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Abstract: This paper addresses an adaptive secure control problem for the leader-follower formation
of nonholonomic mobile robots in the presence of uncertainty and deception attacks. It is assumed
that the false data of the leader robot’s information attacked by the adversary is transmitted to the
follower robot through the network, and the dynamic model of each robot has uncertainty, such
as unknown nonlinearity and external disturbances. A robust, adaptive secure control strategy
compensating for false data and uncertainty is developed to accomplish the desired formation of
nonholonomic mobile robots. An adaptive compensation mechanism is derived to remove the effects
of time-varying attack signals and system uncertainties in the proposed control scheme. Although
unknown deception attacks are injected to the leader’s velocities and the model nonlinearities of
robots are unknown, the boundedness and convergence of formation tracking errors of the proposed
adaptive control system are analyzed in the Lyapunov sense. The validity of the proposed scheme is
verified via simulation results.

Keywords: secure control; corrupted leader signals; deception attack; leader-follower formation;
nonholonomic mobile robot; neural network

1. Introduction

Study efforts have actively proceeded to apply the cooperation technique of multi-
robot systems to various areas, such as industries, commerce, and the military. For the
operation of multi-robot systems, the robots are frequently connected through a network,
which can be a target for attackers. Because exposure to a cyber-attack may result in critical
loss of multi-robot systems, information security is essential and various methods, such as
encryption techniques, intrusion detection systems, and secure control have been studied.

Cyber-attacks are largely divided into denial-of-service (DoS) disrupting services
of a host connected to the network [1–3], a deception attack deceiving the data [4–6],
and a replay attack delaying data transmission [7–9]. Among them, since a deception
attack distorts the information of neighboring robots required to operate multi-robot
systems, the robots that receive the wrong information cannot move according to the
control objective, and finally, cause collaboration failure. Therefore, studies on secure
control have been proposed. In [10], adaptive control architectures for linear dynamical
systems with sensor uncertainty and attacks were presented. In [11,12], time-varying
sensor and actuator attacks were estimated by the adaptive controllers. In [13], an adaptive
event-triggered mechanism was proposed for the networked control systems (NCS) under
deception attacks and stochastic nonlinearity. In [14], data quantization, DoS attacks, and
deception attacks of the NCS were considered. In [15], the security correction control
scheme based on an interconnected adaptive observer was proposed for stochastic cyber-
physical systems subject to false data injection attacks. Because the above papers are
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limited to linear systems, studies on nonlinear systems have been conducted. In [16], a
neural-network-based controller was presented for uncertain nonlinear time-delay cyber-
physical systems in the presence of sensor and actuator attacks. An approximation-based
event-triggered control method was proposed to compensate for unknown injection data
of lower-triangular nonlinear systems in [17]. In [18], an adaptive control scheme for
second-order nonlinear systems was presented to deal with time-varying parameters and
an unknown control direction brought by the injection and deception attacks. However, all
these papers cannot be applied to nonholonomic mobile robots due to the underactuation
problem. Although an adaptive resilient event-triggered control method at the kinematic
level was proposed for single autonomous vehicles with DoS attacks [19], performance
degradation due to uncertainty arising from the dynamic model is inevitable. Moreover,
the deception attack problem was not considered in [19].

For the operation of multi-robot systems, formation control methods have been stud-
ied using the behavior-based approach [20], virtual structure [21], and leader-follower
approach [22]. Although each approach has its advantages, the leader-follower approach
has been widely used because of its simplicity, scalability, and reliability. Early studies
on the leader-follower approach dealt with only the kinematics of mobile robots [22,23].
To consider model uncertainties and disturbances, studies were conducted that took into
account the dynamics of mobile robots. The sliding mode control and adaptive neural
network control problems were addressed to compensate for the uncertainty in [24,25],
respectively. In recent years, formation control research has been conducted on connec-
tivity preservation and collision avoidance between robots. In [26,27], formation control
approaches using potential-like functions were presented. In [28], a dipolar navigation
function was introduced to design the formation controller. In [29], a formation tracking
method was proposed to avoid obstacles while maintaining connectivity. However, those
studies mentioned above did not deal with the problem against deception attacks in the
formation control design. For practical applications, it is significant to deal with the forma-
tion control of multiple mobile robots under deception attacks. This problem has not been
addressed yet.

Accordingly, this paper proposes an adaptive secure control methodology for leader-
follower formation of uncertain nonholonomic mobile robots in the presence of deception
attacks of the leader’s information. The leader’s velocity information corrupted by un-
known injected data is assumed to be transmitted to the follower robots through the
network. A robust and resilient control design with adaptive attack compensation mech-
anisms is developed to compensate for time-varying velocity attacks where the radial
basis function networks (RBFNs) are employed to deal with system uncertainties and
external disturbances. Furthermore, in the proposed control design, the dynamic surface
design technique is applied to circumvent the problem that the time derivatives of the
virtual control laws are affected by unknown deception attack signals. It is proven that
all closed-loop signals are uniformly ultimately bounded in the Lyapunov stability sense,
and the formation errors are ensured for converging to an adjustable neighborhood of
the origin. Finally, simulation results are given to verify the performance of the proposed
theoretical approach.

Compared with the existing literature, the main contributions of this paper are
as follows:

(i) To the best of the authors’ knowledge, an adaptive secure control problem for leader-
follower formation of nonholonomic mobile robots in the presence of deception
attacks is the first trial of the formation control field of nonholonomic mobile robots.
The secure formation control design and stability strategies using the adaptive tech-
nique are firstly established in this paper.

(ii) Compared with the related works in the literature, a robust, resilient control design
with adaptive attack compensation mechanisms is firstly developed to compensate
for time-varying velocity attacks of the leader. It is proven that all closed-loop signals
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are uniformly ultimately bounded in the Lyapunov stability sense, and the formation
errors are ensured for converging to an adjustable neighborhood of the origin.

The rest of this paper is organized as follows. In Section 2, the leader-follower model is
introduced, and the adaptive secure control problem is formulated for achieving the desired
formation of nonholonomic mobile robots with unknown deception velocity attacks. In
Section 3, the proposed secure control strategy and its stability analysis are presented. In
Section 4, simulation results are given. Finally, the conclusion of this paper is drawn in
Section 5.

2. System Description and Problem Statement
2.1. Leader-Follower Model

In this paper, the leader-follower model, which is represented by the relative distance
and angle between the leader i and follower j, is used for the formation of multiple mobile
robots. If the leader-follower model is expressed using the relative distance and angle
between the center positions of the leader and the follower, it is difficult to design the
controller due to the lack of control inputs compared to the degrees of freedom. To address
this problem, the leader-follower model shown in Figure 1 is used. This makes sense
because the position of the sensor is different from the center position of the mobile robot
in the practical application. From Figure 1, the relative distance lij and angle φij between
the leader i and the follower j measured by the sensor mounted on the follower j can be
expressed as follows.

lij =
√
(xi − xj − dj cos θj)2 + (yi − yj − dj sin θj)2

φij = θj − arctan
( yi − yj − dj sin θj

xi − xj − dj cos θj

)
(1)

where (xn, yn) and θn, n = i, j denote the position and orientation of the robots, respectively,
and dj is the distance from the position of the follower j to the front sensor.

Figure 1. Leader-follower model.



Mathematics 2021, 9, 2190 4 of 16

The kinematics of the mobile robots are needed to derive the leader-follower model
from (1), and the dynamics of the mobile robots are required to design the controller. The
kinematics and dynamics of the mobile robots can be described by [30]

q̇n =

cos θn 0
sin θn 0

0 1

νn (2)

τn = Mnν̇n + Cn(νn)νn + Dnνn + τd,n (3)

where n = i, j, qn = [xn, yn, θn]>; (xn, yn) is the position and θn is the heading angle,
νn = [vn, ωn]>; vn and ωn are the linear and angular velocities, respectively, τd,n denotes
the bounded external disturbance vector, and τn = [τ1,n, τ2,n]

> is the control torque vector.
In these expressions, the unknown matrices Mn, Cn, and Dn are defined as follows:

Mn =

[
m1,n m2,n
m1,n −m2,n

]
, Cn(νn) =

rnmb,ncn

2Rn

[
1 −Rn
−1 −Rn

]
, Dn =

1
rn

[
d1,n Rnd1,n
d2,n −Rnd2,n

]
,

where m1,n = rn(mb,n + 2mw,n)/2+ Jw,n/rn, m2,n = rn Jn/(2Rn)+ Rn Jw,n/rn, Jn = mb,nc2
n +

2mw,nR2
n + Jc,n + Jm,n, Rn and rn denote the half of the width of the body and the radius of

the wheel, respectively, cn is the distance from the center of mass to the position of the nth
mobile robot, d1,n and d2,n are the damping coefficients, mb,n and mw,n denote the mass of
the body and the wheel, respectively, and Jc,n, Jw,n, and Jm,n are the moments of inertia of
the body, the wheel with a motor, and the wheel with the robot of a motor, respectively.

Substituting (2) into the time derivative of (1) yields the following leader-follower
model [22]:

l̇ij = vi cos ψij − vj cos φij + djωj sin φij

ψ̇ij = ωi −
1
lij

vi sin ψij +
1
lij

vj sin φij +
1
lij

djωj cos φij (4)

where ψij = φij + θi − θj.

2.2. Radial Basis Function Network

In this paper, we employ the radial basis function networks (RBFNs) to compensate the
model uncertainty and external disturbance. The RBFN can approximate any continuous
function f (X) as follows: f (X) = W>Φ(X) + ε where X is the input vector, W ∈ RNh is
the constant optimal weight vector, Nh is the node number, ε is the reconstruction error,
and Φ(X) = [ϕ1(X), . . . , ϕNh(X)]> is the Gaussian activation function defined by

ϕl(X) = exp
[
−(X− ξl)

>(X− ξl)

ηl

]
, l = 1, . . . , Nh

where ξl and ηl are the center and the width of the Gaussian function, respectively.

2.3. Problem Statement

To design the adaptive secure controller using the leader-follower model (4), the
follower j requires the measurement data (θi, vi, ωi) of the leader i. It can be corrupted by
the adversary while it is transmitted over the communication network. Even though the
transmitted data can be arbitrarily attacked by the adversary, the number of the corrupted
data is limited due to the limited attack resources, such as [31]. In this paper, we assume
that the leader velocities (vi,ωi) are corrupted by unknown attack signals. Thus, the
follower j receives the corrupted data (v̄i, ω̄i) given by

v̄i = vi + av,i

ω̄i = ωi + aω,i (5)
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where av,i and aω,i are the time-varying attack signals.
Therefore, the control objective of this paper is to design the torque input vector τj for

the jth follower such that limt→∞ |lij − ld,ij| ≤ ιj and limt→∞ |ψij − ψd,ij| ≤ ιj are achieved
in the environment with model uncertainty, external disturbance, and time-varying attack
signals. Here, ld,ij and ψd,ij denote the desired distance and angle, respectively, and ιj is an
arbitrarily small positive constant.

Assumption 1. The following assumptions are used in this study.

(i) The leader’s velocities (vi, ωi) and accelerations (v̇i, ω̇i) are bounded.
(ii) The external disturbance τd,n is bounded, such that ‖τd,n‖ ≤ τ̄d,n, where τ̄d,n is an unknown

positive constant.
(iii) The time-varying attack signals av,i and aω,i are unknown and bounded, such that |av,i| ≤ āv,i

and |aω,i| ≤ āω,i, where āv,i and āω,i are unknown positive constants.
(iv) The optimal weight vector W and reconstruction error ε are bounded, such that ‖W‖ ≤W

and |ε| ≤ ε̄, where W and ε̄ are unknown positive constants.
(v) The first derivatives of the desired distance ld,ij and angle ψd,ij exist and are bounded.

Remark 1. The reasons for the validity of Assumption 1 are as follows.

(i) The follower j cannot follow the leader i unless the leader’s velocity and acceleration are
bounded. The unbounded leader’s velocity and acceleration lead to the unstable operation
of the leader i. Therefore, the leader’s velocity and acceleration must be bounded for the
leader-follower formation.

(ii) In a real environment, external disturbances, such as friction and wind, are bounded. If
external disturbances are unbounded (i.e., infinite), the control problem cannot be formulated.

(iii) In real applications, since the defender can obtain some statistical information of the attack
signal (e.g., extreme values) by monitoring the target online for some time, the bounded attack
signals can ensure the concealment of the attacker [32]. Thus, Assumption 1-(iii) is reasonable
in the secure control field.

(iv) Owing to the universal approximation property, the optimal weighting vector and reconstruc-
tion error are bounded (see [33,34]). Thus, Assumption 1-(iv) is reasonable in the control field
using neural networks.

(v) ld,ij and ψd,ij are the desired values chosen by the control designer for achieving the formation
control objective. That is, they are the reference signals for the leader-follower control. Thus,
they should be bounded. If they are infinite, the formation control problem cannot be formulated.
In addition, for the continuous formation operation, ld,ij and ψd,ij should be continuous and
differentiable signals. Thus, Assumption 1-(v) is reasonable.

The following Lemma will be used to prove the stability of the proposed control
system.

Lemma 1 ([34]). The following inequality is satisfied for any ε > 0 and for any χ ∈ R

0 ≤ |χ| − χ tanh
(

χ

ε

)
≤ κε (6)

where κ = 0.2785.



Mathematics 2021, 9, 2190 6 of 16

3. Controller Design

In this section, we design the controller to achieve the control objective under the
assumption that the follower j receives the corrupted data (v̄i, ω̄i) from the leader i. The
adaptive technique and neural networks are employed to deal with model uncertainty,
external disturbance, and time-varying attack signals. The dynamic surface control (DSC)
method [35] is used to design the controller at the dynamic level.

Let us define the errors as

e1,j = lij − ld,ij (7)

e2,j = ψij − ψd,ij (8)

e3,j = θr,j − θj (9)

e4,j = νj − α f ,j (10)

vj = [v1,j, v2,j]
> = α f ,j − αj (11)

where e4,j = [e4,1,j, e4,2,j]
>, αj = [α1,j, α2,j]

> is the virtual control, α f ,j = [α f ,1,j, α f ,2,j]
> is

the filtered signal obtained by Γjα̇ f ,j + α f ,j = αj, α f ,j(0) = αj(0), Γj is a diagonal matrix
and positive definite, and θr,j is the reference orientation to be defined later. In the leader-
follower formation, the orientations of the leader i and the follower j cannot be equal while
the formation is turning [25]. Thus, instead of following the orientation of the leader i, the
reference orientation θr,j is required for the follower j.

Step 1: Substituting (2) and (4) into the time derivatives of (7)–(9) yields the following
error dynamics,

ė1,j = vi cos ψij − vj cos φij + djωj sin φij − l̇d,ij

ė2,j = ωi −
vi
lij

sin ψij +
vj

lij
sin φij +

dj

lij
ωj cos φij − ψ̇d,ij

ė3,j = θ̇r,j −ωj. (12)

Consider the Lyapunov function candidate as

V1,j =
1
2

(
e2

1,j + e2
2,j + e2

3,j +
1

γv,j
ã2

v,j +
1

γω,j
ã2

ω,j

)
(13)

where γv,j and γω,j are positive constants, ãv,j = āv,i − âv,j, ãω,j = āω,i − âω,j, and âv,j and
âω,j are the estimates of āv,i and āω,i, respectively. By Assumption 1-(iii) and the inequality,
we obtain the time derivative of (13) along (10)–(12) as follows:

V̇1,j =e1,j

(
v̄i cos ψij − av,i cos ψij − l̇d,ij − (e4,1,j + α1,j + v1,j) cos φij

+ dj(e4,2,j + α2,j + v2,j) sin φij

)
+ e2,j

(
ω̄i −

v̄i
lij

sin ψij − aω,i +
av,i

lij
sin ψij − ψ̇d,ij +

e4,1,j + α1,j + v1,j

lij
sin φij

+
dj

lij
(e4,2,j + α2,j + v2,j) cos φij

)
+ e3,j(θ̇r,j − e4,2,j − α2,j −v2,j)−

1
γv,j

ãv,j ˙̂av,j −
1

γω,j
ãω,j ˙̂aω,j

≤e1,j

(
v̄i cos ψij − l̇d,ij − (e4,1,j + α1,j + v1,j) cos φij + dj(e4,2,j + α2,j + v2,j) sin φij

)
+ e2,j

(
ω̄i −

v̄i
lij

sin ψij +
e4,1,j + α1,j + v1,j

lij
sin φij
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+
dj

lij
(e4,2,j + α2,j + v2,j) cos φij − ψ̇d,ij

)
+ |âv,je1,j|+ ãv,j|e1,j|+ |âω,je2,j|+ ãω,j|e2,j|+

|âv,je2,j|+ ãv,j|e2,j|
lij

+ e3,j(θ̇r,j − e4,2,j − α2,j −v2,j)−
1

γv,j
ãv,j ˙̂av,j −

1
γω,j

ãω,j ˙̂aω,j. (14)

The virtual controls α1,j and α2,j are chosen as

α1,j = ζ1,j cos φij − lijζ2,j sin φij

α2,j = −
ζ1,j

dj
sin φij −

lij
dj

ζ2,j cos φij (15)

and the reference orientation is updated by

θ̇r,j = α2,j − k3,je3,j (16)

where

ζ1,j =k1,je1,j + âv,j tanh
( âv,je1,j

εj

)
− l̇d,ij + v̄i cos ψij

ζ2,j =k2,je2,j + ω̄i −
v̄i
lij

sin ψij − ψ̇d,ij +
âv,j

lij
tanh

( âv,je2,j

εjlij

)
+ âω,j tanh

( âω,je2,j

εj

)
with positive constants k1,j, k2,j, k3,j, and εj. Substituting (15) and (16) into (14) and using
Lemma 1 yield

V̇1,j ≤− k1,je2
1,j − k2,je2

2,j − k3,je2
3,j + 3κεj − e1,j(e4,1,j cos φij − dje4,2,j sin φij)

+
e2,j

lij
(e4,1,j sin φij + dje4,2,j cos φij)− e3,je4,2,j − e1,j(v1,j cos φij − djv2,j sin φij)

+
e2,j

lij
(v1,j sin φij + djv2,j cos φij)− e3,jv2,j + ãv,j

(
|e1,j|+

|e2,j|
lij
− 1

γv,j
˙̂av,j

)
+ ãω,j

(
|e2,j| −

1
γω,j

˙̂aω,j

)
(17)

where from Lemma 1, the following inequalities are used:

|âv,je1,j| − âv,je1,j tanh
( âv,je1,j

εj

)
≤ κεj

|âω,je2,j| − âω,je2,j tanh
( âω,je2,j

εj

)
≤ κεj

|âv,je2,j|
lij

−
âv,je2,j

lij
tanh

( âv,je2,j

εjlij

)
≤ κεj.

We choose the adaptation laws as

˙̂av,j = γv,j

(
|e1,j|+

|e2,j|
lij

)
− γv,jσ1,j âv,j

˙̂aω,j = γω,j|e2,j| − γω,jσ2,j âω,j (18)

where σ1,j and σ2,j are positive constants.
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Step 2: The time derivative of (10) along (3) is

ė4,j = M−1
j (−Cj(νj)νj − Djνj − τd,j + τj)− α̇ f ,j. (19)

Multiplying Bj Mj both sides of (19) yields

Mj ė4,j = −Bj(Cj(νj)νj + Djνj + Mjα̇ f ,j)− Bjτd,j + Bjτj (20)

where

Mj = Bj Mj, Bj =
1
2

[
1 1
1 −1

]
.

Note that there exists the inverse of Bj, and the constant matrix Mj is positive definite.
Consider the Lyapunov function candidate as

V2,j =
1
2

(
e>4,j Mje4,j +

2

∑
l=1

1
γl,j

W̃>l,jW̃l,j + v>j vj

)
(21)

where γl,j > 0, W̃l,j = Wl,j − Ŵl,j, Wl,j is the constant optimal weight vector, and Ŵl,j is the
estimate of Wl,j. By Assumption 1(ii), the time derivative of (21) along (20) yields

V̇2,j =e>4,j(−Bj(Cj(νj)νj + Djνj + Mjα̇ f ,j)− Bjτd,j + Bjτj)

−
2

∑
l=1

1
γl,j

W̃>l,j
˙̂W l,j −v>j Γ−1

j vj −v>j α̇j

≤e>4,j( f j(Xj) + Bjτj)−
2

∑
l=1

1
γl,j

W̃>l,j
˙̂W l,j −v>j Γ−1

j vj −v>j α̇j +
ς j

2
(22)

where f j(Xj) = [ f1,j, f2,j]
> = −Bj(Cj(νj)νj + Djνj − MjΓ−1vj) + τ̄2

d,je4,j/(2ς j) with

Xj = [ν>j , v>j , e>4,j]
> and a constant ς j > 0. Note that the continuous functions fn,j

for n = 1, 2 can be approximated by RBFNs as follows: fn,j(Xj) = W>n,jΦj + εn,j.

Remark 2. The backstepping technique cannot be applied to the secure control problem concerned
in this paper because the time derivative of the virtual control αj includes the unknown time-varying
attack signals. Thus, the term α̇j cannot be removed by the actual control torque τj of the follower j.
To overcome this problem, we employ the dynamic surface control method that can replace the time
derivative of αj with the first-order filtered signal term Γ−1

j vj in the neural network approximator.

We chose the actual control inputs and update laws as

τj = −B−1
j (Ŵ>j Φj(Xj) + k4,je4,j + Λj) (23)

˙̂W1,j = γ1,jΦje4,1,j − γ1,jσ3,jŴ1,j
˙̂W2,j = γ2,jΦje4,2,j − γ2,jσ4,jŴ2,j

(24)

where k4,j, σ3,4, and σ4,j are positive constants, and

Ŵj = [Ŵ1,j, Ŵ2,j],

Λj =

 −e1,j cos φij +
e2,j
lij

sin φij

dje1,j sin φij +
dj
lij

e2,j cos φij − e3,j

.

Consider the Lyapunov function candidate VT,j = V1,j + V2,j. Then, the following
theorem gives the main result of this paper.
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Theorem 1. Assume that the transmitted leader signals (vi, ωi) are attacked by the adversary, and
consider the leader-follower model (4) controlled by the proposed controller (23) with the update laws
(18) and (24) under Assumption 1. For any initial conditions such that VT,j(0) ≤ β0,j where β0,j
is a positive constant, there exist k1,j, k2,j, k3,j, γv,j, γω,j, γ1,j, γ2,j, and Γj such that VT,j(t) ≤ β0,j,
∀t ≥ 0. Furthermore, the control objective is achieved, namely, limt→∞ |lij − ld,ij| ≤ ιj and
limt→∞ |ψij − ψd,ij| ≤ ιj.

Proof. Substituting (18), (23), and (24) into the time derivative of VT,j along (17) and (22),
we have

V̇T,j =− k1,je2
1,j − k2,je2

2,j − k3,je2
3,j − k4,je>4,je4,j +

(
|e1,j|+

1
lij
|e2,j|

)
(|v1,j|+ dj|v2,j|)

+ |e3,j||v2,j|+ σ1,j ãv,j âv,j + σ2,j ãω,j âω,j + e>4,jε j −v>j Γ−1
j vj + ‖vj‖‖α̇j‖

+ σ3,jW̃>1,jŴ1,j + σ4,jW̃>2,jŴ2,j + 3κεj +
ς j

2
(25)

where ε j = [ε1,j, ε2,j]
>. From the definition of αj and Assumption 1(i), it follows that

‖α̇j‖ ≤ hj(e1,j, e2,j, e4,j, vj, ãv,j, ãω,j) (26)

for some continuous function hj. Consider the set Ωj := {e2
1,j + e2

2,j + e>4,j Mje4,j + ã2
v,j/γv,j +

ã2
ω,j/γω,j + v>j vj ≤ 2β0,j}. There exists a positive constant β̄ j such that ‖α̇j‖ ≤ β̄ j on Ωj.

By Assumption 1(iv) and Young’s inequality, (25) can be written as

V̇T,j ≤− (k1,j − 1)e2
1,j − (k2,j − 1)e2

2,j − (k3,j − 1)e2
3,j − (k4,j − 1)e>4,je4,j −

σ1,j

2
ã2

v,j −
σ2,j

2
ã2

ω,j

−v>j

(
Γ−1

j −
β̄2

j

2δj
I −Υj

)
vj −

σ3,j

2
W̃>1,jW̃1,j −

σ4,j

2
W̃>2,jW̃2,j −

‖vj‖2 β̄2
j

2δj

(
1−

h2
j

β̄2
j

)

+
δj

2
+ 3κεj +

σ1,j

2
ā2

v,i +
σ2,j

2
ā2

ω,i +
σ3,j

2
W2

1,j +
σ4,j

2
W2

2,j +
ε̄2

1,j

4
+

ε̄2
2,j

4
+

ς j

2
(27)

where I is a 2× 2 identity matrix, δj is a positive constant, and

Υj =


1
2 + 1

2l2
ij

0

0
d2

j
2 +

d2
j

2l2
ij
+ 1

4

.

If we choose kl,j = 1 + k∗l,j and Γ−1
j = β̄2

j I/(2δj) + Υj + Γ∗j where k∗l,j > 0, Γ∗j > 0, and
l = 1, . . . , 4, then (27) is expressed as

V̇T,j ≤ −2µ0,jVT,j + µ1,j −
‖vj‖2 β̄2

j

2δj

(
1−

h2
j

β̄2
j

)
(28)

where µ0,j = min{k∗1,j, k∗2,j, k∗3,j, λmin(M−1
j )k∗4,j, γv,jσ1,j/2, γω,jσ2,j/2, λmin(Γ∗j ), γ1,jσ3,j/2,

γ2,jσ4,j/2}, µ1,j = δj/2 + 3κεj + σ1,j ā2
v,i/2 + σ2,j ā2

ω,i/2 + σ3,jW
2
1,j/2 + σ4,jW

2
2,j/2 + ε̄2

1,j/4

+ ε̄2
2,j/4 + ς j/2, and λmin(·) is a minimum eigenvalue of (·). On VT,j = β0,j, hj ≤ β̄ j.

Therefore, V̇T,j ≤ −2µ0,jVT,j + µ1,j. If µ0,j > µ1,j/(2β0,j), then V̇T,j ≤ 0 on VT,j = β0,j.
This implies that there exist k1,j, k2,j, k3,j, γv,j, γω,j, γ1,j, γ2,j, and Γj such that VT,j ≤ β0,j,
∀t ≥ 0. Furthermore, fixing σl,j for l = 1, . . . , 4 and increasing µ0,j allow VT,j to be within
the arbitrarily small bound µ1,j/(2µ0,j). Therefore, the control objective is achieved, that is,

limt→∞ |lij − ld,ij| ≤ ιj and limt→∞ |ψij − ψd,ij| ≤ ιj, where ιj =
√

µ1,j/µ0,j. This completes
the proof.
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Remark 3. Theorem 1 proves the stability of the jth robot. For the formation of N mobile robots,
a stability analysis for all robots, called formation stability [25], should be given. Because the
formation stability can be analyzed using the sum of the Lyapunov candidate VT,j for all j, it can be
easily proven using the proof of Theorem 1. However, the sum of errors can be large, as many layers
exist. A leader-to-formation stability (LFS) [36], which provides performance measures that can be
calculated analytically, can be applied to analyze a stability property of leader-following formations.
Using the LFS allows the calculation of worst-case ultimate error bounds. Thus, this can be used to
check a particular formation design. For example, if the LFS measure is unacceptable, the stability
of the formation can be improved by adjusting the reference trajectory or formation architecture.

4. Simulation Results

In this section, we simulate five robots to demonstrate the performance of the pro-
posed control scheme. Figure 2 shows the desired formation and information flow. The
model parameters of each robot follow closely [30]. The initial postures of all robots are
set to q0 = [0, 0, π/4]>, q1 = [−3,−3, π/2]>, q2 = [3,−3, π/2]>, q3 = [−6,−3, π/2]>,
and q4 = [6,−3, π/2]>. The external disturbances are given by τd,j = [0.7 cos(1.5t),
1.2 sin(0.5t)]>. The time-varying attack signals are set to av,n = sin(πt/5) and
aω,n = cos(πt/5), where n = 0, 1, 2. The design parameters are chosen as γv,j = γω,j =
γ1,j = γ2,j = 5, kn,j = 5, σn,j = 0.002, Γj = diag[0.01, 0.01], and εj = 0.5 where n = 1, . . . , 4.
We assume that the robot 0 moves autonomously and the trajectory is generated by (2).
The velocities of the robot 0 are chosen as follows: ν0 = [0.25(1 − cos(πt/5)), 0]> for
0 ≤ t < 5, ν0 = [0.5, 0]> for 5 ≤ t < 25, ν0 = [0.5, 0.2 cos(2πt/20)]> for 25 ≤ t < 45, and
ν0 = [0.5, 0]> for t ≥ 45.

Figure 2. Desired formation and information flow.

Figures 3–5 show the simulation results. As shown in Figures 3 and 4, the desired
formation is achieved for straight and curved paths, and the formation errors converge
to nearly zero. As shown in Figure 4, both the distance and angle errors that occur at the
starting point drop quickly in less than a few seconds. Thus, there are design parameters
that can achieve the desired formation, as mentioned in Theorem 1. This implies that the
theoretical results of Theorem 1 are valid. Therefore, it can be seen from Theorem 1 that
increasing the design parameters can reduce the bounds of the error and speed up the
convergence rate. Figure 5 depicts the control torques of all robots. Figures 6 and 7 show
the estimates of the attack signals and the outputs of the RBFNs. From Figures 6 and 7, we
can see that the bounds of the attack signals and unknown nonlinearities of the follower
dynamics are compensated by the proposed adaptive laws and the adaptive neural network
approximators, respectively. To consider various attack signals, the simulation with impulse
attack signals is conducted. In this case, the impulse attack signals are chosen as: av,n = 0.5
and aω,n = 0 at t = 20 s, av,n = 1 and aω,n = 0.5 at t = 40 s, and av,n = −1 and aω,n = −0.5
at t = 60 s, where n = 0, 1, 2. Figure 8 shows the simulation results. It can be seen that
the formation tracking errors converge to nearly zero even though the control torques are
affected by impulse attack signals. From the simulation results, it can be concluded that
the proposed scheme is effective in achieving the desired formation of uncertain mobile
robots in the presence of unknown attack signals.
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(a) âv,j

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

time(sec)

E
s
ti
m

a
te

s
 o

f 
a

tt
a

c
k
 s

ig
n

a
ls

robot 1

robot 2

robot 3

robot 4

(b) âω,j
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Figure 7. Outputs of RBFNs (solid : Ŵ>1,jΦj(Xj), dashed : Ŵ>2,jΦj(Xj)).
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Figure 8. Simulation results for impulse attack signals.

5. Conclusions

In this paper, an adaptive secure control scheme has been proposed for achieving the
leader-follower formation of nonholonomic mobile robots with uncertainty and deception
attacks. It has been assumed that all follower robots receive their leader robot’s information
corrupted by malicious attacks through the network. The effects of the time-varying
attack signals injected into the leader’s information have been overcome by the adaptive
technique, and the uncertainty arising from the dynamic model of nonholonomic mobile
robots has been compensated by the RBFNs. From the Lyapunov stability theory, it has
been proven that all estimation errors and formation tracking errors are bounded for all
time. Because these errors can be reduced by adjusting the design parameters, the desired
formation is achieved even though the leader’s velocities corrupted by deception attacks
are transmitted to the followers. Finally, simulation results have been presented to verify
the effectiveness of the proposed theoretical result. Further studies on the state and input
constraint problem and the collision avoidance problem under unknown deception attacks
are recommended as future work.
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