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Abstract: The increasing demand for smart vehicles with many sensing capabilities will escalate data
traffic in vehicular networks. Meanwhile, available network resources are limited. The emergence
of AI implementation in vehicular network resource allocation opens the opportunity to improve
resource utilization to provide more reliable services. Accordingly, many resource allocation schemes
with various machine learning algorithms have been proposed to dynamically manage and allocate
network resources. This survey paper presents how machine learning is leveraged in the vehicular
network resource allocation strategy. We focus our study on determining its role in the mechanism.
First, we provide an analysis of how authors designed their scenarios to orchestrate the resource
allocation strategy. Secondly, we classify the mechanisms based on the parameters they chose when
designing the algorithms. Finally, we analyze the challenges in designing a resource allocation
strategy in vehicular networks using machine learning. Therefore, a thorough understanding of how
machine learning algorithms are utilized to offer a dynamic resource allocation in vehicular networks
is provided in this study.

Keywords: vehicular network; resource allocation; machine learning; survey paper

1. Introduction

The vehicular network is the main component in smart mobility and is the main
source of information and communication technology (ICT) in smart cities [1]. The con-
cept begins with the vehicular ad hoc network (VANET) which is a part of the ad hoc
network. The vehicular network has a decentralized nature with a dynamic topology
where nodes can join and separate themselves independently and can be built without the
need for existing infrastructure. A vehicle can directly communicate with other vehicles
(vehicle-to-vehicle—V2V) at a certain distance through an onboard unit (OBU) that has
sensing and communication capabilities via a wireless network. In addition, a vehicle
can also communicate with the infrastructure (vehicle-to-infrastructure—V2I) to obtain
information regarding traffic conditions and infrastructure. The evolution of V2I towards
vehicle-to-everything (V2X) communication then makes the vehicular network a part of
the intelligent transport system (ITS) which can support smart mobility in which vehicles
can communicate with the surrounding environment [2].

According to [3], the Global Internet of Cars in 2020 reached USD 115.7 billion and
is predicted to increase more than six times by 2027. This shows the high need for smart
vehicles that can provide safer, more comfortable, environmentally friendly transportation,
and provide entertainment during transportation. This smart vehicle continuously senses,
collects, and transmits data so that it will affect the volume of data in the vehicular
network. Applications on the vehicular network include active safety applications, non-
safety applications, and infotainment [4]. Each type of application has different quality of
service (QoS) requirements.
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Various types of applications, media, and communication technologies involved in
V2X will require a mechanism for managing and assigning network resources so that the
processing and exchanging of information can run properly. Moreover, vehicular network
communication uses wireless media that are very susceptible to interference, attenuation,
fading, and dispersion. In addition, the vehicular network has a dynamic topology that
is influenced by the movement of nodes so that the data transmission process must be
executed during a very short period. Due to these characteristics, the role of a dynamic
resource allocation mechanism that can quickly adjust its allocation policy according
to network conditions is needed so that network resources can be efficiently utilized.
Moreover, fulfilling the QoS of each application also requires the proper assignment of
resources for each data transmission to guarantee successful transmissions.

The problem of resource allocation in vehicular networks has attracted the interest of
many researchers. There are various types of network resources in V2X, including time slots,
channels, computing abilities and power levels [5]. Network resources must be arranged
so that they are optimally distributed to all active users in the network. Researchers used
various techniques in managing and allocating these resources, ranging from conventional
optimization techniques to implementing artificial intelligence (AI) algorithms. Due to
the characteristics of high mobility and topology change, a dynamic resource allocation
mechanism is preferred to handle vehicular networks [6].

Various data collected and transmitted on the vehicular network can be categorized
as big data [7]. Moreover, vehicular nodes are seen as not only exchanging information
but also performing data gathering, computing, and storing [8]. The characteristics of big
data, namely volume, variety, velocity, value, and veracity (5V) [9] can also be applied to
vehicular networks so that the problems that arise can be solved with big data techniques
such as AI [8]. The implementation of AI in the field of telecommunication has provided
opportunities for the development of intelligent networks that can autonomously assist
decision making based on local observations.

Researchers have been using various considerations and strategies in implementing
AI algorithms for resource allocation in vehicular networks. The development of AI
implementation in vehicular networks shows the potential of this technique to manage
and allocate network resources. This paper investigated how AI algorithms were utilized
in vehicular resource allocation mechanisms. Through our literature study, several survey
papers with similar themes [6,10–13] were found. In detail, the overall contribution of
these similar survey papers can be seen in Table 1. However, after perusing the papers,
we found that a specific discussion on the role of AI algorithm implementation for a
vehicular network resource allocation mechanism has never been performed before. The
contributions of this paper include:

1. A discussion of several machine learning scenarios used by previous researchers in
managing and allocating network resources;

2. Classifying machine learning roles and strategies in resource allocation strategies for
each machine learning category;

3. Identifying the challenges in implementing machine learning algorithms for vehicular
network resource allocation.

The rest of the paper is written in the following order. An introduction to vehicular
networks, especially high-mobility radio access technologies (RATs) and mobile big data
in V2X is discussed in Section 2. Then, a brief introduction to the various AI algorithms
that have been implemented for resource management and allocation in V2X is given in
Section 3. Section 4 presents a detailed discussion of the strategies that have been carried
out by previous researchers when allocating network resources in V2X. Discussion of the
challenges and opportunities of implementing AI algorithms for V2X resource allocation is
shown in Section 5, and then followed by conclusions from this survey paper in Section 6.
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Table 1. Existing survey papers and their contributions and gaps.

Reference # Theme Contribution Gap

[6]
Vehicular resource
allocation based on
interface types

Presenting various resource allocation
methods based on interface types of the
vehicular network

Deeper analysis for machine
learning implementation was not
discussed

[10] Vehicular Cloud resource
management

Identifying and examining the resource
management tasks that were carried out
in the vehicular Cloud

Discussing the resource allocation
strategy for C-V2X only in the
Cloud infrastructure

[11]

Application of deep
reinforcement learning
(DRL) for communication
and networking

Investigating the application of DRL
from the literature review and
delivering the tutorial of DRL to
address issues in communication and
networking

The strategy to utilize the DRL
algorithm in vehicular
networks—especially for resource
allocation was not yet discussed

[12]

Overview of machine
learning algorithms and
applications in vehicular
networks

Explaining the application of machine
learning categories in wireless networks

The further strategy of utilizing
machine learning algorithms to
manage resource allocation in
vehicular networks was not shown

[13] Deep learning in wireless
resource allocation

Focusing on the effect of deep learning
implementation in wireless resource
management

Only deep learning is discussed

2. Vehicular Network Preliminary

In V2X communication, a vehicle can directly communicate with other vehicles (V2V),
roadside infrastructure (V2I), pedestrians (V2P), and with the network (V2N) as a device.
Figure 1 depicts the V2X communication schemes. A vehicle has communication and
computation devices embedded in its OBU, similar to the “things” in the Internet of Things
(IoT). Nevertheless, due to the challenging environment of vehicular networks, character-
ized by their high mobility and dynamic topology, the RATs used in device-to-device (D2D)
communication encounter many challenges when applied to the vehicular network.

Figure 1. V2X communication scenarios.

2.1. Direct Communication Technology for High Mobility

With the help of industry and academia, several standardization institutions have been
competing to standardize RATs that can support vehicular communication. Some examples
are the IEEE 802.11p-based RAT, which is adopted by Direct Short-Range Communica-
tion (DSRC) from the USA, and ITS-G5 from European Telecommunications Standards
Institute (ETSI) [14], Cellular-V2X (C-V2X), which is a standard from the 3rd Generation
Partnership Project (3GPP), Wi-Fi, White-Fi, Bluetooth, WiMax, infrared, and visible light
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communication (VLC) [15]. However, some of these RATs are considered unable to satisfy
vehicular application communication requirements, so new RATs continue to be pursued
to support autonomous vehicle communication in the future [5,16]. This is due to the
characteristics of the vehicular network, which has high mobility with many nodes that are
spread out and use various protocols for communication. The potential solution to enable
direct communication between vehicles in a challenging environment has been brought by
DSRC-WAVE and C-V2X access technologies.

Different standardization bodies work on developing DSRC V2X standards. In the
USA, DSRC is standardized by IEEE as a wireless access in vehicular environment (WAVE).
In Europe, the DSRC technology is referred to as ITS-G5 and is standardized as ETSI EN 302
663 [17]. On the other hand, C-V2X uses a cellular network based on the 3GPP standard. The
DSRC physical layer uses orthogonal frequency division multiplexing (OFDM) combined
with convolutional code. The DSRC radio spectrum is allocated in a band of 5.9 GHz.
This radio spectrum is especially dedicated to DSRC applications. IEEE 802.11p is used as
the standard for physical and data link layers for DSRC-WAVE and ITS-G5. The system
architecture, set of services, and interfaces are defined by WAVE [18]. Through WAVE, data
transfer can be performed in non-IP-based via WAVE Short Message Protocol (WSMP) or
IP-based [19] scenarios. Since IEEE 802.11p is based on an ad hoc network, problems such
as hidden terminals and network congestion caused by the accumulation of vehicles in
an area can occur. Therefore, 3GPPP built a special communication protocol that can be
implemented in ITS. With the help of pre-existing LTE evolved-NodeB (eNB), C-V2X offers
a wider coverage area with large capacity and low latency [15].

LTE-V2X, better known as C-V2X, is a standard communication protocol under 3GPP
which has a flat all-IP infrastructure. C-V2X also uses a frequency band between 5.855
and 5.925 GHz in band 47. The C-V2X platform was developed from LTE-D2D, which
is the 3GPP Release 12 (Rel-12) standard. It was later refined to Rel-13 and beyond for
public safety communications. With a packet switch-based architecture, it can reduce
logical network nodes to lessen infrastructure costs and minimize latency on the network.
However, direct communication on V2X, which can provide ultra-high reliability and very
low latency, is still unable to be fulfilled by LTE cellular-based radio technology [20]. Hence,
a new RAT that can meet the service requirements for this V2X application is needed.

5G technology, which is a new global wireless standard from 3GPP, is associated as an
answer to the challenges of massive device communication in the future. It is described
as the key technology to enable connected and cooperated autonomous driving [21]. The
implementation of a vehicular network through 5G technology has a lot of potential, not
only in terms of increasing capacity and data rate but also for supporting coverage and
device mobility. In addition, the design of a 5G infrastructure is based on softwarization and
virtualization so that the process of deploying, scaling, and managing networks becomes
easier [22]. This makes the 5G network very suitable for D2D communication in the Internet
of Vehicles (IoV) and allows the wider implementation of advanced technologies/tools
such as the vehicular Cloud, fog computing, and network slicing to support its performance
targets [5].

2.2. Intelligent Vehicular Network with Machine Learning

The intelligent vehicles and transport system for the future will cause a surge in the
amount of data on the vehicular network. The Society of Automotive Engineers (SAE)
stated that there are six levels of vehicles from an autonomous point of view [23], as shown
in Figure 2. The number of vehicles with automated system monitors, i.e., level 3 and
above, is expected to reach eight million vehicles by 2025 [24]. The higher the level of
autonomy is, then the more the vehicle relies on sensors to replace human interaction in
driving activities. The involvement of cameras, RADAR, LiDAR, GPS, and various sensors
in the body of smart vehicles will make a vehicle capable of generating gigabytes of data
per second. This exponential escalation of data generated, transmitted, and collected by
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vehicular networks introduces the paradigm of mobile big data (MBD) in the vehicular
network [8,25].

Figure 2. Autonomous vehicle levels by SAE.

MBD include all the data collected, managed, and processed by a device or a tool at a
certain time. These diverse data with a massive size certainly need to be systematically
analyzed to retrieve useful information for road users. Smart vehicles are now equipped
with computing and storage devices that can be used to process these data to improve
comfort and safe driving. However, processing large and diverse data requires machines
with high computing capabilities.

Some of the challenges for MBD in V2X include (a) a large number of sensors involved
in assisting the environmental monitoring process so that data duplication will be massive;
(b) the limitations of processing and storage units on OBUs owned by vehicles; and (c) the
vehicle environment that changes very quickly due to the vehicle’s mobility. In addition,
road safety applications, as well as traffic efficiency and management applications, must
provide real-time information; thus, requiring immediate processing and transmission. To
overcome these challenges, new technology and paradigms revolutionizing conventional
vehicular networks to become intelligent vehicular networks are needed to support the use
of MBD to improve service and customer satisfaction.

The explosion of machine-type communication, the evolution of technology, and the
increasing demand for data in the vehicular network make the telecommunication and
automotive industries transform the infrastructure to introduce new network models and
service capabilities. 5G technology comes with an architecture based on a software defined
network (SDN) and network function virtualization (NFV) designed to support massive
machine types of communication (mMTC). Softwarization, virtualization, and machine
learning concepts are also introduced to support vehicular communication. These concepts
can be employed to enable mobile big data in V2X [26].

Softwarization through SDN offers flexibility, programmability, and centralized con-
trol so that network management and development processes can easily be carried out.
Virtualization via NFV as well as Cloud and edge computing enable the process of of-
floading computational loads from OBUs to minimize computational delay during data
processing. Meanwhile, machine learning provides the ability for the network to process
such a large amount of data so that valuable information can be retrieved and used for the
benefit of road users’ safety and traffic efficiency.

These communication technologies and distributed computing systems have become
the key to implementing machine learning to respond to the increase in data on telecom-
munication networks. Machine learning has been projected to be the primary solution for
optimizing telecommunication networks with various network types, applications, and
service requirements. Through machine learning, the system can directly take solutions
without any predefined rules [27]. In addition, applying machine learning techniques to
telecommunication networks, especially vehicular networks, can improve network effi-
ciency and adaptability. Moreover, 6G technology—as the evolution of wireless networks
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in the future—will require ubiquitous intelligence so that it can offer connected intelligence
from the core network to end devices [28].

2.3. Resource Allocation in Vehicular Network

In DSRC, when a vehicle wants to send a message to another neighboring vehicle, the
message is passed to the medium access control (MAC) layer. This layer is responsible
for guaranteeing the data delivery process. It decides when a node can transmit, receive,
or be silent in the process. The DSRC MAC layer is based on IEEE 802.11p standard,
which uses the enhanced distributed coordination function (EDCF) mechanism which
employs the carrier sense multiple access with collision avoidance (CSMA/CA) [29]. The
CSMA/CA implements the stop-and-wait mechanism to prevent packet collision in the
receiver. The message, for example, a safety-related message, is only sent within its lifetime
and discarded if its lifetime expires [30]. Using EDCF, IEEE 802.11p can give QoS support
to the DSCR applications by forming traffic in different access categories (ACs) based on
its priority levels [31].

DSRC uses the OFDM system to provide up to 1000 m direct communication in V2V
and V2I. It operates in a 10 MHz channel that allows data transmission with 3–27 Mbps
rates. WAVE has two channel types: service channel (SCH) and control channel (CCH).
Each channel has a 10 MHz bandwidth. These channels can be utilized for safety and
non-safety applications. V2I direct communication is performed through CCH. This CCH
is used to send WAVE short message service (WSMP), which contains application priority,
node distance, and minimum rate needed by the application. SCH is employed as an
interaction channel between applications that are involved in communication procedures.
Non-safety applications’ communication also takes place in SCH. High availability-low
latency (HALL) in channel 184 will be used for future needs. Three options of channel
access in DSRC for a higher layer to exchange data include continuous access; access
alternating between two channels; and immediate channel access [19]. Figure 3 shows the
DSRC spectrum for safety and non-safety applications.

Figure 3. DSRC channel.

C-V2X uses LTE RAT, where the radio resource management (RRM) in C-V2X employs
several techniques and procedures. C-V2X communication can be performed by direct link
or cellular link. There are three resource allocation modes in reusing a licensed spectrum,
which are underlay, overlay, and cellular modes [32]. Underlay and overlay modes are
used in direct communication, while the cellular mode is used when the eNB is utilized as
an intermediate relay, which is similar to conventional cellular communication.

In overlay mode, dedicated spectra are allocated for direct communication C-V2X
users. The interference problem can be avoided in this mode. Nevertheless, the dedicated
spectrum efficiency becomes a challenging problem in this mode. In contrast, C-V2X
users share the same available spectra with cellular users in underlay mode. This mode
can achieve spectrum efficiency, though C-V2X and cellular users’ interference should be
well controlled. Underlay mode is the suggested RRM mechanism in the early-proposed
device-to-device (D2D) direct communication. In underlay mode, resource block (RB) can
be shared among users with three sharing processes, which are user pairing, user grouping,
and user geographic location [33]. C-V2X channel mode selection is shown in Figure 4.
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Figure 4. C-V2X mode selection.

C-V2X time and frequency resources are similar to the LTE structure. The duration of
one LTE frame is 10 ms. It is divided into ten smaller sub-frames with 1 ms duration each.
This sub-frame has two time slots. Each time slot duration is 0.5 ms and consists of seven
OFDM symbols with an extended cyclic prefix. In the frequency domain, the RB size is
180 kHz with 0.5 ms duration. The scheduling process in LTE is performed by the RRM
entity that allocates RB in every transmission time interval (TTI).

Many types of research have been done to implement machine learning techniques
in optimizing communication networks [34]. Its implementation in vehicular networks
with dynamic environments such as channel conditions, network topology, and traffic
shapes can especially affect system performance [35]. V2X resource allocation is one of
the optimization themes that has attracted the interest of many researchers because of
the limited nature of network resources. Seeing the increasing number of smart vehicles
and the increasing amount of data involved in vehicular network communication, it is
necessary to have a mechanism for regulating the use of dynamic network resources so
that network resources can be efficiently used.

The conventional resource types in a communication network can be in the shape
of network channels, time slots, and power levels. However, the distributed computing
system in the V2X network has introduced other resource types that can be shared among
network users, namely computation, storage, and caching resources. Using a distributed
computing system, the virtual resource allocation concept is initiated in a vehicular net-
work environment [35]. The unevenly distributed network resource is one of the notable
challenges to deliver an efficient networking environment. Most traditional resource allo-
cation algorithms were based on the static environment without considering the dynamic
environment of user mobility. This also depends on the use of mathematical formulas that
are often non-convex and NP-hard. This is especially the case when adopting a vehicular
network perspective where vehicles move with high mobility, resulting in only a brief
period during which the allocation strategy can be validly implemented. Moreover, this
dynamic environment frequently requires re-executions of the algorithm, which will lead
to additional latency in the transmission process [34].

Implementing machine learning to solve resource allocation problems opens a wide
range of improvements. Machine learning can dynamically adjust its allocation strategy
according to the system’s state environment. It can investigate the relation between pa-
rameters that are used in decision-making to make the best policy for this optimization
problem. Furthermore, with the increase in the number of devices connected and appli-
cations involved, machine learning can learn the dynamic environment and extract some
valuable features to benefit many task objectives involved [35].

3. Machine Learning Preliminary

The implementation of machine learning in various technologies and applications is now
inseparable from human life. Machine learning or learners can convert data into a special
algorithm that suits the system’s needs [36]. It is a program that is used for data learning.
To efficiently extract information, the type of algorithm and task it performs must be known
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to match what we want to obtain from the data we have. Although there are various types
of machine learning algorithms with several categories, machine learning can generally be
classified based on the involvement of human supervision in the learning process. These
categories are supervised, unsupervised, and reinforcement learning. In addition, the emergence
of deep learning (DL) gives machine learning the ability to solve complicated optimization
problems. The following briefly describes each machine learning category. We also provide
some references for readers who need a deeper understanding of each subsection.

3.1. Supervised Learning

The purpose of supervised learning is to estimate the mapping from the input data.
Supervised learning uses the target data as a supervisor in the learning process. The target data
constitute a dataset with labels. The supervisor can provide information if the machine makes
an error during the learning process with this labeling. This way, the algorithm performs tuning
to increase its precision. Based on the type of learning process output, supervised learning has
two classes of tasks, namely classification and regression.

In a scenario where a labeled dataset is difficult to obtain, the learning process can be
carried out with the involvement of unlabeled data to aid the classification process. This learning
process is called semi-supervised learning. Semi-supervised learning is the combination of
supervised and unsupervised learning. Generally, this type of learning aims to improve the
performance of classification or clustering [37]. This learning method involves a small number of
labeled datasets and a large number of unlabeled datasets. Semi-supervised learning enhances
clustering tasks by adding supervision information from labeled datasets to guide which
unlabeled datasets belong to the same class. Readers can find further study on semi-supervised
learning in [38].

Conventional machine learning algorithms process data in batches or chunks [39]. This
means that a new batch of data requires a machine learning algorithm to train it from scratch to
build the model. With the increase in data generated by machines and users, a new method
to quickly and efficiently learn from the data is needed. Stream learning, online learning, and
incremental learning are the types of machine learning that can update their models for a given
continuous data stream without performing multiple passes over data [40]. Stream learning is
closely related to semi-supervised learning [41]. By implementing stream learning, real-time
data analytics can be performed. A deeper understanding of stream learning can be found
in [39,42,43].

3.1.1. Support Vector Machine

The support vector machine (SVM) is a popular model in the supervised learning
class that can be used for various purposes—such as linear and non-linear classification as
well as regression and outlier detection [44]. The SVM algorithm is suitable for datasets
with a large number of variables but a small sample size. In SVM, the data to be classified
will be separated by a line with the equation y = wx + b. Where x is the vector point, w is
the weight which represents the orientation of the hyperplane, and b is the hyperplane’s
position to the d-dimensional space. The decision hyperplane (wx + b = 0) in SVM can
separate the sample space into two subspaces with a maximum margin. An n-dimensional
feature space can be separated by a hyperplane with the dimension of n− 1.

The optimal hyperplane or maximum margin in SVM is the hyperplane that has the
maximum distance from its nearest points. The nearest point or sample located in the
margin area is called the support vector. The margin domain has two areas, namely the
area above the decision hyperplane bounded by a positive hyperplane (wx + b = 1) and
the area below the decision hyperplane bounded by a negative hyperplane (wx + b = −1).
The concept of SVM is shown in Figure 5a.
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Figure 5. Supervised learning algorithms: (a) SVM; (b) ANN.

3.1.2. Artificial Neural Network

This algorithm uses the analogy of the performance of a network of neurons in
a biological system. Mathematical artificial neural network (ANN) models mimic the
biological structure of the human brain. This way, the ANN algorithm can perform
abstraction and generalization, which are special abilities of an organism. The ANN
algorithm performs a learning process to recognize patterns from the input data and predict
the output of a new similar dataset. Two essential components of ANN are neurons/nodes
and synapses/edges. ANN is composed of several layers, which are the input, output, and
hidden layers.

The input layer directly interacts with the input data, while the output layer is in
charge of predicting the result of the learning process. The hidden layer is the core of ANN,
where the computational and learning processes occur. Each layer contains neurons. The
neurons of a layer are connected to the next layer’s neurons using edges with a certain
weight. The weights on the edges contain information from the input that can play a role in
generating or inhibiting the signal that is communicated at each layer. ANN is the basis of
the DL algorithm or deep neural network (DNN). DL is one of the subdomains in machine
learning that can recognize hidden patterns in the dataset and make predictions from the
input data. DL has input and output layers and more than one hidden layer between them
that are interconnected. The ANN diagram is shown in Figure 5b. An in-depth discussion
of ANN and DL algorithms can be found in [45].

3.2. Unsupervised Learning

Datasets in unsupervised learning do not have labels. The purpose of this type of
learning is to find specific information from the input data. From this specific information,
the task of unsupervised learning will depend on the task of the algorithm. Unsupervised
learning is widely used for clustering, namely looking for similar features and creating
groups for the data. In addition to clustering, unsupervised learning can also be used for
dimension reduction, anomaly detection, and density estimation. Dimension reduction is
widely used to reduce computational time if the number of data involved is massive.

Clustering tasks are divided into two categories: namely hard clustering and soft
clustering. Hard clustering, such as the K-means algorithm, groups data points into only
one cluster that has the closest distance to its centroid. The disadvantage of this method
is that there is no calculation of the probability that the data points are associated with
other clusters. Meanwhile, soft clustering can calculate all the probabilities of a data point
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associated with all clusters and take the largest value as a cluster of data points. We refer
readers who are interested in clustering implementation on VANET to [46].

3.3. Reinforcement Learning

In the nature of learning, learners interact with their environment to gain information
about cause and effect, the consequences of actions, as well as what is required to achieve
certain goals [47]. Reinforcement learning (RL) can only be used when there is no dataset.
Instead of a dataset, an environment is provided in the learning system. The optimal
decision in RL can be obtained after some period of training. There are two major entities in
RL, which are agents and the environment. These two entities, which communicate using
three channels which are actions, rewards, and observations. An agent tries to maximize
the reward value accumulated during a period in its sequence of actions. Figure 6 shows the
common diagram for RL systems. This algorithm is widely used in resource management
and allocation due to its decision-making characteristic. Reference [47] provides a detailed
explanation about RL theory.

Figure 6. Reinforcement learning model diagram.

3.3.1. Markov Decision Process

The Markov decision process (MDP) is the basic framework for RL. MDP is an al-
gorithm with a discrete-time state-transition system. MDP has four components in its
learning process, namely states S, actions A, transition model probabilities Pr(st+1|st, at),
and reward utility R. The transition model in MDP is a next-state function that describes
the dynamics of the algorithmic learning process. This process uses the Markov property
in which the next-state st+1 is affected by the current state st and the current action at.

The purpose of MDP is to find a suitable policy so that the cumulative reward from
the agent is of high value. A policy is the process of mapping from states to actions to
show the learner how to take specific action for a set of states it has. In other words, the
choice of the learner’s actions depends on the current state and is not influenced by the
previous states. This algorithm is the basis of Q-learning, which allows learners to learn
independently and make adjustments during the learning process to achieve their goals.

3.3.2. Q-Learning

Q-Learning (QL) is Markovian, where the learning process is carried out to obtain the
best policy for MDP. QL is an off-policy value-based learning algorithm. An agent in QL
tries to collect the maximum reward through a series of actions in a dynamic environment.
For a learning process with a specific purpose, an agent observes the environment it has,
then takes action according to its strategy. The agent will receive a reward or punishment in
accordance with the actions that have been carried out and take this experience to formulate
a new strategy for the following action. This step is repeated as many times as possible
until the agent has the optimal strategy and the maximum reward value. The combination
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of QL and DL produces deep Q-learning (DQL), an advanced version of QL. In DQL, the
Q-table in QL is replaced by layers of the neural network so that the algorithm’s stability
can be improved.

3.4. Deep Learning

While machine learning algorithms enable machines to think with less human inter-
vention, DL emerges as the evolution of machine learning that gives machines the ability
to think accurately with a structured model similar to the human brain. DL or DNN is a
subdomain of machine learning which can recognize hidden patterns in the dataset and
predict an output Y based on a given input X. The association between inputs and outputs
is obtained by utilizing hidden layers constructed from many layers of neural networks.
Using this hierarchical architecture, the DL algorithm can predict the expected output
with minimum loss. DL can be supervised, unsupervised, or reinforcement learning. This
depends on the expected outcome and output one desires to achieve. With the tremendous
amount of available data, DL can extract information better than conventional machine
learning algorithms. There are four categories based on the primary method in DL ap-
proaches, which are convolutional neural networks (CNNs), restricted Boltzmann machines
(RBMs), autoencoder, and sparse coding [48]. Figure 7 indicates the basic structure of the
DL algorithm.

Figure 7. Deep learning model diagram.

DL algorithms learn by tuning the weight (w) and bias parameters (b) of the network.
This tuning process is performed by evaluating the prediction and the expected output. The
algorithm evaluates the prediction quality through a loss function, for example, the mean
square error function, after inputs are passed to its outputs. The adjustment of weight and
bias parameters is made by a process called backpropagation, which employs the gradient
descent method. The w and b parameters’ updates are done in the opposite direction to the
loss function. After updating, the algorithm repeats the computation of the loss function
after another iteration of the prediction.

4. Machine Learning for Resource Allocation in Vehicular Networks

Authors have different objectives when designing a resource allocation strategy using
machine learning. These objectives can be in the form of balancing resource utilization,
fulfilling QoS or the quality of experience (QoE) of users, enhancing power transmission
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efficiency, minimizing delay, or maximizing the entire system’s weighted sum rate. Each of
these objectives determines the design of the resource allocation strategy along with the
parameters it will involve. This section discusses the role of machine learning in resource
allocation for vehicular networks.

4.1. Supervised Learning

Supervised learning for vehicular network resource allocation has two important
roles. First, the regression task in supervised learning is utilized to predict the resource
allocation solution for a given dataset. Second, supervised learning is a tool for learning
the dynamic environment of the system to be optimized. In the latter role, a supervised
learning algorithm can be implemented to enhance the reinforcement learning algorithm’s
allocation decision effectiveness.

4.1.1. Regression for Resource Allocation Decision

Supervised learning needs a dataset as an input and target data when predicting
resource allocation—as required by the system. This dataset can be obtained from a
simulation tool such as mininet emulator [49] or derived from other simulations involving
optimization algorithms [50–53]. The supervised learning algorithms utilized by previous
authors that we surveyed are shown in Table 2. The dataset involved in the learning process
has a strong correlation with the objective of the resource allocation designed. For example,
the channel condition and power transmission level correlate with the vehicle’s position and
mobility. The authors in [49–53] exploited this relation to build the strategy by making use
of the observation dataset. From our literature study, we identify the correlation between
sensing-based and location-based observations for resource prediction mechanisms.

Table 2. Supervised learning algorithms to predict resource requirement.

Reference # Dataset Parameter Algorithm

[49] QoS flow types CNN, DNN, LSTM
[50] SINR ANN
[51] Traffic flow RNN
[52] CSI and position DNN
[53] Mobility and resource request SVM
[54] Power DNN
[55] Power Logistic regression

Channel condition is commonly utilized as an input parameter in resource allocation
strategy. Its parameters can be in the form of channel state indicator (CSI) or signal-to-noise
ratio (SNR)/signal-to-interference-plus-noise ratio (SINR) values of the moving vehicles.
The minimum SNR/SINR value correlates with the system’s lower QoS bound [50]. A
central controller then utilizes reported SNR/SINR values to observe the system’s global
condition. Then, it makes the allocation decision based on some pre-determined rules to
obtain a global optimum. However, CSI utilization for resource allocation can increase
the system’s overhead. Furthermore, an accurate CSI value is difficult to obtain due to the
vehicles’ high mobility.

To overcome inaccurate CSI problems, supervised learning can be utilized to predict
the CSI values of vehicles by observing their geographical positions. Using this method,
the global condition can be observed while reducing the system’s overhead. Vehicles’
mobility, represented by speed and direction, can also be exploited to estimate the channel
condition [56]. Vehicles’ movements are relatively stable during a period of time due to
road conditions. The key strategy in this scheme is to observe the non-linear correlation
between CSI/SNR and vehicles’ position to the central controller. Models that are often
used to predict channel conditions are autoregressive (AR); band-limited process (BP); and
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sum-of-sinusoids (SOS) models—where the AR-based model has higher accuracy with
lower complexity compared to the other two models [57]. Thus, the AR-based model is
suitable for implementation under near-realistic channel conditions.

Moreover, supervised learning can also be applied to allocate optimum and efficient
transmission power. Vehicle-to-RSU/BS distances, antenna sensitivity, and vehicle move-
ment can be used as input parameters for the learning process [55,56]. For example, the
authors in [55] implemented logistic regression to determine the power fraction which can
flexibly decrease BS/RSU transmit power according to the vehicle–RSU distance. Addi-
tionally, in [54], DNN was utilized to determine the optimal transmit power according to
the channel realization and the channel gain of V2I and V2V links. Although training the
algorithm requires a longer amount of time, the algorithm can provide a fast solution for a
dynamic resource allocation decision.

4.1.2. Dynamic Environment Observation

Supervised learning can be applied to dynamic environment observation. This state
environment will then be utilized by RL algorithms to create better policies for the system.
Learning from raw data observed by vehicular environment needs longer computational
time. Furthermore, safety applications often contain duplicate information. Implementing
a neural network in environmental observation can help decrease the learning time to
improve the policy decision-making process with a shorter time in the resource allocation
mechanism. In addition, supervised learning can identify hidden patterns in a large dataset.
Parameters such as vehicular trajectory, position, and resource availability in the system
can also be predicted using supervised learning to help RL algorithms make the best
policy decision. Table 3 presents the supervised learning implementation for dynamic
environmental monitoring in several papers that we surveyed.

Table 3. Supervised learning for environmental observation.

Reference # Dataset Parameter Algorithm

[58] Shareable resource and routing path
for packet delivery

Graph theory (social graph and
communication graph)

[59] Vehicle mobility Unspecified
[60] Number of vehicles DNN
[61] Resource availability D-RNN

A deep recurrent neural network (RNN) was applied in [61] to investigate the pattern
of resource availability based on the vehicle-to-RSU positions. The authors utilized parked
and slow-moving vehicles in the coverage area to alleviate the RSU traffic burden. This
method gave better performance than heuristic and other machine learning resource
allocation algorithms. Hou et al. [58] made use of the relation between the social graph and
communication graph to select resources among nodes. The social graph was widely used
in Internet data analysis to reflect trust between users. It became the basis of the offloading
scheme for the video processing task. Hou et al. also implemented long short-term memory
(LSTM) algorithm to predict the vehicles’ trajectory in order to select serving RSU in the
simulation area in [59]. Then, this information was further fed to the QL algorithm to help
decide the best resource allocation policy for the nodes.

4.2. Unsupervised Learning

The role of unsupervised learning in resource allocation strategy is to provide a coop-
erative method for a group of vehicles with similar characteristics to improve the resource
allocation procedure [62]. A central controller such as BS/RSU can select intermediate
vehicles or a cluster head (CH) to support the data dissemination process. Using the coop-
erative method, scheduling overhead and data collision probability can be reduced [63]. In
addition, applying the clustering method can improve the vehicular network’s stability
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and scalability [64]. Clustering is a technique to group vehicles with similar characteristics
such as geographical vicinity, traffic pattern, the application’s QoS, and interference value.
Clustering can be implemented in network routing, tracking, congestion estimation, and
resource allocation [46,65]. This subsection only discusses the application of clustering in
resource allocation mechanisms mainly implemented in vehicular networks, as studied in
several papers.

4.2.1. Cluster Formation Strategy

When grouping vehicles, a cluster analysis method needs input parameters to decide
which nodes have similarities and dissimilarities. There are many methods unsupervised
learning algorithms to group data points. The main difference is in how the similarity of
data points is defined. In addition, it can also be determined by variable distribution and
cluster shape. Cluster formation can be performed in a centralized or distributed manner.
In the distributed clustering scheme, each node obtains the surrounding nodes’ information
and tries to find a group of vehicles with similar or almost similar characteristics. In this
scheme, CH is chosen as a cluster coordinator based on specific stability parameters.
BS/RSU acts as a controller for centralized clustering, which gathers information with
some criteria for all nodes in its coverage area. Then, these nodes are grouped according to
their similarity values.

Clustering for the resource allocation mechanism generally uses a centralized scheme
where BS/RSU groups vehicles to improve the resource algorithm’s effectiveness. In [66],
the coverage area was divided into clusters. In each cluster, the federated DRL on a small
timescale was implemented to obtain a robust global model. For each of the new V2V
pairs activated, this global model can be implemented to reduce the learning time. This
algorithm performs better than the conventional decentralized learning scheme. A similar
approach was also carried out by [67] where CH was chosen as QL agents according to
its stability, average speed, link quality, and neighborhood degree. The CH selection in
each cluster to support a BS/RSU in forwarding the packet was also performed by [64,68].
Using CH support, the efficiency and effectiveness of resource allocation can be improved.

4.2.2. Clustering Model

In our study, we classified the clustering models implemented for cooperative re-
source allocation in vehicular networks according to the clustering paradigm described
in [69]. Table 4 depicts the clustering strategies and its similarity parameters used in our
surveyed papers.

In correlation clustering [68,70–72], the number of clusters that can be established in
the system depends on the similarity data points. This clustering method tries to find a
harmonious partitioning, where disagreement between data points is minimized, whereas
the agreement is maximized [73]. Data points in correlation clustering can be viewed as
connecting graphs with a classifier function f . Spectral clustering, which also has its roots in
graph theory, uses the similarity graph G for data representation. Instead of using pairwise
similarity or pairwise distance, such as correlation clustering, spectral clustering abstracts
data points based on the eigenvector from the adjacent matrix, such as the Laplacian matrix
from the dataset or constructed graph. The authors in [66,74,75] implemented spectral
clustering with interference and location-based similarity to group vehicles in an area.
Readers that are interested in how spectral clustering is built to separate data points can
refer to [76].



Sensors 2021, 21, 6542 15 of 26

Table 4. Clustering algorithms and similarity parameters utilized to enable a cooperative resource allocation mechanism.

Reference # Similarity Parameter Algorithm Clustering Paradigm

[62] Mobility Stability-based clustering Other
[66] Channel gain Spectral clustering Spectral
[67] Position and mobility Unspecified Other
[68] Interference between platoon Vertex coloring Correlation
[70] Mutual interference Graph clustering Correlation
[71] Interference Graph partitioning Correlation
[72] Position and velocity Graph partitioning Correlation
[74] Position Spectral clustering Spectral
[75] V2V link quality Spectral clustering Spectral
[77] Task delay and size KNN Partitional
[78] Position Ward’s linkage Hierarchical
[79] Position (for safety applications)

and CSI (for infotainment
applications)

Gaussian similarity and
distance-based clustering

Partitional

[80] Position and velocity K-means with ISODATA Partitional

Partitional clustering, such as by the K-means algorithm, precisely allocates a data
point in a cluster. It needs the information of how many k clusters it has to build in
order to separate data points. This clustering model iteratively relocates a data point
until the optimal partition is achieved. Wang et al. [80] created a self-adaptive clustering
model for mobile vehicles to efficiently distribute the bandwidth between DSRC and
LTE users. This clustering method utilized the iterative self-organizing data analysis
technique (ISODATA) formula to enable the dynamic cluster formation according to the
vehicles’ environment changing. In contrast to partitional clustering, a hierarchical model
determines the number of clusters according to the dendrogram it creates in every step. The
dendrogram represents the similarity and order of the clusters. Cao et al. [78] implemented
Ward’s linkage clustering algorithm with the sum of the square errors’ calculation to merge
two similar clusters to obtain an optimal cluster with maximal similarity.

4.3. Reinforcement Learning

Generally, the process of creating a system model and the learning phase between
many papers on RL implementation for vehicular resource allocation have similar char-
acteristics. RL has four main components, which are the state, agent, action, and reward.
This system can implement a centralized or decentralized learning model to construct the
best policy for the resource allocation strategy. This learning model influences the agent
selection of the system. An agent observes the state space and takes action that can maxi-
mize its long-term reward. Action is the resource allocation decision, such as a resource
block (RB) selection, power transmit ratio allocation, offloading decision, spectrum ratio,
etc. The reward has strong correlation with the design objective. It can be in the form of
the combination of average delay in the transmission process, the system’s cost, resource
utilization, the system’s capacity, and QoS or QoE satisfaction. In this section, we discuss
two main differences, which are the learning method and state parameterizing strategies of
the RL approach between the works of the literature surveyed.

4.3.1. Learning Method

RL for resource allocation can be performed in a centralized or decentralized manner.
In centralized learning, a central controller such as a BS/RSU or a CH can be an agent
to perform the learning process based on the system’s current state. On the other hand,
decentralized learning uses V2V links or V2V pairs as agents to perform the learning process
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and autonomously make decisions. Centralized learning has advantages in eliminating
packet collision compared to the decentralized scheme. Moreover, it has more stable
links due to the BS/RSU transmission support and promotes more services with different
QoS requirements. However, centralized learning has higher complexity and signaling
overhead for the scheduling process. Decentralized learning can achieve sub-optimum
resource allocation with lower complexity and learning time. Nevertheless, decentralized
resource allocation suffers from the hidden node problem that affects the packet delivery
ratio of the system compared to the centralized scheme [81]. In our studied literature, more
than 75% of resource allocation mechanisms were performed in a centralized manner.

Decentralized learning involves multiple agents in the learning process. Agents
observe their local environment and select the optimal action to maximize their rewards. In
comparison, centralized learning can use single or multiple agents in its learning process. A
single agent in a centralized scheme, which is a BS/RSU or a CH, collects the environmental
information through beacons sent by vehicles in its coverage area. The system can make a
globally optimal strategy based on this information. Centralized multi-agent learning can
be seen in [82], where a central controller manages several RSUs in allocating resources in
its coverage area. The resource allocation strategy was made at each time slot. The author
assumed that RSUs had similar and stable environments. An updating policy was carried
out by implementing the soft actor critic (SAC) in the central controller as an off-policy
RL algorithm. This updated value was sent to each edge agent so that agents could adjust
their resource allocation strategies accordingly. The simulation results proved that the
proposed algorithm could significantly increase the system’s performance compared to
other schemes.

4.3.2. State-Based Allocation Strategy

RL implementation in vehicular networks has a dynamic system state. This state
changes with time. The state is a set of parameters describing a system. The set of
parameters in a state representation must be factors that can influence the learning result so
that the agent can learn successfully. This set of parameters has a relation with the resource
allocation’s objective. It also depends on the system model. For example, references [83,84]
have different approaches to solve the resource allocation problems, although both resource
types are similar. The authors in [83] tried to allocate resources for V2V pairs by using
available V2I links. The model they built was closely related to the influence of interference
to nearby V2I and V2V links. On the other hand, reference [84] designed an energy-efficient
vehicular network which employed the vehicle–RSU distances to determine the transmit
power and resource allocations. Due to these differences, we classify the resource allocation
strategy using RL in the vehicular network into three categories, namely (i) location-based;
(ii) sensing-based; and (iii) availability-based strategies.

These classifications are based on the state space parameters which are used to observe
the environment. The combination of (i) and (ii) can happen when a decentralized learning
scheme is implemented. This is because the V2V link uses the position and interference
parameters to determine its best allocation strategy. The combination of (iii) with (i) or
(ii) happens when the vehicular network uses SDN-based or the Fog/Edge computing
framework. The combination of all these strategies occurs when a mobile agent such as a
UAV is involved [85] or vehicles with rich or unexploited resources can provide it to its
neighboring vehicles [82]. This mobile agent uses the location-based strategy to observe its
surrounding nodes, the sensing-based strategy to prevent interference between nodes, and
the availability-based strategy to determine the amount of resources allocated according to
the surrounding nodes’ requests. Table 5 shows each of our surveyed literature strategies
in modeling RL for vehicular network resource allocation.
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Table 5. Reinforcement learning strategy for resource allocation.

Reference # Objective Algorithm Learning Method Strategy Based on
Sensing Availability Position

[22] Vehicular network resources orchestration DRL Centralized
[58] Offloading for mobile video apps on the basis of social graphs Continuous time MDP Centralized

[59] Maximizing the successful content fetching for non-safety application in a
mobile vehicular node QL Centralized

[60] Resource allocation for out-of-coverage V2V communication DRL Centralized

[61] Efficient vehicular fog computing resource allocation to minimize service
latency RL Centralized

[62] Increasing traffic efficiency and capacity by implementing a cooperative
scheduling mechanism RL Centralized

[66] DRL-based decentralized resource allocation for C-V2X links to increase
system capacity and satisfy QoS DRL Decentralized

[67] Efficient, stable, and reliable Cloud resource management in the vehicular
Cloud architecture QL Centralized

[77] Intelligent resource allocation and task offloading to improve next
generation vehicular network RL Centralized

[82] Resource allocation for high mobility vehicles to satisfy applications’ QoS
requirements DRL Centralized

[83] Resource allocation for V2X communication underlying cellular networks DDPG Decentralized

[84] Joint energy efficient scheduling and routing framework for delay tolerant
application QL Decentralized

[85] Flight resource allocation to minimize packet loss ratio during nodes’ data
transmissions DDPG Centralized

[86] Joint resource allocation for delay-sensitive application in MEC-based
vehicular network DRL Centralized

[87] Downlink resource allocation with power and QoS constraints QL Centralized
[88] Unicast and broadcast resource allocation DRL Decentralized
[89] Resource sharing in SDN-based heterogeneous vehicular network DRL Decentralized

[90] Resource allocation to minimize the Perception reaction time (PRT) for
safety and non-safety applications DRL Centralized

[91] Vehicular Cloud resource allocation to maximize the QoS and QoE RL Centralized
[92] Communication and computation offloading to alleviate RSU’s burden Distributed DQL Centralized
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Table 5. Cont.

Reference # Objective Algorithm Learning Method Strategy Based on
Sensing Availability Position

[93] Resource provisioning to balance resource utilization and QoS
satisfaction in virtualized network for V2V links DRL Centralized

[94] Efficient joint resource management for UAV DDPG Centralized

[95] Resource management for V2V link broadcast application with
minimum latency and interference DRL Decentralized

[96] Optimizing system performance by implementing an intelligent
offloading mechanism in vehicular edge computing DRL Centralized

[97] QoS-based resource allocation DRL Centralized

[98] Dynamic resource allocation for SDN-based and virtualized
vehicular network to satisfy QoS requirements A3C Centralized

[99] MEC-based vehicular network offloading to reduce energy while
satisfying applications QoS constraints DQN Centralized

[100] Enabling the dynamic orchestration of resource allocation to
improve system performance DRL Centralized

[101] Queue priority resource allocation in 5G vehicular network DQL Centralized

[102] Vehicular Cloud resource allocation where vehicles allocate or
request resources from the resource pool AVARAC (semi-MDP based) Centralized

[103] Distributed spectrum sharing mechanism where V2V links reuse the
pre-occupied spectrum of the V2I link DRL Centralized
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The location-based strategy uses state parameters such as vehicle–RSU distance,
vehicle trajectory, vehicle speed, and vehicle density. In a centralized learning scheme, an
agent obtains information on the number of nodes with their positions and/or mobilities
in its coverage area. Then, the agent makes a resource allocation strategy based on state
changes during each period [84,86]. Atallah and Assi [87] utilized the weighting technique
for each vehicle and chose vehicles with the nearest locations to save energy. Xia et al. [62]
and Arkian et al. [67] divided the coverage area according to the vehicles’ locations and
mobilities, and then selected a CH for each area as an agent. RL was utilized to select an
auxiliary vehicle that can help forward packets in a cluster.

The sensing-based strategy is mainly applied in the decentralized scheme with V2V
links as agents in its learning process. State parameters for each V2V pair can be a combi-
nation of local channel information, interference value from the neighboring transmitter,
and traffic loads. In direct communication, the V2V link suffers from limited spectrum
resources. In order to increase the amount of allocated resources, the interference val-
ues from surrounding nodes can be essential parameters that can influence the agents’
decision-making process. For example, in [88], V2V links as agents chose their spectrum
and transmitted power with minimum interference for their V2I and V2V links in the
surrounding area. The authors divided transmitted power into three levels which agents
chose according to its state. A cooperative scenario was created by [89], where coexisting
agents that generally compete with each other were made to collaborate to increase the
system’s fairness. In this work, an agent has a weight according to its traffic condition. The
asymmetric Nash bargaining solution was utilized as the cooperative method with a DRL
approach to achieve convergence.

The availability-based strategy uses parameters such as resource availability and the
number of resource requests required by the system. Resource availability can be in the
form of a resource state and its distribution, the number of the available BS/RSU and/or the
vehicles with unutilized resources. This strategy is usually implemented in the SDN-based
vehicular network, vehicular Cloud network, and vehicular fog/edge computing resource
allocations. He et al. [22] proposed a connected vehicles framework that can separate
network resources. These separated resources can be gathered as a pool of resources
for several different vehicular applications. The authors utilized a software-defined and
virtualized vehicular network, which is managed by a central controller. The agent must
choose an available BS/RSU that could provide resources for each vehicle that made a
resource request. Liu et al. [97] divided BS’s resource into several slices to serve various
requests from V2X. Each slice is a deep deterministic policy gradient (DDPG)-agent that
attempts to serve resource requests from its users. These agents tried to meet the minimum
requirement of users while maximizing the sum-utility of their resources.

4.4. Deep Learning

DL consists of neural network layers that are useful to approximate a solution for
an optimization problem. It is capable of creating a new feature from datasets without
predetermined information. DL is adaptable and can be implemented in supervised,
unsupervised, or reinforcement learning. This section describes the role of DL implemented
in other machine learning categories that we found in our literate study.

Generally, DL is used to enhance the machine learning algorithm’s performance
during resource allocation management. DL implementation in supervised learning treats
the optimization problem as a black box [13] and more accurately extracts the relation
between parameters. It is also proven that by using DL, the non-linear relation between
parameters can be extracted to provide better resource allocation decisions with negligible
overhead [52]. Two machine learning models were implemented in IoV by [51]. The first
model predicts the resources needed at the edge side, while the second utilizes RNN to
predict future utilization. RNN is a robust DL algorithm with internal memory that is
suitable to perform resource prediction. By predicting resource availability, the system’s
effectiveness is guaranteed by avoiding over-provisioning. J. Gao et al. [54] implemented a
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DNN to approximate the weighted minimum square error (WMMSE) value by learning the
mapping between the channel power gain as the input and the optimal power allocation as
output in the V2V and V2I links. The results indicate that implementing DNN supervised
learning improved the system performance compared to conventional supervised learning.

The emergence of DNN in computer vision also drew attention to its implementation
to improve other machine learning algorithms. While reinforcement learning is proven to
solve complex objective problems, it takes a long time to achieve the best policy. Further-
more, the curse of dimensionality makes it unsuitable for implementation in large-scale
networks. DNN as a function of approximation is implemented in reinforcement learn-
ing to train the learning process. Applying DNN in reinforcement learning shortens the
learning process and improves reinforcement learning performance.

DNN improves reinforcement learning performance by advancing the learning pro-
cess to make policy in an uncertain environment. X. Chen et al. [91] implemented the
DRL algorithm to develop a resource management strategy. Since several resources and
two applications were involved, conventional Q learning was not possible due to the
high number of actions in the current state. The DL algorithm was used to predict the
reward value for several different actions in their system. Compared to other conventional
reinforcement learning algorithms, DRL converges faster. In [93], DNN was used as part of
DQL to approximate the reward function, where multiple parallel DNNs were applied to
generate the computational decision. The simulation results show that the convergence
process linearly increases with the number of DNNs involved in the system.

5. Challenges and Opportunities of Machine Learning in Vehicular Network
Resource Allocation

The implementation of machine learning offers a low complexity solution for complex
resource allocation problems in vehicular networks. Furthermore, it can dynamically
adjust its solution according to the changing environment of the vehicles. Nevertheless,
this implementation can be challenging due to some conditions, such as changing topology
due to vehicle mobility and various applications with different QoS requirements. This
section mainly discusses the challenges of the machine learning-based resource allocation
strategy in vehicular networks.

5.1. Environment Modeling

Real-life experiments involving vehicular nodes and BS/RSU are difficult to perform.
For this reason, researchers implement their ideas in simulations. Creating environment
models for vehicular network simulations requires various parameters and criteria. In
vehicular networks, many nodes are mobile. Thus, choosing the simulation and network
topology such as node distribution, propagation model, and mobility model, which reflects
real-life traffic and network conditions will lead to higher complexity. Some assumptions
are made to simplify this process, which can unfortunately reduce the mobility characteris-
tics of vehicles in the simulation.

The neural network can be a powerful tool to extract patterns from a large dataset.
It can distinguish the hidden pattern and label it at a fast rate. Liang et al. [91] exploited
it by implementing neural-network-based RL for the dynamic demands of resources in a
mobile environment. The authors utilized a planning algorithm to map the action values
for specific state–action pairs. This mapping was applied as the initial sample of the neural
network. Then, RL was implemented to update parameters and train the neural network.
This mechanism can eliminate the need for strong pre-set assumptions when building the
model. Furthermore, inaccurate model estimation problems can be avoided so that optimal
results can be achieved.

5.2. QoS Guarantee

The vehicular network offers safety and non-safety applications to improve traffic
safety and comfort. These applications, such as active safety applications, traffic manage-
ment, and infotainments, have different QoS requirements which need to be fulfilled. The
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objective of a resource allocation strategy is to ensure that nodes have enough resources
to satisfy the QoS requirements of the applications involved in the transmission process.
However, satisfying all the QoS requirements of various applications can be challenging
due to some applications’ conflicting requirements, such as high data rates with negligible
latency. Some authors, for example, in [22,58,90], preferred to focus their works on design-
ing resource allocations for a specific type of service due to its importance in the vehicular
network environment. This method can reduce the complexity of the algorithm used in
resource allocation. However, reliable V2X communication needs a resource allocation
scheme that can satisfy users’ various applications.

Tayyaba et al. [49] designed a flow-based resource allocation framework in the SDN-
based virtualization for the vehicular network under 5G. This uses a traffic classifier that
can divide traffic flows into three classes: priority queue, bandwidth sensitive queue, and
no strict queue, according to each flow sensitivity and delay boundary. A central controller
dynamically allocates bandwidth according to the applications’ QoS requirements. Incom-
ing packets create queues according to their priority, and the controller assigns resources
according to its length. A stochastic process was used to simulate the framework and create
datasets multiple times. Then, these datasets were fed to the DL block so that the system
could learn and predict the resource allocation strategy for the incoming traffic. In [87], an
energy-efficient adaptive resource allocation to facilitate different traffic types was created.
The system was built on the assumption of an energy-limited RSU. The state explorations
gathered by the agent were the network and traffic conditions to determine the amount of
service request loads and the number of vehicles residing in the coverage area. The QL
algorithm was utilized as the optimal scheduling policy to dynamically allocate energy
consumption while achieving an acceptable level of QoS for its service requests.

5.3. Task Diversity

The machine learning tasks involved in a vehicular resource allocation mechanism can
be separated into resource prediction, environment modeling, clustering for cooperative
resource allocation, and a Markovian-based resource allocation decision. There are many
machine learning algorithms that can fulfill each of these tasks’ objectives. Obtaining an
optimum result requires a correct choice of machine learning algorithm and the parameters
it uses in the system’s design. For example, in resource prediction, the dataset is in the
form of time series. A supervised learning algorithm combined with DL such as LSTM can
be a good choice since the previous time step is stored in the memory. It can predict the
resources required by V2V and V2I links more accurately than CNN and DNN algorithms.
However, it needs a slightly longer time to allocate the resources compared to the other
methods [49].

Neural network-based algorithms for dynamic environment modeling were used
in some scenarios [59,60]. The neural network was widely used in pattern recognition
for its ability to perform complex identification in a short amount of time. Another task
is grouping nodes into several smaller clusters with similar attributes. We can see that
many works were done using graph-theory-based clustering in our literature study. Using
graph-theory, the inner structure of the dataset can be more clearly investigated. For
Markovian-based resource decisions, an agent or agents need to create the best policy
that can maximize long-term rewards while optimizing system performance. DRL has
the ability to handle high-dimensional action space and states. It has a self-improvement
capability to select the best action. Resource allocation in vehicular networks is a model-
free-based RL problem. It is important to understand the resource allocation problem
and abstract the task into several sub-problems, and investigate whether using machine
learning can solve it. By understanding the problem, one can find a suitable machine
learning algorithm to solve it efficiently and optimally.
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5.4. Distributed Approach

In our surveyed literature, the majority of resource allocation strategies were per-
formed by the central agent. It makes allocation decisions after collecting various state
information from its environment. Although the central learning strategy was proven
to have better performance than the decentralized scheme, the increase in nodes and ap-
plications involved in vehicular networks will increase the complexity of the centralized
algorithm. This will affect the computational burden of the central agent when gathering
global environment information from surrounding nodes. Therefore, the decentralized
learning approach, where nodes can make local observations and autonomous decisions,
can be a less complex solution. Furthermore, it is preferable to implement distributed
resource allocation with decentralized learning when the number of nodes in the system
is large.

For example, Zhang et al. [66] formulated a joint optimization problem to enable
mode selection for V2V links in a cellular-based V2X. The objective is to maximize the V2I
capacity while meeting the V2V link’s requirements. Using decentralized learning, where
each V2V link is an agent, a two-timescale federated DRL was created. Vehicles in the same
cluster cooperated in training the DRL model, and the global model could be applied to
the newly joining V2V links. The result showed that the algorithm could outperform the
decentralized method while achieving competitive results with the centralized method.

6. Conclusions

This paper presents a survey of machine learning algorithms implemented in vehic-
ular network resource allocation. We mainly focused on the role of machine learning in
the resource allocation strategy. We present how each machine learning category is uti-
lized to provide a dynamic resource allocation scheme. Based on the parameters involved
in resource selection, we classified resource allocation strategies into the sensing-based,
position-based, and availability-based ones. These strategies correlate with the resource
allocation objective and the type of resource involved in the mechanism. Although AI im-
plementation is promising in enhancing vehicular network performance, some challenges
also need to be considered when designing the solution. Finally, this survey paper can help
readers understand the role of machine learning algorithms and their strategy in vehicular
network resource allocation mechanisms.
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