1725a which is a widely
used enterprise-grade NVMe PCIe SSD. Thus, we evaluated
our scheme in both consumer-grade and enterprise-grade
SSDs.

For the operating system, we used 64-bit Linux Ubuntu
16.04. Also, we used ext4 file system [21] which is the
default file system of Linux operating system. For the KV
database, we used theWiredTiger KV store which is a default
storage engine for the widely used MongoDB database sys-
tem [8]. For benchmark, we used widely used dbbench
benchmark [14] as a micro-benchmark, and Yahoo! Cloud
Serving Benchmark (YCSB) [22] and Sysbench’s OLTP
benchmark [23] as macro benchmarks. To evaluate our pro-
posed scheme, we modified the WiredTiger storage engine
to support reshaping operations and manage the remapping
table. The evaluation results with the existingWiredTiger KV
store are labeled asExisting and the results using the proposed
key value reshaping scheme are labeled as Proposed.

FIGURE 8. Dbbench throughput with fillsequential and fillrandom
workload using SATA SSD.

A. MICRO-BENCHMARK
For micro-benchmark, we used dbbench benchmark which is
the default benchmark used in LevelDB [14]. We configured
the benchmark to insert 100 million key-value pairs with a
value size of 100 bytes. We ran a benchmark with sequential
and random insert workload with the thread count of 1, 2, 4,
8, and 16.

Figure 8 shows the sequential and random insert perfor-
mance using SATA SSD with the existing and proposed
schemes with a different number of threads. In the case of
sequential insert workload, as shown in Figure 8(a), the pro-
posed scheme increased the performance of the KV store by
1%, 45%, 43%, 67%, and 47%when 1, 2, 4, 8, and 16 threads
were used, respectively. When the number of threads is 1,
the performance of the proposed scheme is similar to that of
the existing scheme since the requests are issued sequentially.
When multiple threads are used, the proposed scheme out-
performs the existing scheme as the requests from multiple
threads create a random insert pattern in the perspective of
the storage device. By reshaping random insert requests to
sequential insert requests, the proposed scheme can improve
performance.

In the case of random insert workload, as shown
in Figure 8(b), the proposed scheme increased the perfor-
mance by 1%, 7%, 65%, 201%, and 281% at the thread
count of 1, 2, 4, 8, and 16, respectively. This is because
our proposed scheme transforms random insert workload into
sequential insert workload, improving node access pattern in
the KV store and exploiting sequential write performance
of SSDs. Note that performance improvement increases in
both sequential and random insert workload as the number of
threads increases. This is because, as there is more number of
KV store threads, the KV store can issue more insert requests
to SSD, resulting in more performance gain.
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FIGURE 9. Dbbench throughput with fillsequential and fillrandom
workload using NVMe SSD.

FIGURE 10. Average and tail latency using SATA SSD.

Figure 9 shows the sequential and random insert perfor-
mance using NVMe SSD with the existing and proposed
schemes. As shown in Figure 9(a) and 9(b), the proposed
scheme improves the performance of the KV store by up
to 47% and 106% in the case of sequential and random
insert workloads, respectively. The performance improve-
ment using NVMe SSD is higher than that of SATA SSD.
This is because NVMe SSDs offer higher parallelism com-
pared with SATA SSDs. By reshaping keys into sequential
order, our proposed scheme can allow KV stores to issue
I/O requests faster than the existing scheme, exploiting high
parallelism of NVMe SSD. Thus, these results show that our
scheme can improve the performance in both SATAbased and
NVMe based SSDs.

Figure 10 shows the average and tail latency of the
wiredtiger KV store with the existing and proposed scheme
when sequential and random insert workload is used.
As shown in the figure, the average and tail latency of the
existing and proposed scheme is similar when the sequential
workload is used. The tail latency of the proposed scheme is
slightly higher than that of the existing due to the remapping
table management overhead. As the proposed scheme writes

FIGURE 11. YCSB transaction per second using SATA SSD.

the remapping table for crash consistency, the tail latency
was slightly higher. In the case of random workload, both
the average and tail latency of the proposed scheme are lower
than those of the existing scheme. The average and tail latency
of the random workload is similar to those of the sequential
workload in the case of the proposed scheme. This is because
the proposed scheme transforms random insert requests into
sequential insert requests. Thus, the latency is similar for both
types of workloads. These evaluation results show that the
proposed scheme can improve the performance of KV store
without significant overhead in the perspective of average and
tail latency.

B. MACRO-BENCHMARK
For macro-benchmark, we used YCSB [22] and Sysbench’s
OLTP benchmark [23]. Both benchmarks are based on
real-world applications and are widely used to evaluate the
performance of the database in a complex scenario. To evalu-
ate our scheme, we usedMongoDB [8] as a database and used
WiredTiger KV store with the existing and proposed scheme
as the internal storage engine. Since WiredTiger is a default
I/O engine used to store the data for MongoDB, this allows
us to evaluate our proposed scheme in a real-world scenario.

1) YCSB
YCSB benchmark is a benchmark based on the cloud data
servicing framework. To evaluate our scheme, we used two
workloads from the benchmark: workload A and workload F.
Workload A is an update heavy workload where 50% of
requests are read requests and the other 50% of requests are
update requests. On the other hand, workload F is consti-
tuted by 50% of read requests and 50% of read-modify-write
requests. We choose these two workloads since both work-
loads have read and update requests which are not supported
by dbbench. Thus, these workloads can evaluate our scheme
in a complex real-world scenario. For configuration, we used
the default configuration.

Figure 11 and 12 show the performance of YCSB bench-
marks using SATA and NVMe SSDs. In the case of SATA
SSD, as shown in Figure 11, the proposed scheme improves
the performance compared with the existing scheme by
up to 13% and 12% for workload A and F, respectively.
In the case of NVMe SSD, as shown in Figure 12, the pro-
posed scheme improves the performance compared with the
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FIGURE 12. Transactions per second in YCSB benchmark using NVMe SSD.

FIGURE 13. Transactions per second with default workloads in sysbench
OLTP benchmark.

existing scheme by up to 9% and 10% for workload A and
F, respectively. Compared with dbbench, the performance
benefit of our scheme is lower because MongoDB database
is used on top of WiredTiger KV store. This is because
the requests are processed at MongoDB first before being
sent to the underlying wiredTiger which creates an overhead
that cannot be improved from our scheme. However, since
our scheme improves the performance after the requests are
processed and sent to the KV store, the performance results
using the proposed scheme are higher than that of the exist-
ing scheme. Thus, these results show that our scheme can
improve performance when complex workloads are used.

2) SYSBENCH
For another macro benchmark, we used online transaction
processing (OLTP) workload included in the widely used
Sysbench benchmark [23]. Similar to YCSB benchmark,
we used MongoDB database and used WiredTiger as the
underlying I/O engine. For configuration, we used 2 collec-
tions with 10 million documents each and configured the
workload so that it performs equal parts of read, update,
and insert requests. We report transactions per second as a
performance metric.

Figure 13 shows the performance results using SATA and
NVMe SSD. As shown in Figure 13(a) and Figure 13(b), the
proposed scheme improves the performance by up to 6% and
11% in the case of SATA andNVMe SSDs, respectively. Sim-
ilar to the results using YCSB, the performance gain of our
proposed scheme is hidden by the overhead of using a rela-
tional database. However, the performance of the proposed
scheme is always higher than that of the existing scheme,

FIGURE 14. Dbbench throughput with F2FS file system.

TABLE 1. Overhead analysis with random insert workload.

suggesting that our scheme can improve the performance of
complex workloads.

C. COMPARISON WITH ANOTHER SCHEME
To compare the proposed scheme with another log-structured
scheme, we used F2FS file system which is a widely used
log-structured file system [19]. We used F2FS as the underly-
ing file system for the existing wiredtiger KV store. Figure 14
shows the performance results of the existing scheme with
ext4 and F2FS, and the proposed scheme. As shown in the
figure, the performance of the existing scheme with F2FS
is similar to that of the proposed scheme when sequential
insert workload is used. This is because F2FS also writes
the data sequentially similar to the proposed scheme. Thus,
the performance benefit of the proposed scheme can be
achieved when F2FS is used. In the case of the random
insert workload, the performance of the existing scheme
with ext4 and F2FS is similar while the performance of the
proposed scheme is higher. This is because the overhead of
inserting and rebalancing B+ tree is greater when a ran-
dom insert workload is used compared with the overhead
when a sequential insert workload is used. Thus, even if
F2FS writes the data sequentially, the KV store cannot issue
the write request fast enough, not utilizing the underlying
storage device sufficiently. However, the proposed scheme
transforms the random keys into sequential keys, enabling
KV store to issue insert requests rapidly and fully exploiting
the underlying storage device. Thus, the proposed scheme can
improve the performance of KV stores further compared to
another log-structured scheme.

D. OVERHEAD ANALYSIS
To analyze the overhead of the proposed scheme, we exe-
cuted random insert workload and random update work-
load from dbbench benchmark using identical settings.
Table 1 and 2 show the overhead analysis of the proposed
scheme. We measured the overall overhead of our proposed
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TABLE 2. Overhead analysis with update workload in dbbench.

FIGURE 15. File size of database and remapping table.

scheme (Proposed scheme), remapping table persistence
overhead (fwrite_remapping table), and remapping table
operation overhead (remapping table search, delete, insert).
In the case of random insert workload, as shown in Table 1,
the overhead of the proposed scheme is less than 3% of the
runtime. Most of the overhead from the proposed scheme was
from writing a remapping table to a file for crash consis-
tency. Since remapping table insert operations are memory
operations, the overhead from the remapping table insert was
minor compared to the remapping tablewrite operation. In the
case of the update operation, similar to the random insert
workload, the overhead of the proposed scheme is less than
3% of the runtime. Although an update operation requires
search operation to find the original key, delete operation
to delete the original key (on-the-fly cleaning operation),
and insert operation to insert a new sequentialized key into
the remapping table, the overhead from the remapping table
operation is less than 1% of the runtime as they are memory
operation. Similar to the random insert workload, writing the
remapping table to a file induced the majority of the overhead
from the proposed scheme. These overhead analysis results
show that the proposed scheme can improve performance
with minimal overhead.

Since the proposed scheme writes a remapping table to a
file to guarantee crash consistency, it is important to analyze
the size of the remapping table. Figure 15 shows the file
sizes of the database and remapping table when different
key sizes are used. We used sequential insert workload from
dbbench benchmark with identical settings. As shown in the
figure, the size of the remapping table is identical (32MB)
while the size of the database increases as the value size
increases. The size of the remapping table is 34% and 2.5%
of the database size when the value size is 64B and 1K,
respectively. This is because the size of the remapping table is

affected by the size of the key since the remapping table stores
the original and remapped key values. Thus, the analysis
results show that while the proposed schemewrites additional
data due to the crash consistency, the overhead becomes less
significant as the value size increases.

V. RELATED WORK
A. OPTIMIZING STORAGE SYSTEMS FOR
FLASH-BASED SSDs
There have been many studies on understanding the char-
acteristics of SSDs and improving the I/O performance.
F2FS [19] is a flash-friendly file system that improved a
log-structured file system which is widely used to exploit
the performance of SSDs by transforming random requests
into sequential requests. SHRD [18] is a request reshaping
scheme, which includes a storage device driver and the FTL
of an SSD. SHRD improves the spatial locality for FTL
mapping table accesses by logging random requests in the
storage and reordering these requests. Ziggurat [24] is a tiered
storage file system that buffers file writes to NVMM and
DRAM. By buffering writes, it sends batched sequential write
requests to underlying flash storage which can increase the
performance and garbage collection efficiency.

Our study is in line with these studies [18], [19], [24]
in terms of transforming random writes to sequential writes
to improve data locality inside SSD. In contrast, our study
focuses on improving spatial locality in KV stores instead
of storage devices and systems (i.e., file systems and SSDs).
This allows KV stores with our proposed scheme to perform
efficient in-memory operations and utilize various file sys-
tems and storage devices.

B. OPTIMIZING KEY-VALUE STORES FOR
FLASH-BASED SSDs
There have been many studies on optimizing the KV store.
Wisckey [5] improved the performance of KV store by sep-
arating keys from values. By storing keys and values sepa-
rately, it stores values in a log-structured manner, reducing
datamovement andwrite amplification. NVMKV [7] is a new
SSD that supports KV store operation with the cooperation
of FTL inside SSD. By exploiting the internal characteristics
of flash memory, it can reduce the write amplification and
improve the performance of KV store. Triad [25] optimized
data locality of KV store by identifying hot and cold data
and storing them separately. By buffering hot data updates
in memory, it can reduce frequent I/O operation to disks
and perform batched I/O operation on the buffered data.
ForestDB [26] improved the performance and reduced the
storage overhead of KV stores by utilizing HB+ trie.

Our study is in line with these studies [5], [7], [25], [26] in
terms of improving the performance of KV stores by utilizing
the characteristics of storage devices. These studies transform
the requests by redefining data structures and FTL algorithm
to exploit the high performance of modern storage devices.
In contrast, our study focuses on improving the performance
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by reshaping keys inside KV store. This allows our scheme to
improve the data locality without modifying the data structure
of KV store or the FTL layer inside storage devices.

VI. CONCLUSION
In this paper, we propose a key reshaping scheme for KV store
to improve I/O performance of flash-based SSDs. To do this,
we design and implement a key reshaping scheme that trans-
forms random insert requests into sequential insert requests.
This enables faster insert request processing in KV store
and increases data locality in SSD. In addition, to ensure
correct read and update operation, we proposed a remapping
table that records the relationship between the original and
reshaped keys and guarantees the consistency of the KV
store and remapping table through WAL. To evaluate the
proposed scheme, we used micro-benchmark (dbbench) and
macro-benchmarks (YCSB and Sysbench) with MongoDB
and WiredTiger KV store. The evaluation results show that
our proposed scheme can improve the performance of KV
store by up to 281% compared with the existing scheme.
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