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Abstract: We provide a comparative study of the fine tuning amount (∆) at the two-loop

leading log level in supersymmetric models commonly used in SUSY searches at the LHC.

These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1,

NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses

models (NUGMd). Two definitions of the fine tuning are used, the first (∆max) measures

maximal fine-tuning w.r.t. individual parameters while the second (∆q) adds their contri-

bution in “quadrature”. As a direct consequence of two theoretical constraints (the EW

minimum conditions), fine tuning (∆q) emerges at the mathematical level as a suppressing

factor (effective prior) of the averaged likelihood (L) under the priors, under the integral

of the global probability of measuring the data (Bayesian evidence p(D)). For each model,

there is little difference between ∆q, ∆max in the region allowed by the data, with similar

behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (msusy = (mt̃1
mt̃2

)1/2)

or dark matter and g−2 constraints. The analysis has the advantage that by replacing any

of these mass scales or constraints by their latest bounds one easily infers for each model

the value of ∆q, ∆max or vice versa. For all models, minimal fine tuning is achieved for

Mhiggs near 115 GeV with a ∆q ≈ ∆max ≈ 10 to 100 depending on the model, and in the

CMSSM this is actually a global minimum. Due to a strong (≈ exponential) dependence

of ∆ on Mhiggs, for a Higgs mass near 125GeV, the above values of ∆q ≈ ∆max increase to

between 500 and 1000. Possible corrections to these values are briefly discussed.
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1 Introduction

Low energy (TeV-scale) supersymmetry (SUSY) can provide a solution to the hierarchy

problem. This is done without undue amount of electroweak scale fine tuning (∆) that is

present in the non-supersymmetric theories like the Standard Model (SM). A large value

of this ∆ is just another face of the hierarchy problem (for a review see [1] and references

therein). However, negative searches for superpartners increase the SUSY scale (msusy)

which in turn can increase ∆. In the extreme case when msusy is very high (≫TeV) one

recovers the scenario of non-supersymmetric theories (SM, etc) with a large ∆. In the

light of current negative SUSY searches at the LHC it is useful to examine in detail the

amount of fine tuning that supersymmetric models need, as a test of SUSY as a solution

to the hierarchy problem. The alternative is to ignore this problem and adopt an effective

theory approach, with a low effective cutoff (few TeV) that, unlike SUSY, does not detail

the “new physics” at/beyond this scale. Such models usually have a ∆ relative to the TeV

scale comparable to that of SUSY models relative to the Planck scale.

While a small value of ∆ (say less than 100) is desirable, the exact value still accepted

for a solution to the hierarchy problem is rather subjective. Even worse, there are also

different definitions of ∆ in the literature. Two common definitions are

∆max = max
∣

∣∆γi

∣

∣, ∆q =
(

∑

∆2
γi

)1/2
, ∆γi =

∂ ln v

∂ ln γi
, γi = m0,m1/2, µ0, A0, B0.

(1.1)

γi are new parameters (of mass dimension 1), that SUSY introduces in the model (shown

above for the CMSSM). ∆max was the first measure used [2], but ∆q is also common. Two

definitions for ∆ can lead to different predictions and the absence of a widely accepted
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upper value for it is another problem. To avoid these issues, we compute both ∆q and

∆max and compare their implications in generic SUSY models, without an upper bound

on them (to be fixed by the reader). This is one of the main purposes of this work.

These measures of fine tuning were introduced more on physical intuition than rigorous

mathematical grounds so another important purpose is to clarify their link with other

approaches and find technical support. Both ∆ provide a local measure (in the space

γi) of the quantum cancellations and help to decide which phase space points of a model

are less fine tuned (more probable). When actually comparing models, a more global

measure would be desirable. Our scan over the whole parameter space when evaluating

∆’s will alleviate this issue. But one question remains: what is the relation of ∆ to other

(global) measures of the success of SUSY in solving the hierarchy problem? To answer

this, consider the Bayesian probability density P(γi|D) of a point in parameter space {γi}
given the data D:

P(γi|D) =
1

p(D)
L(D|γi) p(γi), p(D) =

∫

L(D|γi) p(γi)dγi. (1.2)

Here L is the likelihood the parameters {γi} fit the data D and p(D) is a global normal-

ization factor called Bayesian “evidence”. For two models with the same data and priors

p(γi), the ratio of their p(D) gives their relative overall probability. So a large p(D) is

needed to decide that a model is more probable than another. Then what is the relation

between p(D) and fine-tuning? As it was observed in [3, 4] (see also [5–7]), when integrat-

ing P(γi|D) over one parameter of the theory (in this case µ0), following an experimental

constraint (on mZ), there is an emergent effective prior peff≈1/∆µ0
which brings in a fine

tuning penalty for points with large1 ∆µ0
∼ ∆max [3, 4]. These points then have little con-

tribution to p(D) because
∫

P ∼ L×peff ∼ (1/∆max) L. A larger p(D) can then indicate a

preference for points of lower ∆max, and the link of p(D) with fine tuning w.r.t. individual

parameters is apparent.

We explore this idea further and evaluate p(D) by investigating the effect of the the-

oretical constraints that received less attention: we refer to the two minimum conditions

of the potential. Further, the above observation and the need to evaluate p(D) clearly

suggests to integrate over all {γi} parameters (and we shall do so), and also over nuisance

variables, which are parameters already present in the SM (like Yukawa couplings [3, 4, 10]).

The result is that p(D)∼ 1/∆q so ∆q is actually preferred by the Bayesian evidence cal-

culation. Then p(D) receives contributions mostly from points of small ∆q, but this also

depends on the priors and L. To conclude, the inverse of ∆q acts as an extra, effective

prior in (1.2) and is indeed a physical quantity with impact on global p(D). This clarifies

the exact, mathematical link of overall fine tuning w.r.t. all parameters {γi}, to L(D|γi)
and the Bayesian evidence p(D).

With this technical motivation, we then evaluate the fine tuning for generic models,

using both definitions ∆q and ∆max; this is done in a two-loop leading log numerical analysis

that provides the state-of-the-art analysis of the fine tuning in the models considered,

1Note however that fine tuning w.r.t. µ0 is not dominant in CMSSM for higgs mass above

∼ 115GeV [8, 9].
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consistent with current data. Interestingly, the results we find are little dependent on

the definition used for ∆, with ∆q and ∆max showing similar behaviour and values. This

is important since it is usually thought that different fine tuning measures should give

different results. Our results correspond to a scan over the entire parameter space of the

models (including tanβ). This is an extremely CPU-intensive task, made possible by the

CERN batch computing service. The analysis of ∆max, ∆q is done for the following models:

a) CMSSM: the constrained minimal supersymmetric standard model. For a recent

two-loop leading log analysis of this topic see [8, 9], and for earlier investigations

see [11–16].

b) NUHM1: a CMSSM-like model but with equal Higgs soft masses, different from m0.

c) NUHM2: as for CMSSM but with different Higgs soft masses and different from m0.

d) NUGM: a CMSSM-like model but with non-universal gaugino masses.

e) NUGMd: a benchmark NUGM model [17] with a GUT relation among gaugino

masses.

For these models our results are presented in a comparative way with ∆q, ∆max as

functions of the lightest higgs, gluino, stop mass or the SUSY scale. Any experimental

constraints on these can easily be used to identify ∆q, ∆max for that model. On top of

these plots various contour lines corresponding to the remaining masses, dark matter or the

g−2 constraints are shown. Such comparative analysis for different models and definitions

of ∆ was not done in the past and has the advantage that it can be updated by the latest

data, without re-doing the whole analysis. In particular, for each model we identify the

corresponding ∆’s for a Higgs mass of Mhiggs=125± 2 GeV that seems favoured by Atlas

and CMS [18–26]. We shall see such value requires ∆q ≈∆max ∼ 500 to 1000 depending

on the model, and uncertainties in ∆ are also discussed. In all cases ∆ is minimal near

Mhiggs ≈ 115GeV. For ways to have Mhiggs ≈ 125 − 130GeV with smaller fine-tuning

∆≈O(10) in SUSY models see [1, 27–36].

In the following section 2 shows the link of ∆ to the evidence p(D) in models with

theoretical constraints. Numerical results and corresponding plots of ∆ are shown in sec-

tion 3.

2 Fine tuning, p(D) and the role of theoretical constraints

Before our numerical analysis, we re-examine the relation between the Bayesian probability

of a point in parameter space or the evidence p(D) and the EW scale fine tuning, in models

with theoretical constraints. Without loss of generality, we do this for the constrained

MSSM (CMSSM). This analysis extends a previous similar study of this problem of [3, 4]

(section 2 in both papers), see also [5–7]. To place this discussion on quantitative grounds

– 3 –
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consider the CMSSM scalar potential

V = m2
1 |H1|2 +m2

2 |H2|2 − (m2
3 H1 ·H2 + h.c.)

+(λ1/2) |H1|4 + (λ2/2) |H2|4 + λ3 |H1|2 |H2|2 + λ4 |H1 ·H2|2

+
[

(λ5/2) (H1 ·H2)
2 + λ6 |H1|2 (H1 ·H2) + λ7 |H2|2 (H1 ·H2) + h.c.

]

. (2.1)

The couplings λj and the soft masses receive one- and two-loop corrections that for the

MSSM can be found in [37, 38]. Let us introduce the notation

m2 ≡ m2
1 cos2 β +m2

2 sin2 β −m2
3 sin 2β

λ ≡ λ1

2
cos4 β +

λ2

2
sin4 β +

λ345

4
sin2 2β + sin 2β

(

λ6 cos
2 β + λ7 sin

2 β
)

(2.2)

where λ345 = λ3 + λ4 + λ5.

When testing a model such as the CMSSM, one imposes two classes of constraints:

theoretical and experimental. Let us discuss them. Minimizing this scalar potential leads

to two theoretical constraints given below and their solutions for v and tanβ are the same

as those of the eqs. f1 = f2 = 0 where f1 and f2 are introduced for later convenience:

v2 +
m2

λ
= 0, f1(γi; v, β, yt, yb, · · · ) ≡ v −

(

− m2

λ

)1/2
, γi={m0,m1/2, µ0, A0, B0}

2λ
∂m2

∂β
−m2 ∂λ

∂β
= 0, f2(γi; v, β, yt, yb, · · · ) ≡ tanβ − tanβ0(γi, v, yt, yb . . .), (2.3)

Here v =
√

v21 + v22 is a combination of vev’s of h01, h02. The order of the arguments

of f1,2 is relevant later, while the dots denote other parameters (other Yukawa or gauge

couplings,. . . ) present at one-loop and beyond, that we ignore in this section only, without

loss of generality.

As a result of these two constraints, the EW minimum solutions for v and tanβ become

functions of the (mass dimension 1) parameters γi of the model which for CMSSM are

shown above, in a standard notation. When discussing fine tuning, usually only the first

constraint in (2.3) is considered, although the second is equally important, as our result

for p(D) will show. These constraints fixing v, tanβ are assumed to be factorized out from

the likelihood function L(D|γi) and can be imposed by Dirac delta functions of arguments:

δ
(

f1(γi; v, β, yt, yb)
)

, δ
(

f2(γi; v, β, yt, yb)
)

, i = 1, 5. (2.4)

There is also a second class of constraints, that comes from the experiment, such

as the accurate measurement of the masses of the top (mt), bottom (mb) and Z boson

(mZ). Given the high accuracy of these measurements, one can assume some Gaussian

distributions for the associated priors when evaluating the probability density P(γi|D) or

the evidence p(D). However, for a more qualitative analysis and to good approximation

one can again implement these constraints (likelihood) by Dirac delta functions of suitable

arguments

δ(mt −m0
t ); δ(mb −m0

b); δ(mZ −m0
Z), (2.5)

– 4 –
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where m0
t ,m

0
b ,m

0
Z are experimental values. One can consider similar constraints for αem

and α3 gauge couplings but for simplicity we do not do that (their implementation is

similar).

When testing the SUSY models with a given set of parameters (such as γ1,...5 for

CMSSM), one should in principle marginalize (i.e. integrate) the density P(γi|D) over the

“nuisance” parameters. Examples of these nuisance parameters are those already present

in the Standard Model. These are the Yukawa couplings yt, yb, . . . [3, 4, 10] which were

restricted (in the analysis of this section only) to the simpler case of top and bottom

Yukawa couplings. Other parameters to integrate over are the dependent parameters:

the vev v and tanβ which can (in principle) take any value, until fixed by minimization

constraints (2.3), (2.4), also (2.5) for v.

To compare two SUSY models, one should compare their evidence p(D) for similar

priors and data D. To compute p(D), one integrates over all parameters (of the SM and

those mentioned above) and over γi as well, with chosen priors p(γi). For the CMSSM

case, after imposing the above constraints with the corresponding priors, one finds

p(D) = N

∫

dγ1 . . . dγ5 p(γ1, . . . γ5) dyt dyb dv d(tanβ) p(yt) p(yb)

×δ(mZ −m0
Z) δ(mt −m0

t ) δ(mb −m0
b)

×δ
(

f1(γi; v, β, yt, yb)
)

δ
(

f2(γi; v, β, yt, yb)
)

L(D|γ1,2,...5;β, v, yt, yb). (2.6)

where L(D|γi;β, v, yt, yb . . .) is the likelihood of fitting the given data (D) with a particular

set of values γi; i=1,. . . 5, etc; the priors p(γ1, . . . γ5) and p(yt,b) are not known, but loga-

rithmic or flat priors are common choices for individual parameters. Regarding the priors

p(v) and p(tanβ), these are already included and given by the corresponding Dirac delta’s

shown in (2.4), (2.5). We integrated over yt, yb rather than over the corresponding masses

mt,mb. This is a possible choice, preferable because the masses are derived quantities, see

discussion in [3, 4]. Finally, leaving aside the integral over γj and p(γ1, . . . γ5), the above

equation simply gives the probability density P(γi|D).

The important point about eq. (2.6) is that now all parameters γi, v, tanβ, yt, yb, · · ·
that we integrated over can be regarded as arbitrary, since the constraints that render

them dependent variables are implemented by the Dirac delta functions associated to the

theoretical and experimental constraints. L is a function of the CMSSM parameters, but

also of the nuisance parameters (yt,b) and v, tanβ. Finally N is a normalization constant

not important below.

To evaluate p(D), one uses mZ = g v/2, mt = yt v sinβ/
√
2, mb = yt v cosβ/

√
2 and

after performing the integrals over yt, yb and v one finds

p(D) =
8N

g v20

∫

dγ1 . . . dγ5 p(γ1, . . . γ5) d(tanβ) p
(

ỹt(β)
)

p
(

ỹb(β)
)

csc(2β)

×δ
[

f1
(

γi; β, v0, ỹt(β), ỹb(β)
)]

δ
[

f2
(

γi; β, v0, ỹt(β), ỹb(β)
)]

×L
(

D|γi;β, v0, ỹt(β), ỹb(β)
)

, (2.7)
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with g2 = g21 + g22 where g1 (g2) is the gauge couplings of U(1) (SU(2)) and

v0 ≡ 2m0
Z/g = 246GeV, ỹt(β) ≡

√
2m0

t /(v0 sinβ), ỹb(β) ≡
√
2m0

b/(v0 cosβ).

(2.8)

Integrating over2 β:

p(D) =
8N

g v20

∫

dγ1 . . . dγ5 p(γ1, . . . γ5)
{

p
(

ỹt(β)
)

p
(

ỹb(β))
)

csc(2β)
[

(f2)
′
β

]−1

×δ
[

f1
(

γi; β, v0, ỹt(β), ỹb(β)
)]

L
(

D|γi;β, v0, ỹt(β), ỹb(β)
)

}

β=β0(γi)

=
4N

g v40

∫

M

dSγ γ1 . . . γ5 p(γ1, . . . γ5)
{

p
(

ỹt(β)
)

p
(

ỹb(β))
)

csc(2β)

×
[

(f2)
′
β |∇γi ln ṽ(γi;β0(γi))|

]−1 L
(

D|γi;β, v0, ỹt(β), ỹb(β)
)

}

β=β0(γi)
. (2.9)

Above (f2)
′

β denotes the partial derivative w.r.t. the variable tanβ of the function f2 of

arguments: f2(γi;β, v0, ỹt(β), ỹb(β)), where (2.8) is used. The curly bracket is evaluated

at the unique root β = β0(γi) of the second minimum condition in (2.3) of the scalar

potential: f2 = 0. Through this condition, β becomes a function of the independent

parameters γi, as usual (one can eventually trade β0 for B0, as often done, but we do not

do this here). In the last step we converted the integral into a surface integral3 where

M is the surface defined by the equation f1 = 0 while dSγ is the surface element in the

parameter space {ln γi}. Recall that f1 = 0 is one minimum condition which together

with the second one β = β0(γi) (or f2 = 0) control the value of p(D). A notation was used

∇γif1(γi;β, v0, ỹt(β), yb(β)) = ∇γi ṽ(γi;β0(γi)) where ṽ ≡ −m2/λ has the arguments shown

and ∇γi is the gradient in coordinate space {ln γi}.
The important result is that p(D) contains a suppression factor 1/∆̃q where we denoted

∆̃q(γi) ≡
[

(f2)
′
β

]

β=β0(γi)

∣

∣∇γi ln ṽ(γi;β0(γi))
∣

∣ = ∆q

⇒ p(D) ∼
∫

dSγ
1

∆q
L × (priors), (2.10)

with

∆q =
(

5
∑

j=1

∆2
γj

)1/2
, ∆γj =

∂ ln ṽ(γk;β0(γk))

∂ ln γj
; γj ≡ m0,m1/2, µ0, A0, B0. (2.11)

Note that ∆̃q(γi) contains a derivative of ṽ ∼ f1 evaluated at β = β0(γi), so it encodes

the effects of variations about the ground state of both minimum conditions (2.3), see

2We use δ(g(x)) = δ(x − x0)/|g
′
∣

∣

x=x0

with g′ the derivative w.r.t. x evaluated in x0; x0 is the unique

root of g(x0) = 0; we apply this to a function g(β) = f2(γi;β, v0, ỹt(β), ỹb(β))) for x ≡ tanβ with the root

β0 = β0(γi).
3One uses

∫

Rn f(z1, . . . , zn) δ(g(z1, . . . , zn)) dz1 . . . dzn =
∫

Sn−1

f(z1, . . . zn) dSn−11/|∇zig| with zi →

ln γi where Sn−1 is defined by g = 0 and ∇ is in basis zi = ln γi. Another form of (2.9) is found by

replacing dS, ∇ by their values in {γi} space (instead of {ln γi}) and removing the product γ1 . . . γ5 in

integral (2.9).

– 6 –
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the two Dirac δ’s in (2.7). A good stability of these conditions under such (quantum)

variations requires small ∆̃q. Interestingly we also notice that ∆̃q(γi) = ∆q so ∆q is

preferred by the calculation of the Bayesian evidence p(D). The points {γi} of smaller ∆q,

give larger contribution to p(D), but this also depends on L or priors. We can say that

1/∆q is an extra effective prior, emerging when marginalizing over parameters, subject to

the theoretical constraints. With p(D)∼1/∆q, points of large ∆q pay the fine-tuning cost

and so have a small impact on p(D). The latter is then used to decide which of two models

is more probable.

For further illustration, assume log priors for Yukawa couplings p(yt(b)) = 1/yt(b) and

for SUSY parameters {γi}, using p(γ1 . . . γ5) = p(γ1) . . . p(γ5) and with p(γi) = 1/γi. Then

p(D) =
N

2v0m0
Zm

0
bm

0
t

∫

M

dSγ
1

∆q(γi)
L
(

D|γi;β, v0, ỹt(β), ỹb(β)
)

∣

∣

∣

β=β0(γi)
. (2.12)

To conclude, 1/∆q is an extra effective prior p̃eff(γi) of the model and ∆q emerges as a

measure of fine tuning. In the general case p̃eff(γi) can be read from (2.9), (2.10) and the

link between ∆q and the Bayesian evidence p(D) is clear. Numerical studies of p(D) or

L(D|γi) should then include such effect due to the two theoretical constraints. To our

knowledge this effect was so far overlooked in such studies.

Note that ∆q that emerges in eq. (2.10) and (2.12) does not contain partial derivatives

w.r.t. Yukawa couplings. This is because these are nuisance (SM-like) parameters that

were integrated out, so are included as a global effect. Also, such parameters are not part

of the new ones (γi) that SUSY introduces, so it is no surprise that they are not explicitly

manifest in p(D) or in the denominator under integrals (2.10), (2.12).

These above results bring technical support to a physical meaning of the fine tuning.

They also show that it is desirable to have a smaller ∆, as also expected from physical

considerations. Again, one should remember that this may not always be the region from

where p(D) receives the largest contributions, as this depends also on the priors, the

integral(s) or their measure. Note also that changing the priors of the nuisance parameters

or the measure can give different values for Bayesian p(D) although with enough data D

one expects this dependence to become weaker. With this technical motivation for the

fine tuning measures and their mathematical relation to p(D), L(D|γi) below we study the

values of ∆q, ∆max for many SUSY models.

3 Numerical results for ∆ in generic supersymmetric models

We present our numerical results for ∆q and ∆max in a comparative analysis for generic

models used for SUSY searches at the LHC. We scan the entire parameter space {γi} of the

models, consistent with the theoretical constraints, using a two-loop leading-log analysis.

∆q and ∆max are presented as functions of physical scales (mass of higgs, stop, gluino,

SUSY scale msusy = (mt̃1
mt̃2

)1/2) with constraints (muon magnetic momentum δaµ, dark

matter abundance Ωh2). The models considered are:

– 7 –
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Figures 1 to 4: ∆q, ∆max versus Mhiggs; lightest grey (0) area: excluded by SUSY mass bounds;

darker grey (1): excluded by b→sγ, B→µ+µ−, δρ; dark grey (2): excluded by condition δaµ ≥ 0.

Coloured area: allowed by data and δaµ ≤ (25.5+2×8)10−10; δamax
µ is shown colour encoded. Area

outside contour: δamax
µ ≤ (25.5 − 2×8)10−10 (2σ). Red area (inside): largest δaµ is within 2σ of

δaexpµ .
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• the CMSSM model, of parameters γj ≡ {m0,m1/2, µ0, A0, B0}. Then ∆q is that

shown in (1.1) and (2.11), evaluated at the two-loop leading log level. See [8, 9] for

a recent study, whose results were recovered by this work.

• the NUHM1 model: this is a CMSSM-like model but with Higgs masses in the

ultraviolet (uv) different from m0, muv
h1

= muv
h2

6= m0, with parameters γj ≡
{m0,m1/2, µ0, A0, B0,m

uv
h1
}. Then ∆q is as in (2.11) with summation over this set.

• the NUHM2 model: this is a CMSSM-like model with non-universal Higgs mass,

muv
h1

6=muv
h2

6=m0, with independent parameters γj ≡ {m0,m1/2, µ0, A0, B0,m
uv
h1
,muv

h2
}.

Then ∆q is that of (2.11) with summation over this set.

• the NUGM model: this is a CMSSM-like model with non-universal gaugino masses

mλi
, i = 1, 2, 3, with γj = {m0, µ0, A0, B0,mλ1

, mλ2
,mλ3

}. Then ∆q is given

by (2.11) with the sum over this set.

• the NUGMd model: this is a special case of NUGM-like model with a relation among

the gaugino masses mλi
, i = 1, 2, 3, of the type mλi

= ηim1/2, where η1,2,3 take

only discrete, fixed values. Such relations can exist due to some GUT symmetries,

like SU(5), SO(10), etc. The particular relation we consider is a benchmark point

of [17] with mλ3
= (1/3)m1/2, mλ1

= (−5/3)m1/2, mλ2
= m1/2, corresponding to a

particular GUT (SU(5)) model, see table 2 in [17]. As a result, ∆q is that of (2.11)

with γj = {m0,m1/2, A0, B0, µ0}.

In all models we also evaluate the alternative definition of ∆ given by

∆max = max |∆γ |, γ: parameters of mass dimension 1. (3.1)

and where the set γj is listed above for each model.

Before presenting our results let us describe the method used. The scan over the full

phase space of each model was done using Pythia 8 [39] random number generator. The

public code micrOMEGAs 2.4.5 [40–42] and SoftSusy 3.2.4 code [43] were then used, with

the latter adapted to compute for all models the fine tuning of the electroweak scale at

the two-loop leading log level (instead of its default, one-loop calculation). This includes

two-loop tadpoles to the two electroweak minimum conditions. The data output was then

filtered by the experimental constraints. The run time to generate the phase space points

of the five models was about 15000 one-day jobs on the CERN computing service, and each

plot was generated from ≈ 4 × 107 points in a random scan of the parameter space (for

alternative and recent data analysis see [44–50]).

Our results4 shown in the plots allow the reader to set his own constraints on physical

scales such as the higgs mass, gluino, stop mass or SUSY scale msusy, δaµ or dark matter

abundance and infer from that the amount of fine tuning. Note also that the LEP2 bound

4After this work was completed, an updated bound on Bs → µ+µ− was published [56]. We checked

that our fine tuning estimates are unchanged, for a higgs mass in the now preferred region of 122GeV to

128GeV.
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Figures 5 to 8: ∆q, ∆max versus Mhiggs: Various grey areas and δaµ values: as for figures 1 to 4.

Colored ares: allowed by data other than δaµ. Blue area: Ωh2 ≤ 0.1099 − 3 × 0.0062. Red area

0.1099−3×0.0062 ≤ Ωh2 ≤ 0.1099+3×0.0062 (3σ saturation). Yellow: Ωh2 ≥ 0.1099+3×0.0062.
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Experimental constraints Values used

SUSY particle masses Routine in micrOmegas 2.4.5,“MSSM/masslim.c”

Muon magnetic moment δaµ = (25.5± 2× 8)× 10−10 at 2σ [51].

b → s γ process 3.03 < 104 Br(b → sγ) < 4.07 at 2σ [52].

Bs → µ+µ− process Br(Bs → µ+µ−) < 1.08× 10−8 at 2σ [53].

ρ-parameter −0.0007 < δρ < 0.0033 at 2σ [54].

Dark matter relic density Ωh2 = 0.1099± 3× 0.0062 at 3σ [55].

Table 1. Experimental data constraints. δaµ includes the theoretical error and is not imposed on

the data, but its values are shown as a contour plot (at 2σ) or colour encoded from which larger

deviations can be read (3σ). For the other processes in the table, only the experimental error is

considered, and the details of their theoretical calculation are provided by micrOMEGAs 2.4.5 [40–

42], see also its manual for v.2.4 available at http://lapth.in2p3.fr/micromegas/. The central values

for mtop = 173.1GeV and α3(m
0
Z) = 0.1184 [54] were used as inputs in SOFTSUSY. Note that

a combined 1σ increase of top mass and 1σ decrease of α3(m
0
Z) can decrease ∆max by a factor as

large as 2 (best case scenario), see later.

on Mhiggs is never imposed on our figures, and we let the reader to do this, in the light of

future LHC results5. This has the great advantage that the impact of future bounds from

LHC on these physical scales can very easily be seen on the plots, without the need to re-do

the whole analysis. Space constraints do not allow us to also present a description of the

allowed parameter space {γi} = {A0, B0, etc . . .} used in these plots, due to complicated

correlations among these, that can only be presented as more additional figures, that we

postpone to a future work. Finally, the parameter space ({γi}) that we scanned over was:

A0 ∈ [−7, 7] TeV, m0 ∈ [0.05, 5] TeV, m1/2 ∈ [0.05, 5] TeV and also 2 ≤ tanβ ≤ 62. All

plots are marginalized over tanβ and {γi}.

3.1 ∆ versus Mhiggs and the values of δaµ

In figures 1 to 4 a), b) and 17 a), b), we show the plots for ∆q and ∆max as functions of

the mass of the lightest Higgs boson Mhiggs, for all models: CMSSM, NUHM1, NUHM2,

NUGM, NUGMd. The impact of δaµ constraint is also shown with a contour line displaying

an island of its largest values, within 2σ of δaexpµ . For other values (3σ deviations, etc),

the largest δaµ is also shown colour encoded, see the scale on the right side of the plots.

The lightest grey (level 0) areas in these plots are excluded by the lower bounds on the

spartners masses obtained from negative SUSY searches. The darker grey (level 1) areas

are excluded by Bs→µ+µ−, b→sγ and δρ constraints. The dark grey area (level 2) that we

also show, visible only for NUGM model corresponds to δaµ<0 and has (mλ2
µ)<0 and is

present at Mhiggs ≤ 115GeV. This region is excluded by demanding δaµ>0, ((mλ2
µ)>0),

preferred by δaexpµ data.

As it is shown in these figures, the LEP2 bound (114.4GeV) [57, 58] on the higgs mass

was not imposed. Note however that above this value both ∆’s are largely independent of

5Note that a flat bound like LEP2 bound on Mhiggs should be used with care since it applies only to SM.
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Figures 9 to 12: ∆q versus gluino (left) and SUSY scale (right) for various models; Mhiggs <

123GeV in area below the dotted line; similar plots exist for ∆max; various grey areas as in figures

1 to 4, forbidden by data. Black area: Mhiggs < 111.4 or Mhiggs ≥ 130GeV. Outside the red area:

δamax
µ ≤(25− 2× 8)10−10; inside this area δamax

µ is within 2σ of δaexpµ . See also caption of Figs 1-4.
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the experimental data (ignoring δaµ) for all models other than NUHM1, NUHM2; these

still have some dependence on data (the small grey area). This is interesting and suggests

that the range of values of ∆q, ∆max can be fixed mainly by theory and the higgs mass

bound, with little or no impact from other data.

As it is seen from these results, the differences between ∆q and ∆max are practically

negligible. For a given model and a fixed Higgs mass, there is a relative factor between 1

and 2 and which can be safely ignored6. There is also very similar behavior i.e. various

contour lines such as that of maximal δaµ are nearly identical for both ∆q, ∆max. This is

interesting and shows that one can use either definition for fine tuning to obtain a rather

similar result.

In the CMSSM the minimal value of ∆q and ∆max is situated for higgs mass near the

LEP2 value as also discussed in [8, 9]. This means that to respect the LEP2 bound on the

Higgs mass there is no fine tuning cost due to quantum corrections. This corrects common

but wrong opposite claims in the literature. Further, if one accepted the principle that ∆

of a model should actually be minimized, then one immediately has a CMSSM prediction

for Mhiggs ≈ 115 ± 3GeV without using experimental constraints (ignoring here δaµ), for

details see [8, 9]7. In models other than CMSSM and after imposing the LEP2 bound, the

fine tuning is again smallest near this scale. For Mhiggs near 115GeV, ∆q ≈ ∆max ≈ 10 to

100, depending on the model. Above this mass value, both ∆q, ∆max grow very fast (≈
exponentially), due to the quantum corrections to the Higgs mass (which are logarithmic

in msusy). As a result, for the currently interesting region discussed by CMS and Atlas

experiments [18–26], of 123 ≤ mh ≤ 127GeV, there is significant amount of fine tuning

required, ∆q ≈ ∆max ≈ 200 to 2000; for Mhiggs = 125GeV, ∆q ≈ ∆max ≈ 500 to 1000,

depending on the model. From these results one could say that NUGM is preferable

also because it could more easily comply with δaexpµ (2σ). Finally, let us mention that a

combined 1σ increase of mtop and 1σ reduction of α3(m
0
Z) can reduce (best case scenario)

the fine tuning for a fixed higgs mass by a factor near ≈ 2 or so for the CMSSM [8, 9],

with similar effect expected for other models.

3.2 ∆ versus Mhiggs and dark matter relic density

Let us now discuss the results of figures 5-8 a), b) and 18 a), b). These present the impact

of the dark matter relic density constraint. Again, no significant difference between ∆q and

∆max is observed for the models considered. The meaning of light and dark grey areas is

the same as in the previous figures. In blue we show points that are consistent with dark

matter relic density within 3σ, i.e. these points have Ωh2 < 0.1099 − 3 × 0.0062. The red

points saturate the relic density within 3σ deviation from the central value. Finally, yellow

points correspond to a relic density larger than that of the red points. Notice that with

the exception of the CMSSM case at Mhiggs ≈ 115GeV region, for a higgs mass above this

value one can easily saturate the relic density. This is true in particular for points near the

125GeV region, although in CMSSM this may become more problematic (too large Ωh2).

6In general no individual ∆γi
dominates clearly for all higgs masses, see figure 2 in [8, 9] for the CMSSM.

7There is a ±(2 to 3) GeV theoretical uncertainty from the various public codes [43, 59, 60].
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Figures 13 to 16: ∆q versus Mhiggs with largest (left plots) and lowest (right plots) gluino mass;

For given ∆q,Mhiggs one infers the gluino mass range. Area allowed by data (except δaµ) as shown

above the continuous line, see also figures 1-4. Values as large as δaµ ≤ (25 − 2 × 8)10−10 are

outside the closed contour; inside the contour: largest δaµ is within 2σ of δaexpµ and the gluino mass

satisfies it.
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The contour area of maximal values of δaµ already shown in previous figures 1-4, 17 is

also presented. However, it should be stressed that points inside this contour area that have

the dark matter abundance as shown (in blue, red or yellow) are not necessarily the same

points that also have the largest δaµ within 2σ of δaexpµ ! (these are different projections

on the 2D plane shown). However points that satisfy a relic density constraint and also

have the largest δaµ within 2σ of experimental value do fall within a smaller area inside

the contour shown. Of all models, NUGM could both saturate the relic density and fall

within the δaµ contour line, for large range of higgs mass, although the fine tuning cost

grows exponentially with Mhiggs. Figures 5a), b) and 8 a), b) show again that CMSSM

and NUGM are the least sensitive models to any experimental constraints other than δaµ,

for Mhiggs larger than ≈ 115GeV (negligible grey areas). Finally, since ∆q, ∆max are so

similar, below we shall present only results for ∆q.

3.3 ∆ versus Mgluino and ∆ versus msusy

So far we investigated the fine tuning as a function of the higgs mass. However, it is

useful to present its dependence on other particles masses, and we do this for the gluino

and the SUSY scale msusy. This is useful since LHC searches for gluino or other SUSY

partners can have a strong impact on fine tuning. This is seen in figures 9-12 a), b), and

figures 19 a), b), where we show the dependence of ∆q on the gluino mass (figures a))

and on msusy (figures b)) for all models. The light and dark grey areas have the same

meaning as before, while the areas in black are ruled out by the higgs mass constraint

111.4 ≤ Mhiggs ≤ 130GeV that we imposed (this allows 2-3GeV uncertainty for Mhiggs

at two-loop leading log level [43, 59, 60]). Contour (dotted) lines of a maximal value of

123GeV of Mhiggs are displayed for all models: the points below this line respect this bound

while those above can have larger values. The advantage of these plots is that if future data

rules out Mhiggs < 123GeV, the whole region below (outside) the dotted line (contour) will

be removed from the plots, to leave a small, restrictive region.

δaµ is also shown in colour encoded areas, with a red island area showing the largest

possible value with δamax
µ within 2σ of the experimental central value. Note again that the

δaµ contour and the dotted line of upper bounds on higgs mass are different projections

on the 2D plane of the figures. That means that points that have largest δaµ within 2σ

of δaexpµ are not necessarily the same points that simultaneously have Mhiggs as large as

123GeV. The impact of future gluino mass or msusy bounds from the LHC can easily be

seen on these plots, together with the associated fine tuning cost. The models NUGM and

NUGMd relax the lowest bound on the gluino mass due to their non-universal gaugino

masses.

3.4 ∆ versus Mhiggs and the gluino mass range

A complementary presentation of the results of figures 1-4 a), 17 a) and figures 9-12 a),

19 a), b) is that of figures 13-16 a), b) and 20 a), b). In these ∆q is presented again as

a function of the higgs mass, but with the gluino mass as a parameter, with its largest

value in plots a) and lowest possible value in plots b), see the colour encoded scale. In

this way one has a clear picture of the whole range of allowed values of gluino mass for a
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Figures 17-20: the benchmark NUGMd model: the description of the plots is identical to that in

figures 1-17, but applied to NUGMd model, as follows: Figs 17 a), b) - as for figure 1 a), b). Figs

18 a), b) - as for figure 2 a), b). Figs 19 a), b) - as for figure 3 a), b). Figs 20 a), b) - as for figure

4 a), b).
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given ∆ and higgs mass. Intermediate values of gluino mass are colour encoded. For the

large Mhiggs, above 125GeV the gluino mass tends to be larger (above 1TeV), and within

a narrow range, with increasing fine tuning cost. The range of values of gluino is rather

similar in CMSSM, NUGM or in NUHM1, NUHM2.

One important remark about the contour of largest δaµ shown: the gluino mass range

shown inside this contour respects all experimental constraints, including the constraint of

δaµ (within 2σ)! If this constraint is lifted, the range of gluino mass, for a fixed higgs mass

and fine tuning, would be larger. This also explains the sudden change of colour/spectra

of gluino masses around the contour line of δaµ as compared to region immediately outside

the contour.

3.5 Stop versus gluino mass, with the largest Mhiggs and minimal ∆

For a future comparison with results from LHC searches for new physics, we also present

in figures 21, the dependence stop versus gluino mass and with the largest value of Higgs

mass that is possible with the former two fixed. The minimal fine tuning cost that comes

with this is also shown in the corresponding areas (bordered by red contour lines), while

the largest Mhiggs allowed is colour encoded, see the scale on the right side of the plots.

The latest bounds on the gluino and stop masses can be translated into (upper) bounds for

the higgs mass. Currently, stop-gluino exclusion plots from the LHC exist only for simple

models that cannot be used for comparison [61], see the first plot in figure 21. Eventually,

at very large gluino and stop masses the (minimal) fine tuning cost becomes too large and

the models may be considered unrealistic. It can be seen from these plots how the lowest

allowed fine tuning increases as the higgs mass goes towards its upper limit. If one rules

out values of fine tuning of say ∆q ≥ 100 one immediately removes the area outside the

contour line that borders this region, to leave a significantly smaller area of correlation

stop-gluino-higgs mass.

While the CMSSM, NUHM1, NUHM2 are more restricted by superpartners masses

(excluded light grey areas), in the case of the NUGM and NUGMd, not surprisingly, the

impact of the spartners mass bounds is small (since the universality condition was relaxed).

Again, the NUGM model is less restricted, allowing a large higgs mass (125-128GeV), with

a stop as light as 400− 500GeV and gluino mass between 2− 3TeV.

4 Final remarks and conclusions

Low energy (TeV scale) supersymmetry is thought to solve the hierarchy problem without

undue amount of fine tuning (∆). However there are different opinions on what the best

definition for ∆ is, or what upper value is allowed for it while still claiming a SUSY solution

to this problem. To avoid a subjective choice on these two issues, we performed a study

of ∆ using two common definitions ∆max and ∆q and made no assumption about their

largest allowed values. We also discussed the relation of ∆ to global probabilities (in the

parameter space) to fit the data. We analyzed generic models: CMSSM, NUHM1, NUHM2,

NUGM and a benchmark model, NUGMd, at two-loop leading log level, and both ∆max

and ∆q were presented as functions of the higgs, gluino, stop mass or the SUSY scale, with
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Figure 21: top left plot: Atlas stop-gluino exclusion limits in a simple supersymmetric model [61].

Rest of the plots: The dependence stop vs gluino mass in CMSSM, NUHM1, NUHM2, NUGM,

NUGMd models, in this order. We present the lowest value of ∆q in the areas where it is shown,

bounded by red contour lines and with no upper bound. Areas of largest Higgs mass are also

shown, colour encoded, see the scale on the right side (minimal value: 111.4GeV). One can easily

see the largest higgs mass and the ¡ minimal fine tuning cost, for given gluino and stop masses.

Grey area is excluded by SUSY mass bounds. Black area is excluded by imposing the constraint

Mhiggs ≥ 111.4GeV and Mhiggs ≤ 130GeV. This dependence can eventually be compared with

similar future plots from CMS/ATLAS searches.
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additional constraints like dark matter or δaµ. The advantage of this comparative analysis

is that using the figures for ∆q, ∆max, future experimental constraints can immediately

be converted into an updated estimate for the fine tuning level of these models, without

the need to re-do the whole analysis. The reader will then decide whether the amount of

tuning so obtained is still acceptable for a solution to the hierarchy problem.

The measures of fine tuning were originally introduced more on physical intuition

than rigorous mathematical grounds. In this work we provided mathematical support for

the fine tuning via a quantitative relation to Bayesian evidence p(D). As direct result of

two theoretical constraints (EW min conditions), we showed that a fine tuning measure

∆̃q = ∆q emerges as an additional suppression factor (effective prior) of the averaged

likelihood under the initial priors, under the integral of global probability of measuring the

data (the evidence p(D)). So the Bayesian evidence calculation prefers ∆q as a fine tuning

measure. As a result, the evidence p(D) ∼ 1/∆q therefore points of large ∆q (strongly fine

tuned) have little or no impact on the global probability of the model to fit the data. These

results provide technical support to the idea that fine tuning has a physical meaning and

that preferably it should have small values in realistic models for the corresponding point

in the parameter space.

Our numerical results for ∆q and ∆max as functions of the higgs mass, showed that

they have close values for the same higgs mass and also very similar behaviour for all

models considered. There is a small discrepancy factor between them (between 1 and

2) which is most visible for regions of the higgs mass that are anyway excluded by the

data. All these results show a good independence on the actual definition used for fine

tuning. For 115 ≤ Mhiggs ≤ 128GeV there is a relative independence of ∆q or ∆max on

the experimental constraints (other than δaµ) for CMSSM or NUGM, NUGMd, with a

minor dependence for NUHM1, NUHM2. So in this case ∆q, ∆max are largely controlled

by theoretical constraints. Also, the dark matter relic density can in all cases be saturated

within 3σ of the current value.

The dependence of both ∆ on the gluino mass or on the SUSY scale shows a similar

behaviour for all models. The CMSSM, NUGM and NUGMd models show a lower amount

of fine tuning for the same experimental constraints, and NUGM can even accommodate

δaµ (2σ) and Mhiggs ≈ 125GeV, however in this case there is always a fine tuning cost.

As our plots showed, for the CMSSM no fine tuning amount can reconcile δaµ (2σ) values

considered (i.e. contour at 2σ in the plots), with a Mhiggs > 120GeV region which is

situated outside this contour. For a Higgs mass near 125GeV, the fine tuning is of order

O(1000) in all models other than NUGM, NUGMd where it is of order O(500). There is a

strong (roughly exponential) variation of ∆ withMhiggs. A reduction of 2GeV ofMhiggs can

bring down both ∆’s to ∆ ≈ 200 to 500, depending on the model. For Mhiggs = 115GeV,

∆q ∼ ∆max ≈ 10 to 100 and in the CMSSM this ∆ corresponds to a global minimum.

Finally, let us mention that the combined effect of a 1σ increase of the top mass and a

similar reduction of the measured strong coupling at EW scale can reduce the fine tuning

for a given Mhiggs by a factor near 2 or so in the CMSSM case [8, 9]. Although we did

not studied it here (due to long CPU runs), we expect similar effect for the other models.

This is because Yukawa corrections help radiative EW breaking (reducing ∆) while QCD

corrections have the opposite effect in the loop diagrams.
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Are the values of fine tuning that we found too large? Based on previously agreed but

highly subjective “reasonable” values of ∆ ∼ 10− 100, the answer is probably affirmative.

However, a clear answer is difficult, largely because ∆ depends ≈exponentially on the higgs

mass, so any small correction to it has a strong impact on ∆. But comparing all models,

for the same experimental constraints, there seems to be a preference for NUGM case when

also considering the δaµ constraint. We let the reader to make his own opinion, based on

the above results and figures and also on future LHC data (on gluino, higgs, stop and

msusy) whose updated impact on our ∆ can easily be obtained. Also it should be kept in

mind that very simple new physics beyond these SUSY models (like CMSSM with a gauge

singlet with a TeV-scale SUSY mass term or a massive U(1)′) can lead to a very acceptable

∆ ≈ O(10) for a higgs mass as large as 130GeV [27–36]. Further, subjective criteria also

exist in other approaches that compare the probability of various models, such as those

based on the Bayesian approach. Indeed, the evidence p(D) also has some dependence on

the priors choice (flat, log, etc), until eventually more data can improve our knowledge

of the models. We hope that the clear link between fine tuning ∆q and p(D) that we

established together with our plots for both ∆’s will provide the starting point of a more

detailed study.
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