
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017
107

PAPER

Assessing the Bug-Prediction with Re-Usability Based Package
Organization for Object Oriented Software Systems

Mohsin SHAIKH†, Ki-Seong LEE†, Nonmembers, and Chan-Gun LEE†a), Member

SUMMARY Packages are re-usable components for faster and effective
software maintenance. To promote the re-use in object-oriented systems
and maintenance tasks easier, packages should be organized to depict com-
pact design. Therefore, understanding and assessing package organization
is primordial for maintenance tasks like Re-usability and Changeability.
We believe that additional investigations of prevalent basic design princi-
ples such as defined by R.C. Martin are required to explore different aspects
of package organization. In this study, we propose package-organization
framework based on reachable components that measures re-usability in-
dex. Package re-usability index measures common effect of change tak-
ing place over dependent elements of a package in an object-oriented de-
sign paradigm. A detailed quality assessment on different versions of open
source software systems is presented which evaluates capability of the pro-
posed package re-usability index and other traditional package-level met-
rics to predict fault-proneness in software. The experimental study shows
that proposed index captures different aspects of package-design which can
be practically integrated with best practices of software development. Fur-
thermore, the results provide insights on organization of feasible software
design to counter potential faults appearing due to complex package depen-
dencies.
key words: package reuse, software quality, fault-proneness prediction

1. Introduction

Software development typically requires intensive human
expertise to develop techniques and tools that promote qual-
ity of applications. Package organization in Object Ori-
ented (OO) design follows decomposition of relevant source
code to simplify the development and maintenance. In or-
der to understand the OO software, flexible design with
well-connected constituent components is highly demanded
for accommodating future changes and requirements. Most
non-trivial software systems are modularized on different
levels of abstraction employing different coding techniques.
Over the years classes were considered as basic structural
source code units for specified tasks. However, due to in-
creasing complexity of classes and their inherent structural
deteriorating nature, packages may serve as integral and
functional components of software applications. Commer-
cial applications are developed using large chunk of code
that require exhaustive maintenance, re-engineering and re-
factoring effort. Conception of functional units within the
software systems have reformed due to inclusive integra-

Manuscript received May 2, 2016.
Manuscript revised August 24, 2016.
Manuscript publicized October 7, 2016.
†The authors are with School of Computer Science and En-

gineering, Chung-Ang University, 221 Heukseok, Dongjak, Seoul
156–756 South Korea.

a) E-mail: cglee@cau.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2016EDP7186

tion of new design principles. To facilitate software un-
derstanding and maintenance, interrelated classes should be
allocated into groups called packages. In accordance with
modern design principles [1], a package is to be formulated
based on highly inter-related (cohesive) source code entities.
A highly cohesive package is likely to be easier to under-
stand, modify and maintain in comparison to less cohesive
package. Thus, highly cohesive packages having an effect
over re-usability and maintainability of software systems
show the great need of further research [2]. On the contrary,
even for highly cohesive packages, effect of change prop-
agation should be managed properly taking into account
package dependencies. As the software evolves over the
time, modification, addition and removal of classes may in-
fluence inter-package dependencies in an adverse manner.
Consequently, design quality gradually drifts due to mis-
placement of classes within a package and re-structuring of
packages [3], [4]. In an OO design scenario, there are com-
plicated structural dependencies among and within the pack-
ages. Thus, external dependencies attributed towards the
packages also account for any significant change in modu-
larization. Prediction of fault-prone entities in software sys-
tems is an important process to asses the quality of source
code [5]. Despite the importance of package-level design
paradigms and its effect on software quality, there has not
been much effort to evaluate this subject quantitatively. Nev-
ertheless, the conceptual foundation of package modulariza-
tion provided by Sarkar et al. and Abdeen et al. is healthy
motivation of research in this area [6], [7]. And more re-
cently, empirical analysis of package-modularization and
its implications over software fault-proneness prediction by
Zhao et al is indeed in line with our research direction [8].

This research study is composed of two parts. The
first part proposes a Package Re-usability PkgReuse index
that follows the principles of good software modularity as
explained by Martin [9]. This index measures strength of
software re-usability in an OO design, essentially classify-
ing the effect of change propagation over a package. Fur-
thermore, proposed index adopts two-dimensional measure-
ment of components within the package; Intra-package de-
pendencies are calculated to measure the extent to which
classes and interfaces within a packages are related to each
other, Inter-package dependencies are calculated to measure
the extent to which all dependent packages are affected due
to internal change. In the second part, analysis of fault-
proneness prediction with our Package Re-usability index
metric and other recognized package-level metrics defined

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

108
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

by Martin [9] is carried out. The results indicate that stud-
ied metrics are better design quality indicators in terms of
their ability to predict the faults in corresponding packages
of software system. The major implications of this research
are as follow:

1. Describe characteristics of design quality with changes
taking place due to dependencies within and among the
packages.

2. Determine impact of re-usable components in package
based design scenario.

3. Evaluate the effectiveness of fault-proneness predic-
tion using information obtained from re-usable com-
ponents.

In the following, Sect. 2 provides related work. Section 3
underlines the package design principles and their pros and
cons. We define a set of definitions and theoretical formula-
tions of Package Re-usability index in Sect. 4. Section 5
presents experimental work as a standard case study fol-
lowed by Threats to Validity in Sect. 6. We conclude our
study with future dimensions in Sect. 7.

2. Related Work

There has been few notable efforts to measure quality as-
pects of package organization in the past [10], [11], but,
there are still research opportunities to explore others di-
mensions of packages for characterizing the object oriented
systems on distinct criteria [12]. There exists a lot of work
in the literature proposing metrics for OO software. The
majority of these works centered on characterizing a sin-
gle class as the criteria of high cohesion, low coupling and
structural organization [13], [14]. According to a compre-
hensive survey, there exist almost 16 standard forms of co-
hesion metrics proposed for object oriented system at differ-
ent level of abstraction [6]. There have been on-going and
continuous attempts to redefine the cohesion metrics with
broader scope by bringing into consideration collaborating
relationships of elements outside a single component. Coun-
sell et al. [15] mathematically analyzed traditional definition
proposed in [16]. Result of this study was useful enough
to understand behavior of class cohesion from the point of
view of distance between the elements and depth of inheri-
tance in software system.

In particular, new principles of Information Hiding,
assuming role of module as a service provider and im-
plications of communication among different components
have been acknowledged as contributing factors for mea-
suring package based modular quality [7]. These efforts are
aimed at redefining the modularization of software com-
ponent with confined internal functioning and well-defined
tasks. Sarkar et al. [6] have proposed API-aware cohesion
metrics with primary focus to shape the internal and ex-
ternal collaborations of software elements with the notion
of segregation and encapsulation. Principle of Information

Hiding introduced by Parnas [17] deals with specific aspect
to hide the design decisions inside the modules. However,
Information Hiding later on became one of the main prin-
ciple of OO paradigm [18]. Recently, there has been con-
siderable advancement in defining explicit package based
modularization principles that impact design and its conse-
quences. Martin [9] introduced package design principles:
The Reuse-Release equivalence principle (REP), Common-
Reuse Principle (CRP) and the Common-Closure principle
(CCP). These principles propose that package reflects the
granule of reuse, release and change. One of motivating
factor in this direction is package cohesion studied by Al-
batah et al. [19]. Albatah et al. proposed cohesion metric
considering directed and un-directed dependencies coming
into and going out of package. A careful analysis suggests
that change propagation can be pivotal factor of re-usability
and design restructuring. Hence, there is genuine need of in-
corporating new principles and methodologies towards soft-
ware modularization.

In summary, various principles exist on how to modu-
larize software systems. They focus on different aspects of
software engineering design like, the principle of low cou-
pling and high cohesion looks at the source code, informa-
tion hiding OR takes the development process into account.
Martin’s [9] study reflects the domain that software is part of
(identification of classes) or considers the ecosystem around
the software (common-reuse principle). It is reasonable to
assume that these principles are not independent but con-
nected with each other. A consistent theory or framework to
integrate these principles for assessing stable package orga-
nization, however, is required.

3. Package Organization Framework

As defined above, a package contains a set of classes and
interfaces leading to a compact structure of OO module de-
sign. At a particular hierarchical level, package organiza-
tion can be viewed as set of elements (classes and inter-
faces) and relations between pairs of these elements with
other modules in the system. It is important to build pre-
cise assessment, for which a package may conform to prin-
ciples of CRP and CCP [9]. We have formulated a solution
by measuring incoming external dependencies and outgoing
external dependencies which eventually insure re-usability
of module and change propagation influence. Since the
package design should maximize cohesion and minimize the
coupling, there is need to integrate both dimensions of rela-
tionships to compose re-usability based metric. For specific
analysis, Two concepts proposed in this work are: Package-
Package Dependency Analysis (PPDA) to asses common
reuse of packages and Class-Package Dependency Analysis
(CPDA) to assess common closure of package components.
PPDA metric is developed on the basis of CCP principle
and it considers elements within package to be dependency
determinant. It is derived from the ideal design guideline
of Martin [9], that the classes of package should depend on
same package for allowing uniform re-factoring process in

SHAIKH et al.: ASSESSING THE BUG-PREDICTION WITH RE-USABILITY BASED PACKAGE ORGANIZATION FOR OBJECT ORIENTED SOFTWARE SYSTEMS
109

maintenance phase. And more importantly, common re-use
can be achieved, if classes have maximum similar out-going
package dependencies. For this purpose, Package Reach-
ability (PR) of each element of package is calculated by
finding set of packages which are dependent upon the class
under the analysis. CPDA metric measures the common
reuse of package based on internal incoming dependencies.
Intra-package dependencies of a package through CPDA are
essentially judged considering fact, elements within a pack-
age are to serve uniform task and share the responsibility
of any change. So, we introduce concept of Class Reach-
ability (CR) sets to determine reuse coverage of classes.

3.1 Notations

In our context, modularized OO design can be formally rep-
resented as MD =< P,D >, which is basically combina-
tion of packages and dependencies among them. In terms of
programming terminologies, package is container object for
elements, i.e., classes and interfaces at highest level abstrac-
tion. Our domain of analysis focus is dependencies involved
in change propagation for a package. Furthermore, C is set
of classes, P is set of all packages, I is set of all interfaces.
Package can be described as collection of elements and re-
lationships among them, i.e, in formal way: P = 〈E,R〉. E
represents set of package elements (classes and interfaces),
i.e., E(p) = {C(p)

⋃
I(p)} and R is relationship set among

elements inMD. For a packages p ∈ P, C (p) denotes the
set of classes in package, I (p) represents set of interfaces
in a package p and E (p) represents set of all elements in
package, DependsOn defines relationships (i.e., inheritance,
association, composition, use dependencies, abstract imple-
mentation) among the elements in overall MD. For ele-
ments e, e′ ∈ E, DependsOn(e, e′) represents dependency of
e′ on e among and within the elements of packages inMD.
In other words, DependsOn(e, e′) determines, if there is de-
pendency from e′ pointing to e.

In order to evaluate the PPDA, package dependen-
cies of interfaces I (p) and classes C (p) are measured in
the overall MD. Having established a formal background
of our contextual MD, then PR set accumulates their el-
ements, if there are direct dependent packages p1 to p2

or there are indirect dependent packages p1 to pm in se-
quence of inter-dependent packages {p1, p2, . . . , pm}. Sim-
ilarly, CPDA is computed through internal dependencies of
all classes C(p) in the package p. Therefore, CR set accu-
mulates their elements, if there is direct dependent elements
e1 to e2 or there are indirect dependent elements from e1 to
em in sequence of inter-dependent elements {e1, e2, . . . , em}
within a package p.

PR(e) = {p′ ∈ P | DependsOn(e,e’) ∧ (p � p′
)

where e ∈ E (p), e′ ∈ E
(
p′
)}

CR(e) = {e′ ∈ E (p) | DependsOn(e,e’)

where e ∈ E (p)}

3.2 Definitions

On the basis of notations defined in previous section, each
type of metric is computed. We consider Package re-
usability index as composite value that can be obtained from
PPDA and CPDA.

Definition 1 PPDA can be defined as a “ratio for similar-
ity of purpose among all the Package Reachability sets in
package p”.

PPDA(p) = |
⋃

e1,e2∈E(p) PR(e1)∩PR(e2)|
|⋃e∈E(p) PR(e)|

Definition 2 CPDA can be defined as a “ratio for similarity
of purpose among all the Class Reachability sets in pacakge
p”.

CPDA(p) = |
⋃

e1,e2∈E(p) CR(e1)∩CR(e2)|
|⋃e∈E(p) CR(e)|

3.3 Method of Calculating the Package’s Normalized Dis-
tance

Formation of composite metric follows Martin’s concept of
graph based approach for computing package metric [20]. A
package can be represented as point in coordinate systems
having format: (Instability, Abstractness), i.e., Instability
along X-axis and Abstractness along the Y-axis. The core
idea of abstractness in object oriented design paradigm is
ability of package to be extended by other interacting pack-
ages. Therefore, any modification in a package shall even-
tually cause a cascading effect on its dependent packages
along dependency relationship path (a situation known as
ripple effect). In order to determine consistency of change
during the ripple effect in a package, PPDA metric is pro-
posed. Packages at location (0,1) have maximum abstract-
ness and at location (0,0) have minimum abstractness.

On the contrary, instability relates to a design in which
package is more concrete and resistant to any external
change. In other words, CPDA measures ripple effect con-
sistency of elements within a package. Packages at location
(1,0) are most concrete and internally stables and at location
(0,0), packages are maximally instable. In real applications,
packages vary in their degrees of abstractness and instabil-
ity; not all the packages are located at extreme points, i.e.,
(0,1) and (1,0). The cohesive balance between Instability
and Abstractness is measured using distance metric. There-
fore, a package at (0,0) indicates bad design (worst case)
and at (1,1) depicts the optimal case. The combined depen-
dency values shall constitute the re-usability index, which is
defined as follows:
PkgReuse(p) =

√
2−D√

2
, where D is the distance between the

two metrics of package dependencies, and it is given by:
D =

√
(1 − PPDA)2 + (1 −CPDA)2. This approach is

widely used to form composite metric [9], [19].

110
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

Fig. 1 Package modularization interactive scenario

3.4 Working Example

To elaborate the notion of package re-usability practically,
consider a well-engineered code in which a package p has
certain service-oriented inter-linkages with the seven other
packages, i.e., p1, p2, . . . ,p7 as shown in Fig. 1. Internal
package dependencies are represented through solid arrows
inside package p while closed sharp arrows show external
dependencies causing an overall change-propagation effect
in modularization design for package p. Peeping into de-
sign details, we see that dependencies of package p are
extended to linked packages through interfaces: i1, i2 and
classes: c1, c2 and c3. It is evident that any change in class
c1 shall trigger change in all direct and indirect dependent
packages: p4, p5, p7 forming PR(c1) set. Further design
analysis shall also derive what internal dependencies are in-
volved in change effect for classes or elements of a package
p, like c3 has internal dependence on classes: c1, c2 that
compose CR(c3) set.

Our objective is to capture this aspect of usage in over-
all modularization measures for a package. To illustrate the
idea further from the Fig. 2, which shows depends relation-
ships for a package p in an OO design. In practice, classes
can utilize functionality of other packages, while those
packages have dependencies in turn on various classes. Ta-
ble 1 shows Package Reach-ability and Class Reach-ability
analysis for package p concretely. From Table 1, we can
compute normalized metric values using the definitions as:

CPDA(p)= |
⋃

e1,e2∈E(p) CR(e1)∩CR(e2)|
|⋃e∈E(p) CR(e)| =

|{c1,c2}|
|{c1,c2,c3,i1,i2}| = 2/5

PPDA(p) = |
⋃

e1,e2∈E(p) PR(e1)∩PR(e2)|
|⋃e∈E(p) PR(e)| =

|{p4,p5,p7}|
|{p1,p2,p3,p4,p5,p6,p7}|

Table 1 Dependency analysis of a package

E(p) CR PR
C1 {c2} {p4, p5, p7}
C2 {c1} {p4, p5, p7}
C3 {c1, c2} {p3, p4, p5, p7}
i1 {c1, c2, i2} {p1, p2, p4, p5, p7}
i2 {c1, c2, i1} {p1, p2, p4, p5, p7}

= 3/7 and PkgReuse(p) = 0.55.

Theoretically, we follow the theme of definitions as
proposed by Albatah et al. [19]. However, our approach
differ in calculating the scope of dependencies which is to
determine effect of change propagation in package organi-
zation. Two dimensional reach-ability analysis has its main
focus to retrieve the dependency information which impact
the package design in terms of re-useability. Similarly, Our
proposed index bear an implicit validation as it’s computa-
tion and concept correspond to cohesion metrics discussed
in the literature [7], [13], [19].

4. Empirical Investigation

We present an empirical evaluation on different subsequent
releases of open source software systems. An empirical
methodology was adopted to evaluate our approach using
state-of-the-art mechanism of quality assurance. In the sub-
sequent sections, quantitative results are presented and ex-
plained through comprehensive graphical analysis as well.

4.1 Research Objectives

As explained in earlier section, our goal is to determine

SHAIKH et al.: ASSESSING THE BUG-PREDICTION WITH RE-USABILITY BASED PACKAGE ORGANIZATION FOR OBJECT ORIENTED SOFTWARE SYSTEMS
111

the impact of proposed software modularization index over
fault-proneness prediction of software systems. Our hypoth-
esis is that, given the nature of the package modularization,
it should capture different aspects of software quality. More
specifically, we build following different prediction models
and statistical analysis.

(a) Magnitude of association between metrics and post-
release faults.

(b) Intra-package prediction models with three different
classification techniques.

(c) Intra-package prediction models with Robert Martin
metrics RM and PkgReuse.

(d) Inter-package prediction models with Robert Martin
metrics RM and PkgReuse.

(e) Intra-package effort-aware prediction analysis with
Zhao et al. studied model and PkgReuse.

4.2 Experimental Methodology

In this section, we provide a brief overview of statistical
techniques and mechanism of their application in our study.

4.2.1 Multivariate Logistic Regression

Logistic regression is standard statistical modeling tech-
nique in which the dependent variable can take on one of
two different values: 0 and 1. A multivariate logistic regres-
sion model is based on the following relationship equation:

Pr (Y = 1|X1, X2, . . . Xn) = eα+β1 X1+β2 X2+...βn Xn

1+eα+β1 X1+β2 X2+...βn Xn

Where X1, X2 . . . , Xn are independent variables, i.e.,
characteristics describing the source code (package level
metrics), Pr (Y = 1|X1, X2, . . . Xn) represents the probability
that the dependent variable Y = 1, i.e., the extent of package
predicted as faulty.

4.2.2 Random Forest

RF averages the predictions obtained from several decision
trees where each tree is fully grown and is based on sampled
values. Random forest is known to be robust techniques for
noise reduction in prediction models.

4.2.3 Support Vector Machine

SVM is a machine learning technique that tries to maximize
margin of hyperplane separating different classifications.

4.2.4 Correlation Analysis

The correlation analysis aims to determine relationship
among variables. The correlation coefficient is measure of

association strength between two variables. For this pur-
pose, Spearman’s rank correlation is widely performed over
software metrics having nonparametric nature. The signifi-
cance of correlation is tested at different levels of confidence
interval, i.e., 95%, 90%.

4.2.5 Evaluation

All our prediction models output probabilities of fault-
proneness of package entities. To classify a package
as faulty, varying thresholds on probability are utilized.
Thus, different choices of threshold will produce varying
rates of false positives/negatives (FP/FN) and true posi-
tives/negatives (TP/TN).

• Accuracy (Acc.): measures the proportion of cor-
rect predictions. Accuracy is defined as: Acc =

T P+T N
T P+T N+FP+FN

• Precision (Pr.): measure of exactness, defines probabil-
ities of true faulty packages to the number of package
predicted as faulty. Precision is defined as Pr = T P

T P+FP

• Recall (Rec.): measure of completeness, defines the
probabilities of true faulty packages in comparison to
total number of faulty packages. Recall is defined as
Rec = T P

T P+FN

• F-measure (F1.): measures harmonic mean of preci-
sion and recall of predicted model. F1 = 2∗Pr.∗Rec.

Pr.+Rec.

4.3 Data Collection

For constructing different prediction models, 4 different
open source software were used. Eclipse†: An Integrated
Development Environment (IDE) for software development
in collaborative working groups. jEdit††: A mature pro-
grammer’s text editor, written in java and an extensible plug-
in architecture. JDT Core†††: An incremental java compiler
and API for navigating the java element tree. Ant††††: It is a
library and command-line tool to drive processes described
in build files. These systems encompass different applica-
tion domains and are frequently used in software quality re-
search [21]. Table 2 provides descriptive structural informa-
tion regarding all these systems. Each data-set comprises of
six traditional package-level metric described in Table 3 by
Martin [1] and one PkgReuse(p) metric. Post-release fault
data of subject systems was obtained from public reposito-
ries, i.e., Eclipse Bug Data††††† and PROMISE††††††. All the
required metrics were computed by our own scripts devel-
oped through Understand-Perl API∗.

†https://eclipse.org/
††http://www.jedit.org/
†††http://www.eclipse.org/jdt/core/index.php
††††http://ant.apache.org/
†††††https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
††††††http://openscience.us/repo/issues/bugfiles.html

∗https://scitools.com/feature/api/

112
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

Fig. 2 Data processing steps involved in empricial study

Table 2 Structural information of subject systems

System Versions Number of Total Number Defective Percentage of
Packages of defects Packages Defective packages

Eclipse 2.0 377 917 190 50%
Eclipse 2.1 428 657 193 45%
Eclipse 3.0 642 1523 307 47%
Ant 1.6 74 107 15 20%
Ant 1.7 80 316 30 38%
JDTCore 2.0 37 144 23 62%
JDTCore 2.1 38 63 18 47%
JDTCore 3.0 42 318 34 80%
jEdit 4.2 28 14 12 42%
jEdit 4.3 37 19 6 16%

Table 3 Description of Martin metric suite
Metric Definition
N Class entities: The number of concrete, abstract classes and interfaces in the package.
Ca Afferent Coupling: The number of other packages that depend upon classes within a package.
Ce Efferent Coupling: The number of other packages that other class in a package depend upon.
A Abstractness: The ratio of abstract classes in package to total number classes in a package.
I Instability: The ratio of Efferent Coupling to total Coupling, I = Ce

(Ce+Ca) .
D Distance: The distance from the main sequence: D = |A + I − 1|.

4.4 Data Processing

In this section, an overview of data processing steps are
introduced in Fig. 2. The first step is to mine the source
code from repositories and parsing source code files through
Understand†: A commercial static analysis tool for re-
engineering and maintaining the software. Source code
analysis is carried out by querying the Understand database
to extract the required package level metrics as second step.
Step three is mapping of post-release faults collected from
open-source repositories and metrics against package enti-
ties of corresponding source code file to compose the data-
sets. In fourth step, data analysis techniques are used to
build prediction models. Finally, fifth step reports perfor-
mance of models.

4.5 Result Analysis

In this section, we present experimental analysis using sub-
ject systems. We have essentially highlighted potential of
data to predict the fault-prone packages through different
statistical models. All the computations are performed us-
ing R††. Additional information related to experiments has
been made public on project site†††.

†https://scitools.com/
††http://www.r-project.org/
†††https://github.com/Analyzer2210cau/IEICE-Data

Table 4 Magnitude of association with post-release faults in larger
datasets

Metric Eclipse-2.0 Eclipse-2.1 Eclipse-3.0 Ant-1.6 Ant-1.7
PkgReuse(p) 0.17∗∗∗ 0.15∗∗ 0.12∗∗ 0.049∗ 0.054∗
N 0.62∗∗∗ 0.66∗∗∗ 0.54∗∗∗ 0.76∗∗∗ 0.12
A −0.0025 −0.034 −0.012 0.052 0.019
D −0.02 −0.015 −0.02 −0.15 0.034
Ce 0.14∗∗ 0.20∗∗∗ 0.24∗∗∗ 0.76∗∗∗ 0.16
Ca 0.26∗∗∗ 0.31∗∗∗ 0.27∗∗∗ 0.68∗∗∗ 0.23∗
I −0.004 −0.015 0.03 0.21 0.18

Table 5 Magnitude of association with post-release faults in smaller
datasets

Metric JEdit-4.2 jEdit-4.3 JDTCore-2.0 JDTCore-2.1 JDTCore-3.0
PkgReuse(p) 0.15∗ 0.12∗ 0.47∗∗ 0.71∗∗ 0.3
N 0.12 0.54∗∗∗ 0.33∗∗ 0.37∗∗∗ 0.38∗∗∗
A 0.021 −0.012 0.018 0.019 0.03
D −0.26 −0.02 −0.022 −0.004 0.0039
Ce 0.24 0.24∗∗∗ 0.34∗∗∗ 0.37∗∗∗ 0.41∗∗∗
Ca 0.18 0.27∗∗∗ 0.41∗∗ 0.39∗∗ 0.42∗∗
I −0.015 0.30 0.21 0.04 0.03

4.5.1 Association with Faults

To analyze the association between metrics under investi-
gation and post-release faults, we used Spearman’s correla-
tion test at different levels. The results obtained by this test
are shown for larger and smaller data-sets in Tables 4 and
5 respectively. In both tables, each cell with correlation co-
efficient value means that metric in corresponding data set
is associated with number of faults at significant levels of
0.001 (denoted by ***), 0.05 (denoted by **) and 0.01 (de-
noted by *). In case of larger data-sets, most of metrics have
shown statistical significance except D, A and I. However,
they still have developed weak negative and positive correla-
tion with number of post-release faults as shown in Table 4.
While in case of smaller data-sets, statistical significance for
some of Martin metrics, like, N, Ca, Ce and PkgReuse is
observed frequently as shown in Table 5. Interestingly, Ca
and Ce are seen to posses strong positive statistically signif-
icant association with number of post-release faults. Such
findings lead to following salient indications for ranking the
metrics against post-release faults. First, presence of post-
release faults can be extensively found in software systems
with large number of packages. Second, Afferent and Ef-
ferent package coupling (Ca and Ce metrics) can influence
post-release faults to considerable extent.

SHAIKH et al.: ASSESSING THE BUG-PREDICTION WITH RE-USABILITY BASED PACKAGE ORGANIZATION FOR OBJECT ORIENTED SOFTWARE SYSTEMS
113

Table 6 10-Fold Cross-validation analysis using different modeling techniques

System LR SVM RF

Acc. Pr. Rec. Acc. Pr. Rec. Acc. Pr. Rec.
(mean) (mean) (mean) (mean) (mean) (mean) (mean) (mean) (mean)

Eclipse-2.0 0.65 0.67 0.64 0.70 0.43 0.52 0.62 0.63 0.66
Ecipse-2.1 0.69 0.72 0.68 0.75 0.70 0.75 0.57 0.69 0.63
Eclipse-3.0 0.71� 0.75 0.69 0.70 0.72 0.52 0.56 0.71 0.66
Ant-1.7 0.70 0.86 0.78 0.81� 0.84 0.89 0.9 � 0.81 0.92
Ant-1.6 0.69 0.72 0.65 0.71 0.83 0.81 0.74� 0.80 0.74
JDTCore-3.0 0.70 0.85 0.79 0.77� 0.84 0.90 0.86 0.78 0.93
JDTCore-2.1 0.55 0.61 0.51 0.70 0.57 0.52 0.51 0.54 0.66
JDTCore-2.0 0.83� 0.93 0.90 0.75 0.72 0.75 0.89� 0.88 0.81
jEdit-4.2 0.74 0.67 0.62 0.71 0.59 0.57 0.62 0.56 0.60
jEdit-4.3 0.79� 0.65 0.59 0.66 0.58 0.52 0.65 0.53 0.63

4.5.2 Prediction Performance

We employed three different types of prediction tech-
niques, i.e., Logistic Regression (LR), Random Forest (RF)
and Support Vector Machine (SVM) to discover possi-
ble relationships between values of collected metrics and
fault-proneness of packages. These methods have been
proven effective in fault-proneness prediction research lit-
erature [22]–[24]. In order to analyze our data with reli-
ability and confidence, 10 times 10-fold cross validation
analysis was applied in all of three techniques. This ap-
proach essentially separates the data-set in training and test-
ing segments, then adopts classification approach to predict
the package to be faulty or not. Cross-validation mecha-
nism of prediction has sound computational importance and
is widely used to evaluate the model from different dimen-
sions [25]. Table 6 shows performance evaluation of all de-
scribed techniques using confusion matrix paradigm. Cer-
tain interesting findings are to be mentioned; First, LR and
RF have relatively produced satisfactory results than SVM
which demonstrate that prediction result is dependent on ef-
ficacy of technique used. Second, fault-prediction accuracy
is seen to be improving with increase in number of pack-
ages in corresponding releases of data-sets, e.g., Ant-1.7,
JDTCore-3.0, Eclipse-3.0. It can be well inferred that fault-
prediction capability with pkgReuse becomes more effective
as software systems evolve. Third, despite low percentage
of defective packages in smaller data-sets like, jEdit-4.3,
JDTCore-3.0, significant accuracy of fault-prediction is ob-
served. Fourth, RF has generated effective prediction mod-
els in terms of accuracy. For detailed assessment of perfor-
mances of different techniques, the accuracy and F-measure
of different techniques are compared graphically in Fig. 3.
From the Table 6 and Fig. 3 (a), we can observe that LR’s
overall prediction accuracy ranges between 0.83 and 0.55
where as, that of SVM falls in range of 0.81 to 0.66 and
RF is found between 0.56 and 0.9. However, mean value of
accuracy with LR and SVM is recorded almost 0.65 which
is higher than RF. It asserts the fact that LR is a reliable
techniques for predicting the faults accurately. As of gen-
eralized finding indications, we are able to correctly predict

Fig. 3 Graphical representation of performance measure with different
modeling techniques

almost 70% of fault-prone packages, with varying false pos-
itive rate and prediction accuracy of 55% as minimum with
and 90% as maximum. Notably, these reasonable prediction
values are obtained with rigorous experimental setup of 10-
times 10-fold cross validation and default parameter settings
of the learning methods (indicated with �). F-measure eval-
uates prediction performance considering harmonic mean of
recall and precession which is recognized in many machine
learning studies [26], [27]. Figure 3 (b) compares F-measure
of LR, RF, SVM, with LR and RF having almost same level
of measure. LR has delivered significantly sound prediction
by acquiring 0.69 median value. On the other hand, lowest
F-measure score of prediction, i.e., 0.47 is observed using
SVM. It implies that correctness and soundness of predic-
tion result using LR and RF technique is better than SVM.
Apparently, SVM has not produced the confidence in term
of F-measure performance, but, prediction accuracy value is
still significant in general perspective. Therefore, if objec-
tive is to correctly predict a higher percentage of defective
packages, then LR remains preferred technique. Table 7
summarizes detailed information of fault-prediction model
built on the basis of intra-release test and train data-sets.
Results obtained from 10 times 10-fold cross-validation lo-
gistic regression (LR) for two models using Martin metrics

114
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

Table 7 Intra-release prediction models: comparison

System RM PkgReuse(p)+RM Improved

Acc. F1. Acc. F1. %age
(mean) (mean) (mean) (mean)

Eclipse-2.0 0.60 0.59 0.65� 0.65 10%
Eclipse-2.1 0.59 0.49 0.61� 0.69 3%
Eclipse-3.0 0.64 0.61 0.66� 0.71 3%
Ant-1.7 0.72 0.75 0.81� 0.78 12 %
Ant-1.6 0.64 0.65 0.69� 0.68 8 %
JDTCore-3.0 0.70 0.78 0.72 � 0.81 2%
JDTCore-2.1 0.55 0.52 0.55 0.55 –
JDTCore-2.0 0.82 0.86 0.82 0.91 –
jEdit-4.2 0.71 0.74 0.74� 0.64 5.7%
jEdit-4.3 0.77 0.35 0.79� 0.61 2.5%

Table 8 Inter-release prediction models: comparison

System RM RM+PkgReuse(p) Improved

Acc. F1. Acc. F1. %age
(mean) (mean) (mean) (mean)

Eclipse-2.0(Train), Eclipse-2.1(Test) 0.65 0.58 0.71� 0.61 3%

jEdit-4.2(Train), jEdit-4.3(Test) 0.57 0.62 0. 63� 0.64 9%

Ant-1.6(Train), Ant-1.7(Test) 0.60 0.64 0.59 0.6 –

JDTCore-2.0(Train), JDTCore-2.1(Test) 0.58 0.57 0.582 0.59 –

RM and PkgReuse+RM are presented in Table 7. It can be
clearly observed that there is substantial accuracy improve-
ment while classifying the PkgReuse+RM model against
RM(Baseline) model. From Table 7, we make following
two observations. First, intra-release prediction models for
data-sets with large number of packages have easily out-
performed baseline approach of fault-prediction which is
the case with 3 versions of Eclipse (2.0, 2.1, 3.0) and 2
versions of Ant (1.6, 1.7). Second, Although accuracy in
data-sets with smaller number of packages has not won over
RM model, however, their F-measure score is still satisfac-
tory. Mean improved accuracy of successful models in Ta-
ble 7 has been seen in range of 0.61 − 0.81 (indicated with
�). Overall PkgReuse+RM obtained 12% of maximum ac-
curacy improvement in larger data-sets and 5.7% of maxi-
mum accuracy improvement in smaller data-sets. Table 8
presents summary of fault-prediction model using inter-
release frame which is more rigorous approach of develop-
ing train and test data-sets. Table 8 mainly shows values of
accuracy and F1 measure for fault-prediction model across
releases of Eclipse, Ant, JDTCore and jEdit using Logistic
Regression. Clearly, prediction results with PkgReuse+RM
achieved competitive accuracy in 2 cases (indicated with
�) as shown in Table 8 and is recorded with 9% of max-
imum improvement. Again, data-sets with less improved
accuracy have managed to gain improved F-measure score
in inter-release prediction as shown for JDTCore(2.0-2.1)
and Ant(1.6-1.7) in Table 8. It justifies that application of
PkgReuse+RM is not redundant with baseline approach.

4.5.3 Effort Aware Performance

To evaluate the performance of models, there has been em-

Table 9 Intra-release ER models: comparison

System RM+M RM +PkgReuse(p)+M

(a) ER-MFM
Eclipse-2.0 0.51 ± 0.13 0.53 ± 0.1 �
Eclipse-2.1 0.4 ± 0.1 0.43 ± 0.13 �
Eclipse-3.0 0.53 ± 0.11 0.55 ± 0.14 �
Ant-1.6 0.79 ± 0.12 0.80 ± 0.13�
Ant-1.7 0.77± 0.1 0.81± 0.09 �
JDTCore-2.0 0.63 ± 0.13 0.61± 0.3 ×
JDTCore-2.1 0.58 ± 0.2 0.57± 0.23 ×
JDTCore-3.0 0.51 ± 0.11 0.51± 0.12–
jEdit-4.2 0.61± 0.21 0.51± 0.22 ×
jEdit-4.3 0.72 ± 0.27 0.74 ± 0.21�
Win\Tie \Loss — 6 \1 \3

(b)ER-BPP
Eclipse-2.0 0.31 ± 0.08 0.32 ± 0.07 �
Eclipse-2.1 0.47 ± 0.06 0.48 ± 0.07 �
Eclipse-3.0 0.34 ± 0.07 0.34 ± 0.07 –
Ant-1.6 0.64± 0.01 0.62 ± 0.03 ×
Ant-1.7 0.77± 0.1 0.81± 0.09 �
JDTCore-2.0 0.61 ± 0.1 0.63 ± 0.09 �
JDTCore-2.1 0.60 ± 0.09 0.57 ± 0.07 ×
JDTCore-3.0 0.47 ± 0.12 0.43 ± 0.13 ×
jEdit-4.2 0.59 ± 0.07 0.56 ± 0.1 ×
jEdit-4.3 0.67 ± 0.09 0.64± 0.08 ×
Win\Tie \Loss — 4 \1 \5

phasis on effort-reduction (ER) while predicting fault-prone
entities using classification. Zhao et al. mainly presented
comparative analysis of effort-aware fault-prediction mod-
els between Martin metrics and modularization metrics by
Sarkar et al. [6], [8]. Zhao et al. termed these models as
“T” (RM model in our context of study) and “M+T” re-
spectively and concluded that “M+T” model is more effec-
tive in fault-proneness prediction. Zhao et al. utilized cer-
tain benchmarks for computing ER models, like, Balanced-
Metric (BPP), Maximum-F-measure (MFM). In an exper-
imental scenario, all described benchmarks define thresh-
old for model prediction as prerequisite. BPP method
leverages Receiver Operating Curve (ROC) for prediction
model and sets maximum “balance” as classification thresh-
old. MFM method chooses the threshold that has max-
imum F-measure score for prediction model. ER based
models are generally perceived to bear cost-effectiveness
against traditional models. To further illustrate utility of
pkgReuse, comparative analysis between models: “M+RM”
and “M+RM+pkgReuse” is explained in Table 9.

Table 9 summarizes mean and standard deviation
values of different ER metrics acquired from 10-times
10-fold cross validation mechanism. It is evident that
PkgReuse+RM+M either out performs RM+M model or ex-
hibits substantial improvement in most of cases (indicated
with �) using ER-MFM criterion. However, using ER-BPP,
PkgReuse+RM+M has delivered competitive performance
against RM+M. Combining the results from Sects. 4.5.2 and
4.5.3, we conjecture that proposed PkgReuse index has a
better ability to predict fault-proneness of packages when
used in combination with traditional metrics. Additionally,
PkgReuse index is not redundant with RM+M model evalu-

SHAIKH et al.: ASSESSING THE BUG-PREDICTION WITH RE-USABILITY BASED PACKAGE ORGANIZATION FOR OBJECT ORIENTED SOFTWARE SYSTEMS
115

ated by Zhao et al. This summary of results is consistent
with intuition that impact of managing re-usable compo-
nents extensively improves software design.

5. Threats to Validity

In this section, most important threat to construct, internal
and external validity of our study are discussed. Construct
validity generally refers to measurement accuracy of vari-
ables. Internal validity of study is insured on the basis of
conclusion drawn from concept to experimental work. Ex-
ternal validity is the extent to which generalization can be
obtained from the scope of study and other research settings.

The most important threat to construct validity is mea-
surement accuracy of dependent and independent variables.
We employed our source code analysis procedure with in-
cremental testing to collect the metrics (independent vari-
ables) reliably using Understand tool which is already uti-
lized in recent empirical studies [8]. Additionally, we calcu-
lated metrics manually for test project to insure their validity
as satisfactory as possible. The dependent variable in our
study is binary variable indicating package being faulty or
non-faulty. In our study, fault data for open source software
system was obtained from public ally available resources,
like Promise repository. Also, the data for dependent vari-
ables has been already utilized for many fault-prediction
studies [28], [29] which can be considered reliable for re-
search specific study.

A potential threat to internal validity comes from test-
ing effort employed. Since, prediction methodology em-
ploys that each package that is predicted as faulty, incurs ef-
fort roughly proportional to its size (SLOC). Therefore, we
also developed effort-aware prediction models to enhance its
cost effectiveness. Beside, we also believe that SLOC may
not have large influence on our results as SLOC has been
used as effort proxy in previous research literature [30], [31].
Although, internal validity could have been questioned in
case of worsen performance by our proposed pkgReuse
against traditional model. However, results lead to draw
meaningful conclusion. We applied cross-validation eval-
uation methodology over open-source java systems. There-
fore, generalization of conclusion to software systems de-
veloped in other particular language may not be possible.
This is common problem in most of empirical studies where
researchers do not have free access to software systems de-
veloped or operational in industrial environment. Software
systems used in our study have reasonable size and spe-
cific domain which also account for threats to external va-
lidity. To mitigate this threat, we aim to further refine our
approach on larger data sets with effective computational
model. Apart from the complications discussed above, we
believe that study still holds theoretical and experimental
importance.

6. Conclusions

Our core emphasis was focused on determining quality

impact of package organization and metrics related to it,
which are assumed to have good explanation and predic-
tive strength. We have presented an assessment with em-
pirical evidence that describes effectiveness of re-usability
based package organization towards fault-proneness predic-
tion. Also, in this study, we investigated the efficacy of ap-
plying package level metrics to automatically predict the
fault-prone entities in software systems. We proposed a
PkgReuse index which is derived from the context of re-
usability and changeability of package organization. We
presented comparative analysis using three statistical learn-
ing techniques to build bug predictors in an empirical study
of open-source software systems. Fault-prediction models
constructed through our PkgReuse metric and traditional
metrics in intra-release and inter-release frame of experi-
ment were able to obtain improved accuracy against tra-
ditional metrics. Following conclusion can be conjectured
based on our study: First, re-usability is one of of key deter-
minants for insuring bug-free maintenance in object oriented
software. However, re-factoring process adversely affects
structural organization of source code. Consequently, faults
can not be underestimated due to these changes considering
operational importance of software. Predicting fault-prone
entities in the context of package re-use and change captures
new and complementary dimensions of its structure; allow-
ing developers to prioritize their restructuring objectives.

Second, our results show that statistical models de-
ployed for package level fault-prediction have diverse com-
putational techniques and fluctuate in their performance. It
can be deduced that package-level predictors of faults are
context-sensitive to particular type of models and this re-
search dimension can be explored further. Our results also
indicate that base-line approach despite its significant per-
formance in fault-prediction requires additional information
at package-level to acquire better performance in terms of
avoiding false positives.

Third, consolidated relationship between theory and
implementation is essential. Complication of measuring
variables and analysis framework proposed in our approach
require broader verifications and recognitions. We also ob-
served that validations performed over open source soft-
ware systems vary due to certain restrictive requirements in
source code and applications of fault-prediction approach.

In today’s software industry, application development
takes place under competitive and rapid approaches that may
raise threats of faults in source code packages having com-
plex dependencies. Thus, maximum possible estimation of
faults is desirable to insure error free code and avoid func-
tional failures. Such approaches help in optimizing and re-
structuring development models to fix the faults as early as
possible, eventually increasing productivity and economic
value of software systems.

Acknowledgements

This work was supported by the National Research Founda-
tion of Korea (NRF) grant (NRF-2014R1A2A2A01005519)

116
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

and the ITRC (Information Technology Research Center)
support program (IITP-2015-H8501-15-1012) funded by
the Korea government.

References

[1] R.C. Martin, “Design principles and design patterns,” Object Men-
tor, vol.1, pp.1–34, 2000.

[2] T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen, “Measuring package
cohesion based on context,” 2008 IEEE International Workshop on
Semantic Computing and Systems, WSCS’08, pp.127–132, IEEE,
2008.

[3] Y. Lee, B. Liang, S. Wu, and F. Wang, “Measuring the coupling
and cohesion of an object-oriented program based on information
flow,” Proc. International Conference on Software Quality, Maribor,
Slovenia, pp.81–90, 1995.

[4] G. Gui and P.D. Scott, “Coupling and cohesion measures for evalu-
ation of component reusability,” Proc. 2006 International Workshop
on Mining Software Repositories, pp.18–21, ACM, 2006.

[5] D. Rodrı́guez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting fault modules applying feature selection to classifiers,”
2007 IEEE International Conference on Information Reuse and In-
tegration, IRI 2007, pp.667–672, IEEE, 2007.

[6] S. Sarkar, A.C. Kak, and G.M. Rama, “Metrics for measuring the
quality of modularization of large-scale object-oriented software,”
IEEE Trans. Softw. Eng., vol.34, no.5, pp.700–720, 2008.

[7] H. Abdeen, S. Ducasse, and H. Sahraoui, “Modularization met-
rics: Assessing package organization in legacy large object-oriented
software,” 2011 18th Working Conference on Reverse Engineering
(WCRE), pp.394–398, IEEE, 2011.

[8] Y. Zhao, Y. Yang, H. Lu, Y. Zhou, Q. Song, and B. Xu, “An empir-
ical analysis of package-modularization metrics: Implications for
software fault-proneness,” Information and Software Technology,
vol.57, pp.186–203, 2015.

[9] R.C. Martin, Agile software development: principles, patterns, and
practices, Prentice Hall PTR, 2003.

[10] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen, “Measuring cou-
pling and cohesion of software modules: an information-theory ap-
proach,” Software Metrics Symposium, 2001. METRICS 2001. Pro-
ceedings. Seventh International, pp.124–134, IEEE, 2001.

[11] T.J. Emerson, “A discriminant metric for module cohesion,” Proc.
7th International Conference on Software Engineering, pp.294–303,
1984.

[12] R. Martin, “Oo design quality metrics-an analysis of dependencies,”
Proc. Workshop Pragmatic and Theoretical Directions in Object-
Oriented Software Metrics, 1994.

[13] L.C. Briand, J.W. Daly, and J. Wüst, “A unified framework for cohe-
sion measurement in object-oriented systems,” Empirical Software
Engineering, vol.3, no.1, pp.65–117, 1998.

[14] J.M. Bieman and B.K. Kang, “Cohesion and reuse in an object-
oriented system,” ACM SIGSOFT Software Engineering Notes,
pp.259–262, ACM, 1995.

[15] S. Counsell, S. Swift, and J. Crampton, “The interpretation and
utility of three cohesion metrics for object-oriented design,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol.15, no.2, pp.123–149, 2006.

[16] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, “A class cohesion met-
ric for object-oriented designs,” J. Object-Oriented Programming,
vol.11, no.8, pp.47–52, 1999.

[17] D.L. Parnas, “On the criteria to be used in decomposing sys-
tems into modules,” Communications of the ACM, vol.15, no.12,
pp.1053–1058, 1972.

[18] B. Meyer, Object-oriented software construction, Prentice Hall New
York, 1988.

[19] W. Albattah and A. Melton, “Package cohesion classification,” 2014
5th IEEE International Conference on Software Engineering and

Service Science (ICSESS), pp.1–8, IEEE, 2014.
[20] S.A. Almugrin, Definitions and Validations of Metrics of Indirect

Package Coupling in an Agile, Object-Oriented Environment, Ph.D.
Thesis, Kent State University, 2015.

[21] S.L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol, and Y.
Gueheneuc, “Can lexicon bad smells improve fault prediction?,”
2012 19th Working Conference on Reverse Engineering (WCRE),
pp.235–244, IEEE, 2012.

[22] H.M. Olague, L.H. Etzkorn, S. Gholston, and S. Quattlebaum, “Em-
pirical validation of three software metrics suites to predict fault-
proneness of object-oriented classes developed using highly itera-
tive or agile software development processes,” IEEE Trans. Softw.
Eng., vol.33, no.6, pp.402–419, 2007.

[23] L.C. Briand, W.L. Melo, and J. Wust, “Assessing the applicability
of fault-proneness models across object-oriented software projects,”
IEEE Trans. Softw. Eng., vol.28, no.7, pp.706–720, 2002.

[24] E.J. Weyuker, T.J. Ostrand, and R.M. Bell, “Comparing the effec-
tiveness of several modeling methods for fault prediction,” Empiri-
cal Software Engineering, vol.15, no.3, pp.277–295, 2010.

[25] J.L. Schafer, Analysis of incomplete multivariate data, CRC press,
1997.

[26] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and Soft-
ware Technology, vol.54, no.3, pp.248–256, 2012.

[27] J. Ren, K. Qin, Y. Ma, and G. Luo, “On software defect prediction
using machine learning,” Journal of Applied Mathematics, vol.2014,
2014.

[28] Y. Zhao, Y. Yang, H. Lu, J. Liu, H. Leung, Y. Wu, Y. Zhou, and
B. Xu, “Understanding the value of considering client usage con-
text in package cohesion for fault-proneness prediction,” Automated
Software Engineering, pp.1–61, 2016.

[29] K.O. Elish and M.O. Elish, “Predicting defect-prone software mod-
ules using support vector machines,” Journal of Systems and Soft-
ware, vol.81, no.5, pp.649–660, 2008.

[30] S. Kim, T. Zimmermann, E.J. Whitehead Jr, and A. Zeller, “Pre-
dicting faults from cached history,” Proc. 29th International Confer-
ence on Software Engineering, pp.489–498, IEEE Computer Soci-
ety, 2007.

[31] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” 2007 International Workshop on Predictor Models in Soft-
ware Engineering, PROMISE’07: ICSE Workshops 2007, pp.9–9,
IEEE, 2007.

Mohsin Shaikh received B.E. and M.S.
degrees from Mehran University, Pakistan and
Hanyang University, Korea in 2006 and 2010,
respectively. From 2012 to 2013, he worked as
Assistant Professor in Qaid-e-Awam University
Pakistan. Currently, he is Ph.D. Candidate in
Dept. of Computer Science and Engineering at
Chung-Ang University. His research interests
include software engineering, software architec-
ture and software quality assurance.

http://dx.doi.org/10.1109/WSCS.2008.23
http://dx.doi.org/10.1145/1137983.1137989
http://dx.doi.org/10.1109/IRI.2007.4296696
http://dx.doi.org/10.1109/TSE.2008.43
http://dx.doi.org/10.1109/WCRE.2011.55
http://dx.doi.org/10.1016/j.infsof.2014.09.006
http://dx.doi.org/10.1109/METRIC.2001.915521
http://dx.doi.org/10.1145/223427.211856
http://dx.doi.org/10.1145/1131421.1131422
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/ICSESS.2014.6933502
http://dx.doi.org/10.1109/ICSESS.2014.6933502
http://dx.doi.org/10.1109/WCRE.2012.33
http://dx.doi.org/10.1109/TSE.2007.1015
http://dx.doi.org/10.1109/TSE.2002.1019484
http://dx.doi.org/10.1007/s10664-009-9111-2
http://dx.doi.org/10.1201/9781439821862
http://dx.doi.org/10.1016/j.infsof.2011.09.007
http://dx.doi.org/10.1155/2014/785435
http://dx.doi.org/10.1007/s10515-016-0198-6
http://dx.doi.org/10.1016/j.jss.2007.07.040
http://dx.doi.org/10.1109/ICSE.2007.66
http://dx.doi.org/10.1109/PROMISE.2007.10

SHAIKH et al.: ASSESSING THE BUG-PREDICTION WITH RE-USABILITY BASED PACKAGE ORGANIZATION FOR OBJECT ORIENTED SOFTWARE SYSTEMS
117

Ki-Seong Lee is a post-doctoral research
fellow in Dept. of Computer Science and En-
gineering at Chung-Ang University, Seoul, Ko-
rea. He earned the Bachelor’s degree in 2005
from the College of Liberal Arts at Sung Kyun
Kwan University. He worked as a software engi-
neer for Internet Service Company OnNet from
2006 to 2008. He received the M.S. and Ph.D.
degrees in Computer Science and Engineering
from Chung-Ang University. His research inter-
ests include software architecture recovery and

software quality.

Chan-Gun Lee received the B.S., M.S.,
and Ph.D. degrees in Computer Science from
Chung-Ang University, KAIST, and University
of Texas at Austin, in 1996, 1998, and 2005, re-
spectively. From 2005 to 2007, he was a senior
software engineer at Intel. Currently, he is an
Associate Professor of Computer Science and
Engineering at Chung-Ang University, Seoul,
Korea. His research interests include software
engineering and real-time systems.

