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Abstract We propose a new mechanism for rendering dark
matter self-interacting in the presence of a massive spin-2
mediator. The derived Yukawa-type potential for dark mat-
ter is independent of the spins of dark matter in the lead-
ing order of the momentum expansion, so are the resulting
non-perturbative effects for the dark matter self-scattering.
We find that both the Born cross section and relatively mild
resonance effects assist to make the self-scattering cross sec-
tion velocity-dependent. We discuss how to evade the current
indirect bounds on dark matter annihilations and show that
the model is marginally compatible with perturbative unitar-
ity in the ghost-free realization of the massive spin-2 particle.

1 Introduction

There are plenty of indirect evidences for dark matter (DM)
such as galaxy rotation velocities, gravitational lensing,
large scale structures, cosmic microwave background (CMB)
anisotropies, etc. It has been assumed that dark matter is
collision-less, so there is no or little self-interaction between
dark matter particles. Weakly interacting massive particles
(WIMPs) have been a well motivated candidate for dark mat-
ter with negligible self-interaction and weak interactions with
known particles in the standard model but they have been
challenged by strong bounds from direct detection experi-
ments [1]. Any single evidence for dark matter beyond the
gravitational interactions would provide an important guide-
line for pinning down the particle physics nature of dark
matter.

There has been a tension between N -body simulations and
observed rotation velocities in galaxies. The former favors the
cuspy profile of dark matter density distribution at galaxies
but the latter shows the cored profiles. This is known as the
small-scale problem [2–6], which is related to another prob-
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lem such as too-big-to-fail problem. Self-Interacting Dark
Matter (SIDM) has been suggested to solve those small-
scale problems via the large self-scattering cross section with
σself/mDM = 0.1−10 cm2/g [7]. Although baryonic effects,
if included in the N -body simulations, could ease or elim-
inate the tension [8,9], it is worthwhile to investigate the
particle physics models for rendering DM self-interactions
velocity-dependent to be consistent with the bounds from
galaxy clusters [10–12] and look for the observable signa-
tures.

In this article, we propose a novel mechanism for self-
interacting dark matter of arbitrary spin by exchanging
a massive spin-2 mediator between dark matter particles.
The spin-2 mediator couples to dark matter through the
energy-momentum tensor [13–17], giving rise to the effec-
tive Yukawa-type potential between dark matter particles. In
this framework, we compute the momentum transfer cross
section for DM self-scattering in the Born limit and include
the non-perturbative effects for the same process in the pres-
ence of a light spin-2 mediator. We also show how the DM
self-scattering cross section is velocity-dependent in order to
satisfy the bounds from galaxy clusters. We also discuss the
consistency of large self-interactions with indirect bounds
on dark matter annihilations and perturbative unitarity in the
presence of non-linear spin-2 couplings.

The readers can refer to a companion paper of the same
authors [18] dealing with the effective theory for dark mat-
ter self-interactions with a massive spin-2 mediator, which
includes a complete discussion in the momentum expansions
of the dark matter self-interactions in the effective field the-
ory and contains the next-to-leading order terms and spin-
dependent interactions beyond the leading terms that we
focus on in this work. Therefore, the companion paper in
Ref. [18] is complementary to our current paper.
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2 Dark matter potential from spin-2 mediators

We introduce the couplings of a massive spin-2 mediator Gμν

with mass mG to the SM particles and dark matter with mass
mDM (which is a real scalar S, a Dirac fermion χ or a real
vector X ), through the energy-momentum tensor, as follows
[13–15],

Lint = −cSM

�
GμνT SM

μν − cDM

�
GμνTDM

μν . (2.1)

Then, the tree-level scattering amplitude for the self-scattering
of dark matter through the spin-2 mediator is

M = −c2
DM

�2

i

q2 − m2
G

TDM
μν (q)Pμν,αβ(q)TDM

αβ (−q) (2.2)

where q is the 4-momentum transfer between dark matter
particles and the tensor structure for the massive spin-2 prop-
agator is given by

Pμν,αβ(q) = 1

2

(
GμαGνβ + GναGμβ − 2

3
GμνGαβ

)
(2.3)

with

Gμν ≡ ημν − qμqν

m2
G

. (2.4)

Here, we note that the energy-momentum tensor for dark
matter, TDM

μν , depends not only on the 4-momentum trans-
fer but also on the dark matter momenta, although it is not
explicitly shown. The tensor Pμν,αβ satisfies traceless and
transverse conditions for on-shell spin-2 mediator, such as
ηαβ Pμν,αβ(q) = 0 and qαPμν,αβ(q) = 0 [13–15]. A similar
approach was taken for computing the DM-nucleon scatter-
ing amplitudes in the effective field theory with a massive
spin-2 mediator and dark matter [16,17].

The conservation law qμTμν = 0 is satisfied for q being
the 4-momentum of the massive spin-2 mediator mediated
between on-shell dark matter particles, so we can replace
Gμν in the scattering amplitude (2.2) by ημν . For instance,
the energy-momentum tensor for fermion dark matter χ is
given by

T χ
μν = −1

4
ūχ (k2)

(
γμ(k1ν + k2ν) + γν(k1μ + k2μ)

−2ημν( �k1 + �k2 − 2mχ )
)
uχ (k1) (2.5)

where the fermion DM is incoming into the vertex with
momentum k1 and is outgoing from the vertex with momen-
tum k2. Then, we can show explicitly that qμT χ

μν = 0 with
qμ = kμ

1 − kμ
2 being the momentum of the massive spin-2

mediator by using the equation of motion for fermion dark
matter. Similarly, the general energy-momentum tensors con-
taining other spins of dark matter and/or the SM particles
follow the same conservation law, qμTμν = 0.

As a consequence, the self-scattering amplitude for dark
matter in Eq. (2.2) is divided into trace and traceless parts of
energy-momentum tensor, as follows,

M = −c2
DM

2�2

i

q2 − m2
G

(
2TDM

μν TDM,μν − 2

3
(TDM)2

)
.

(2.6)

As a consequence, in the non-relativistic limit of dark mat-
ter and mG � mDM, we find that the effective potential
for dark matter is approximated to be Yukawa-type, up to
(mG/mDM)2 corrections [18], independent of the spins of
dark matter, as follows,

Veff � − ADM

4πr
e−mGr (2.7)

with

ADM = 2c2
DMm2

DM

3�2 . (2.8)

Therefore, the effective self-coupling ADM of dark matter is
determined by the DM mass and the gravitational coupling
to the spin-2 mediator. We note that both spin-independent
and spin-dependent effective field potentials for dark matter
with the massive spin-2 mediator were derived in Ref. [18].

3 Spin-2 mediators and dark matter self-interactions

We first discuss the Born cross section for dark matter self-
scattering and derive the Yukawa type potential for dark mat-
ter self-scattering in the non-perturbative regime. Then, we
show the parameter space for self-scattering cross section
in the Hulthén potential approximation and comment on the
potential problem from dark matter annihilations and solu-
tions.

3.1 Born approximations for self-scattering

The momentum transfer cross section for DM self-scattering
[19–22] is given by

σT = 2π

∫ 1

−1

dσ

d�

(
1 − | cos θ |

)
d cos θ. (3.1)

We first consider the Born regime with ADMmDM/(4πmG) �
1 and take the limit of a small dark matter velocity with
mDMv � mG where v is the relative velocity of dark matter.
Then, the momentum transfer cross sections for DM self-
scattering are given in the order of scalar, fermion and vector
dark matter, as follows,
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σBorn
S,T � A2

S

4πm2
Gv2

ln
(

1 + m2
Sv

2

m2
G

)
(

1 + m2
Sv

2

2m2
G

)3 , (3.2)

σBorn
χ,T � A2

χ

8πm2
χv4

[(
1 + 2m2

χm
4
Gv2

(m2
χv2 + 2m2

G)3

)
ln

(
1 + m2

χv2

m2
G

)

− m2
χv2

m2
χv2 + m2

G

]
, (3.3)

σBorn
X,T � A2

X

12πm2
Gv2

(32 − 56rX + 27r2
X )

(4 − rX )2

ln
(

1 + m2
X v2

m2
G

)
(

1 + m2
X v2

2m2
G

)3 ,

(3.4)

with ADM being defined in Eq. (2.8) for DM = S, χ, X and
rX = (mG/mX )2. These approximate results in the Born
limit are used to compare with the full results in the later
discussion in Fig. 3. In the limit of a vanishing DM velocity,
we can approximate Eqs. (3.2), (3.3) and (3.4) further, as
follows,

σBorn
S,T � A2

Sm
2
S

4πm4
G

(
1 − 2m2

Sv
2

m2
G

)
, (3.5)

σBorn
χ,T � 3A2

χm
2
χ

32πm4
G

(
1 − 14m2

χv2

9m2
G

)
, (3.6)

σBorn
X,T � A2

Xm
2
X

12πm4
G

(32 − 56rX + 27r2
X )

(4 − rX )2

(
1 − 2m2

Xv2

m2
G

)
,

(3.7)

which differ from the total self-scattering cross sections at
the leading order in Ref. [17] by 1/2, 3/4 and 1/2 factors
for scalar, fermion and dark matter cases, respectively, due
to the fact that the momentum transfer is not averaged over
in the latter case.

3.2 Bethe-Salpeter equation with spin-2 mediator

In the non-perturbative regime with ADMmDM/(4πmG) �
1, Sommerfeld and/or bound-state effects become more
important. In the Coulomb limit with a small dark matter
velocity, we need to resum the ladder diagrams with the mas-
sive spin-2 mediator for the self-scattering of dark matter in
the Feynman diagram approach as in the cases with light spin-
0 or spin-1 mediators [19–22], resulting in a Schrödinger-
like equation with the Yukawa-type potential for dark matter
given in Eq. (2.7). For consistency, we will also show in
the next section that the spin-2 mediator coupling does not
exceed the unitarity bound for dark matter annihilation pro-
cesses.

Before going into a further discussion on the self-
scattering and Sommerfeld effects for dark matter, we dis-
cuss the resummation of the ladder diagrams in the case of

the massive spin-2 mediator in more detail. As illustration,
we consider the elastic self-scattering process for scalar dark
matter, S(p) + S(k) → S(p′) + S(k′). We find that the non-
perturbative four-point function (p, k; p′, k′) for the scat-
tering process with the spin-2 mediator exchanges satisfies a
recursive relation [25] , as follows,

i(p, k; p′, k′) = i(p, k; p′, k′) −
∫

d4s

(2π)4 ̃(p, k; p + k − s, s)

×G(s)G(p + k − s)(p + k − s, s; p′, k′) (3.8)

where G(s) is the propagator for scalar dark matter and
̃(p, k; p′, k′) is the tree-level four-point amplitude, given
by

̃(p, k; p′, k′) = −2c2
S

�2

1

(p − p′)2 − m2
G

[
A(p, k)A(p′.k′)

+A(p, k′)A(p′, k) − 2

3
A(p, p′)A(k, k′)

]

(3.9)

with

A(p, k) ≡ p · k − (p · q)(k · q)

m2
G

, q = p − p′. (3.10)

The resummation of ladder diagrams is needed to capture
Sommerfeld effects at a small momentum transfer between
dark matter particles due to t-channel poles. The typical
momentum transfer for dark matter self-scattering is q ∼
mDMv. Since the momentum integration is dominated by
small loop momenta for energy-momentum conservation in
the non-relativistic self-scattering of dark matter, the energy
transfer becomes ω = p0 − p′

0 ≈ 0, thus the scattering
process is instantaneous, and we can approximate the above
tree-level point amplitude in Eq. (3.9) [18] to

̃(p, k; p′, k′) ≈ 8c2
Sm

4
S

3�2
1

q2 + m2
G

[
1 + 3

2
(v⊥)2 + 3

8
(v⊥)4

+ q2

4m2
S

(
1 + 3

2
(v⊥)2

)
− q4

4m2
Sm

2
G

(
1 − m2

G

4m2
S

)]

(3.11)

where q = p − p′ is the momentum transfer between dark

matter particles, v⊥ · q = 0 and (v⊥)2 = v2 − q2

m2
S

with v

being the relative velocity between dark matter particles.
Therefore, defining the Bethe-Salpeter(BS) wave function

in momentum space for dark matter in the following,

ψ̃BS =
∫

dP0

2π
χ(P, Q) (3.12)

where P = 1
2 (p + k), Q = 1

2 (p − k), and

χ(p, k) ≡ G(p)G(k)(p, k; p′, k′), (3.13)
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and using Eq. (3.8) with Eq. (3.11) while ignoring the pertur-
bative contributions, we obtain the BS equation for the wave
function in position space as

− 1

mS
∇2ψBS(x) + V (x)ψBS(x) = E ψBS(x) (3.14)

with the effective potential being given by

V (x) = − 1

4m2
S

∫
d3q

(2π)3 e
iq·x · ̃(p, k; p′, k′)

= − c2
Sm

2
S

6π�2r
e−mGr

×
[

1 + 3

2
(v⊥)2 + 3

8
(v⊥)4 − m2

G

2m2
S

(
1 + 3

4
(v⊥)2

)
+ m4

G

16m4
S

]
.

(3.15)

As a result, the correction terms coming from nonzero
velocity v⊥ and momentum transfer are suppressed as far as
|v⊥| � 1 andmG � mS . Therefore, even higher order terms
in the momentum expansion of the tree-level amplitude with
the massive spin-2 exchange give rise to suppressed contri-
butions to the effective potential.

We remark on the validity of the momentum expansion for
the effective potential. The effective potential in Eq. (3.15)
is given by the infinite momentum integral for the momen-
tum transfer. However, since the resummation of ladder dia-
grams is dominated by a small momentum transfer near the
spin-2 particle mass, we can truncate the effective potential
up to finite terms in the effective field theory. An explicit
cutoff or regularization on the momentum transfer was intro-
duced in Ref. [23] in order to treat the higher order terms in
the momentum transfer. But, in our case, as far as we keep
the momentum transfer small for the self-scattering of dark
matter in the effective theory, higher momentum contribu-
tions are sub-dominant for the computation of the effective
potential, so the small momentum expansion of the tree-level
self-scattering amplitude as in Eq. (3.11) is justified. The
above result in Eq. (3.15) is consistent with Eq. (2.7) in the
limit of mG � mS and (v⊥)2 � 1. The same discussion
holds for fermion or vector dark matter as well, apart from
the spin-dependent parts of the effective potential [18]. As
a result, we have shown that the non-perturbative amplitude
for dark matter self-scattering can be computed consistently
in the case of the massive spin-2 mediator even with the non-
renormalizable interactions.

3.3 Loop corrections due to spin-2 mediators

In this section, we also comment on the loop corrections of
the massive spin-2 mediator to the self-scattering of dark
matter. Concretely, we consider the one-loop corrections to
the self-scattering amplitude for scalar dark matter with two
massive spin-2 particles exchanged. Then, as summarized in

Appendix A, in the non-relativistic limit for dark matter, we
can approximate the t-channel scattering amplitude to

iloop = idiv + ifinite (3.16)

where div is the divergent part, in dimensional regulariza-
tion, given by

idiv = c4
Sm

6
S

24π2�4m4
G

(10m2
G + 7m2

S) · 1

ε
, (3.17)

and finite is the finite part, obtained in the limit of ξ ≡
m2

S/m
2
G � 1 as

ifinite ≈ 2c4
Sm

6
S

9π�4m2
G

√
ξ . (3.18)

We also obtained the same results from the u-channel dia-
grams as for the t-channel diagrams in the non-relativistic
limit. Here, the divergent part idiv can be cancelled by the
renormalization of the quartic self-coupling for scalar dark
matter, − 1

4λS S4.
Now we also discuss the finite part of the loop corrections

to the self-scattering amplitude. We first recall the tree-level
amplitude for small momentum and momentum transfer for
scalar dark matter from Eq. (3.11) as

i ̃ ≈ 8c2
Sm

4
S

3�2m2
G

. (3.19)

As a result, in the limit of ξ ≡ m2
S/m

2
G � 1, we obtain

the ratio of the finite part of the one-loop amplitude to the
tree-level amplitude for scalar dark matter, as follows,

finite

̃
≈ c2

Sm
2
S

12π�2

√
ξ = 1

8
AS

√
ξ . (3.20)

Therefore, for ξ � 1 and AS � 1, we get finite � ̃, for
which the perturbative expansion would break down as in
the cases for spin-0 or spin-1 mediators [24], so we need
to resum the ladder diagrams following the Bethe-Salpeter
formalism as discussed in the previous section. In the non-
perturbative regime for the one-loop amplitude, we obtain
the condition, mG � c2

Sm
3
S/(12π�2), which is similar to

the non-perturbative condition for the bound-state formation
of dark matter, as will be discussed in the next section,

As shown in Appendix A, we also checked that the leading
velocity-dependent corrections in the one-loop amplitude are
divergent but they can be cancelled by higher dimensional
counter terms for scalar dark matter, such as c6(∂μS∂μS)S2,
etc. The finite velocity-dependent corrections at one loop
can be ignored as far as 4v2ξ � 1 with v being the relative
velocity between dark matter particles. This is the case for
dark matter in galaxies and galaxy clusters.

Although the concrete discussion on the loop corrections
was made for the case for scalar dark matter for simplicity,
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Fig. 1 Contours of dark matter
self-scattering cross sections in
mG vs mDM, depending on the
spins of dark matter, s = 1/2, 0
on left and right. We have
chosen ADM = 1 and the DM
velocity to the one at dwarf
galaxies, vdwarf = 10−4. The
orange dashed and solid lines
are the results for the Born cross
section, whereas the purple and
blue lines are those for the
non-perturbative cross section.
We took
σT /mDM = 0.1, 10 cm2/g. The
case with s = 1 shows the
similar result as for the case
with s = 0

the similar results could be also obtained to the cases for
fermion or vector dark matter.

3.4 Hulthén potential approximation

In the non-perturbative regime with ADMmDM/(4πmG) �
1, the self-scattering cross section for dark matter can be
also enhanced by non-perturbative and resonance effects. We
take the Hulthén potential approximation for the Yukawa-
type effective potential (2.7) for dark matter, with VH =
− ADM

4π
δe−δr

1−e−δr , with δ = π2

6 mG . Then, for the s-wave dom-
inance, the general result for the non-perturbative self-
scattering cross section is given by

σHulthen
T � 4π sin2 δ0

k2 . (3.21)

where the phase shift for the s-wave is given by

δ0 = arg

(
i(λ+ + λ− − 2)

(λ+)(λ−)

)
(3.22)

with

λ± = 1 + ik

δ
±

√
η2 − k2

δ2 , η =
√

ADMmDM

4πδ
. (3.23)

At the pole of the gamma function at λ− = −n in the phase
shift, with n being non-negative integer, the self-scattering
cross section is enhanced by σself ∝ 1/v2. In this case, dark
matter can form an s-wave bound state for ωx = n2 for a
positive integer n [25], leading to the resonance condition for
the spin-2 mediator mass,

mG = 3

2π3n2 ADMmDM = c2
DM

π3n2

m3
DM

�2 . (3.24)

This is an intriguing relation between the masses for the
spin-2 mediator and dark matter and the strength of the spin-
2 mediator coupling. We note that the similar condition as
above was also inferred from the explicit calculations of the

one-loop corrections to the self-scattering amplitude for dark
matter in the previous section.

In matching the non-perturbative results to the Born
approximations given in Eqs. (3.2), (3.3) and (3.4), we make
replacements for the self-scattering cross sections, depend-
ing on the spins of dark matter, as follows,

σS,T � σHulthen
T

(ψ(2)(1))2(6/π2)4
, (3.25)

σχ,T � 3

8

σHulthen
T

(ψ(2)(1))2(6/π2)4
, (3.26)

σX,T � (32 − 56rX + 27r2
X )

3(4 − rX )2 · σHulthen
T

(ψ(2)(1))2(6/π2)4
· (3.27)

where σHulthen
T and η in Eqs. (3.21) and (3.23) are given by

those with ADM being replaced by AS, Aχ and AX in order).
For our analysis on the dark matter self-scattering, we use
the above analytic results.

In Fig. 1, we depicted the contours in the parameter space
for mG vs mDM for the DM self-scattering cross section
divided by the DM mass. We have fixed the DM velocity
to vdwarf = 10−4c at dwarf galaxies, the effective fine struc-
ture constant to ADM = 1, and the contours are shown for
σT /mDM = 0.1, 10 cm2/g. The orange dashed and solid
lines indicate the results with the Born cross section. On the
other hand, the results with the non-perturbative cross section
are shown in purple and blue lines. The cases for fermion and
scalar dark matter are shown on left and in the panel. The case
for vector dark matter is similar to the case for scalar dark
matter, so we do not show it in Fig. 1. We found that the DM
masses up to 200 GeV and the spin-2 mediator masses up
to 6 GeV are required to get the self-scattering cross section
for solving the small-scale problems. We find that fermion
dark matter is distinguishable from scalar or vector dark mat-
ter, due to the difference in the Born cross section. This is
because the particle-particle and particle-anti-particle scat-

123



  868 Page 6 of 11 Eur. Phys. J. C           (2021) 81:868 

Fig. 2 Born cross section (left) and non-perturbative cross section (right) for the self-scattering of scalar dark matter. We took AS = 1 and
mS = 100 GeV. We made the Hulthén potential approximation for the non-perturbative cross section

Fig. 3 The DM self-scattering
cross section divided by DM
mass as a function of the DM
velocity, depending on the spins
of dark matter, s = 1/2, 0 on
left and right. We have chosen
ADM = 1 and
mDMvdwarf/mG = 0.1, at dwarf
galaxies with vdwarf = 10−4.
Dashed and solid lines are for
the Born and non-perturbative
cross sections, respectively. The
case with s = 1 shows the
similar result as for the case
with s = 0

tering processes coexist in the case of fermion dark matter,
unlike in the other cases.

In Fig. 2, we depict the self-scattering cross section
divided by the DM mass for scalar dark matter as a func-
tion of mSvdwarf/mG . The Born approximation is made on
left and the non-perturbative cross section with the Hulthén
potential approximation is considered on right. We chose the
dark matter velocity to v = 10−2 and 10−4 in orange and pur-
ple lines, and AS = 1 and mS = 100 GeV were taken. Thus,
we can see that the Born cross section is already velocity-
dependent and it depends on the mass of the spin-2 mediator.
But, there is a clear distinction between the Born and non-
perturbative cross sections, due to the resonance effects in the
latter case, in particular, at small velocities of dark matter.

On the other hand, in Fig. 3, we also show the DM self-
scattering cross section divided by the DM mass as a function
of the DM velocity for ADM = 1 and several choices of the
DM and spin-2 mediator masses. The cases for fermion and
scalar dark matter are shown on left and right. The case for
vector dark matter is similar to the case for scalar dark mat-
ter, so we don’t show it in Fig. 3. Dashed and solid lines
indicate the Born self-scattering cross section and the non-

perturbative self-scattering cross section from the Hulthén
potential, respectively. Here, we chose mDM = 50, 200 GeV
and mDMvdwarf/mG = 0.033 (i.e. mG = 0.15, 0.60 GeV)
for blue and red lines, respectively. In this case, the resulting
self-scattering cross section gets saturated to a constant value
below vDM ∼ 10−4 and it becomes highly suppressed at
vDM ∼ 10−2 below the bounds from Bullet cluster [10–12].
As a result, the self-scattering cross section of dark matter is
suppressed at large velocities to be consistent with the dispar-
ity between rotation curves of galaxies and galaxy clusters.

We remark that the velocity dependence of the self-
scattering cross section is significant already in the Born limit
given in Eqs. (3.2)–(3.4), so only mild non-perturbative or
resonance effects are needed to get sufficiently large values
of the self-scattering cross section for WIMP dark matter.
Increasing (decreasing) ADM with the enhancement factor
fixed at galaxies, we need to choose a smaller (larger) DM
mass or a larger (smaller) spin-2 mediator mass in order to
get the enhancement factor suppressed at galaxy clusters.

We note that there is also a possibility to make the self-
scattering cross section velocity-dependent by the s-channel
resonance [26], in the case of vector dark matter of our model,
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whereas the s-channel resonance has an overall velocity-
suppression in the cases for scalar or fermion dark matter.

3.5 Dark matter annihilations

When dark matter couples to a light spin-2 mediator, it is
indispensable for dark matter to annihilate into a pair of
spin-2 mediators, i.e. DM DM → GG is kinematically open
and s-wave, independent of the spins of dark matter [13–
15]. So, if the mentioned annihilation process dominates in
determining the relic density and the spin-2 mediator decays
before the CMB recombination, the corresponding annihi-
lation cross section would be enhanced by the Sommerfeld
effects at a smaller velocity, thus making the WIMP-like dark
matter incompatible with Planck data.

Adopting the approximate analytic solutions with the
Hulthén potential as for the dark matter self-scattering, we
obtain the Sommerfeld factor for the s-wave dark matter scat-
tering [25] as

S0 =
π
2 x sinh(2πw)

sinh
[
πw

(
1 −

√
1 − x

w

)]
sinh

[
πw

(
1 +

√
1 − x

w

)]
(3.28)

with x = ADM
4πv

and w = k
δ

= 6
π2

mDMv
mG

. Then, the tree-level
annihilation cross section (σv)0 for dark matter is replaced by
(σv)ann � S0 (σv)0, which is enhanced at a low velocity for
dark matter. We note that the Sommerfeld factor is saturated
to a constant value for v � π

12 mG/mDM.
Simple solutions to the problem with Sommerfeld-enhanced

annihilation cross section for DM DM → GG would be to
make the spin-2 mediator long-lived until CMB recombina-
tion with small couplings to the SM or make the DM DM →
GG annihilation channel subdominant for determining the
relic density [27] or produce dark matter during the early
matter domination [28]. In the first solution, we could make
the spin-2 couplings to the SM small enough and the spin-
2 mediator decaying into neutrinos or light particles in the
hidden sector [27]. In the second solution, there is no need
of a large suppression of the dark matter annihilation into a
pair of spin-2 mediators, because we needed relatively mild
Sommerfeld effects for velocity-dependent self-interactions.
If either solutions are not realized, the tree-level cross section
for DM DM → GG must be suppressed for satisfying the
CMB constraints, thus giving rise to a small self-scattering
cross section for dark matter, DM DM → DM DM.

4 Non-linear interactions and unitarity

In this section, we discuss the Vainshtein effects on the self-
scattering of dark matter and the unitarity bounds on the
annihilation of dark matter in massive gravity. These effects

are distinguishable from the cases with other spins of media-
tors such as scalar or vector particles for self-interacting dark
matter.

4.1 Vainshtein effects on self-scattering

There appears a helicity-0 mode in massive gravity at the
non-linear level in addition to the five physical degrees of
freedom [29–32]. In the decoupling limit of massive gravity,
the helicity-0 mode π can be described by the cubic Galileon
theory with the coupling to dark matter [29–32], as follows,

LG = 1

2
(∂π)2 − 1

�3
3

(∂π)2�π − cDM

�
π TDM (4.1)

with TDM = TDM,μ
μ and �3 = (m2

G�/cDM)1/3 is the strong
coupling scale in massive gravity. Then, the helicity-0 mode
contribution to the dark matter potential is subject to the Vain-
shtein effect below the Vainshtein radius r∗ in our model,
which is given [29–32] by

r∗ = 1

�3

(cDMmDM

4π�

)1/3

= m−1
G

( mG

mDM

)1/3(3ADM

8π

)1/3
(4.2)

where we used the effective fine-structure constant in
Eq. (2.8) in the second equality.

First, formG � mDM and ADM ∼ 1, the Vainshtein radius
is much larger than the the range of the Yukawa potential,
rG = m−1

G , so the resulting potential for dark matter due to the
helicity-0 mode would be suppressed by (r/r∗)3/2 or (r/r∗)2,
depending on the realization of massive gravity theories, in
the region with r � rG � r∗ where the Coulomb limit of
the potential in Eq. (2.7) exists. In this case, the helicity-0
mode contribution can be safely ignored in our analysis. In
the plots in Fig. 1, the region with mG � mDM (to the right
of the blue dashed lines) shows that the DM self-scattering
cross section is given by σT /mDM � 0.1 cm2/g.

On the other hand, formG � mDM and ADM ∼ 1, we find
that r∗ � m−1

G , that is, the Vainshtein radius can be much
smaller than the range of the Yukawa potential. Therefore,
there is a range of the radius with r∗ < r � rG for which
the helicity-0 mode contribution becomes Coulomb-like so
it can be included to capture non-perturbative effects in the
effective theory. On the other hand, for r < r∗, the Vainshtein
screening suppresses the potential due to the helicity-0 mode,
so we can ignore the effects of the helicity-0 mode contri-
bution as compared to the Yukawa potential in Eq. (2.7).
In Figs. 1, 2 and 3, in the parameter space where the non-
perturbative effects are significant, that is, near the reso-
nance condition given in Eq. (3.24), the Vainshtein radius r∗
becomes r∗ ∼ m−1

G (3ADM/(4π2n))2/3 � rG for ADM ∼ 1.
In this case, for r � r∗, the extra contribution of the helicity-0
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mode for the dark matter potential is given by

�Veff � −c2
DMm2

DM

4π�2r
, (4.3)

thus leading to a change in the effective self-coupling for dark
matter from ADM to 5

2 ADM for r∗ < r � rG . Therefore, in
this case, there is a caution of the interpretation of our results
in the previous section, as 5

2 ADM = 1 should be taken in
the plots near the resonance regions in Figs. 1, 2 and 3. It is
interesting to see how the effective potential for dark matter
could be affected by the non-linear interactions of the massive
spin-2 particle in a concrete realization of ghost-free massive
gravity.

4.2 Unitarity bounds

The perturbative unitarity is the issue for the dark matter anni-
hilation into a pair of spin-2 mediators. The unitarity scale
depends on other couplings of the spin-2 mediators such as
quadratic couplings to dark matter and cubic self-couplings
[29,30,33], without affecting our previous discussion on the
DM self-scattering. In particular, non-linear interactions for
the massive spin-2 particle are important for the ghost-free
realization of a massive spin-2 particle [29–32].

For instance, fixing the quadratic coupling to dark mat-
ter and cubic self-couplings for the massive spin-2 mediator
appropriately in the dRGT gravity [29,30], the unitarity for
DM G → DM G or DM DM → GG by crossing symmetry
can be preserved best until the energy scale [33], given by

Emax ∼
(
mG�2

c2
DM

)1/3

=
(

2mGm2
DM

3ADM

)1/3

. (4.4)

Thus, close to the resonance condition for non-perturbative
self-scattering or Sommerfeld effects in Eq. (3.24), we find
that the maximum energy scales for dark matter annihilation
processes become Emax ∼ 1

πn2/3 mDM, which is independent
of the effective fine-structure constant ADM for the spin-2
mediator.

Now we discuss the unitarity scale from non-linear inter-
actions and its effects on the dark matter self-scattering
process. It is known that the unitarity of the spin-2 medi-
ator self-scattering [17,33] would be violated at �3 =
(m2

G�/cDM)1/3 = (m2
GmDM)1/3(3ADM/2)−1/6, which is

parametrically smaller that the one read from DM DM →
GG. Although the massive gravity theory would enter the
strong coupling regime at �3, the strong coupling scale
enters only in the loop processes for the dark matter self-
scattering. The helicity-0 mode π could contribute to the dark
matter self-scattering at loops, due to the self-interactions,

1
�3

3
(∂π)2�π , written in the decoupling limit [29–32], and

its linear coupling to dark matter. In this case, as discussed
just above, the strong coupling scale �3 can be smaller than
the unitarity scale inferred from the dark matter annihilation,

so the loop corrections due to the helicity-0 mode in each
ladder diagram for the dark matter self-scattering scale by

the factor, 1
16π2

m4
DM

��3
3

∼ 1
16π2

m4
DM

�2m2
G

∼ 1
16π2

ADMm2
DM

m2
G

. There-

fore, the mass of the spin-2 mediator would be bounded to
mG �

√
(3ADM/2)mDM/(4π), thus the case with a light

spin-2 mediator would be beyond the perturbativity regime.
However, suppose that the unitarity associated with the

self-interactions of the massive spin-2 mediator could be
ensured by another dynamics to a higher scale such as
Eq. (4.4). Then, after replacing �3 by Emax in Eq. (4.4),
the loop corrections due to the helicity-0 mode in each lad-
der diagram for the dark matter self-scattering scale by the

factor, 1
16π2

m4
DM

�E3
max

∼ 1
16π2

m4
DM

�3mG
∼ 1

16π2 ( 3
2 )

3
2
A3/2

DMmDM
mG

. As a

result, imposing the resonance condition in Eq. (3.24), we get

the bound on the effective self-coupling as A1/2
DM � 16

√
2/3

πn2

from the perturbativity. Under this assumption, the perturba-
tivity for the dark matter self-scattering could be well defined
and the effective field theory for the massive spin-2 mediator
could be ensured at least in the regimes where the velocity-
dependent self-scattering for WIMP dark matter are relevant
at galaxies and galaxy cluster scales and the corresponding
freeze-out process is taken into consideration.

5 Conclusions

We investigated a novel possibility that self-interacting dark
matter is endowed to be velocity-dependent due to the
exchange of a massive spin-2 particle between dark matter
particles. We showed that both the Born self-scattering cross
section and the relatively mild non-perturbative effects assist
to make the self-interacting cross section velocity-dependent
to be compatible with rotation curves of both galaxies and
galaxy clusters. Self-interacting dark matter necessarily anni-
hilates into a pair of spin-2 mediators, but the potential prob-
lem for CMB recombination can be avoided if there exist
other DM annihilation channels or the spin-2 mediator is
sufficiently long-lived without visible decay modes.

We also showed that the Vainshtein effects due the
helicity-0 mode could modify the self-scattering of dark mat-
ter in the decoupling limit of massive gravity if the Vain-
shtein radius is smaller than the range of the Yukawa poten-
tial between dark matter particles. Thus, the massive spin-2
mediator augmented with the helicity-0 mode could make
a distinct feature from the case with other typos of media-
tors such as scalar or vector mediators. We also found that
our model for self-interacting dark matter can be marginally
consistent with perturbative unitarity in the ghost-free real-
ization of the massive spin-2 particle.
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Appendix A: One-loop corrections to the
self-scattering amplitude for dark matter

We discuss the details of the one-loop corrections to the self-
scattering amplitude for scalar dark matter. We have shown
the tree-level amplitude in Sect. 3.2. In comparison, from
the Feynman diagrams with two spin-2 particle exchanges in
Fig. 4, we obtain the one-loop t-channel amplitude for the
self-scattering of two scalar dark matter particles, S(p) +
S(k) → S(p′) + S(k′), as follows,

it
loop =

(cS
�

)4 ×
∫

d4q

(2π)4

1

(q2 − m2
G)((q + p)2 − m2

S)((q − k)2 − m2
S)((p − p′ + q)2 − m2

G)

×
(
τμν(p, q + p)ταβ(k, k − q)Pμν,αβ(q)

)(
τρσ (q + p, p′)τκε(k − q, k′)Pρσ,κε(p − p′ + q)

)
(A.1)

where

τμν(k, q) = 2kμqν + (m2
S − k · q)ημν. (A.2)

Here, we have used Pμν,αβ = Pνμ,αβ = Pμν,βα in writing
the energy-momentum tensor in the above form τμν . For the
u-channel one-loop diagram, we can obtain the correspond-
ing amplitude from interchanging p ↔ k in it

loop.
Then, using the Feynman parameters,

1

a2
1a2a3

= 3!
∫ 1

0
dx

∫ 1−x

0
dy

1 − x − y(
a1(1 − x − y) + a2y + a3x)4

,

(A.3)

we can rewrite the one-loop scattering in the limit of the
forward scattering with p = p′ as

it
loop = 3!

( cS
�

)4

×
∫ 1

0
dx

∫ 1−x

0
dy (1 − x − y)

∫
d4q

(2π)4
1

(q̃2 − �2)4

×
(
τμν(p, q + p)ταβ(k, k − q)Pμν,αβ(q)

)

×
(
τρσ (q + p, p′)τκε(k − q, k′)Pρσ,κε(p − p′ + q)

)
(A.4)

with q̃ = q+yp−xk. As a result, for the non-relativistic and
forward scattering of scalar dark matter, we get the approxi-
mate results for the one-loop amplitude in dimensional reg-
ularization with d = 4 − 2ε, as follows,

Fig. 4 One-loop Feynman
diagrams for the self-scattering
of scalar dark matter

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  868 Page 10 of 11 Eur. Phys. J. C           (2021) 81:868 

it
loop = c4

S

1728π2m4
Gm

2
S�

4

×
[

24m8
Gm

2
S − 222m6

Gm
4
S + 353m4

Gm
6
S

+52m2
Gm

8
S − 12m10

S

−3(4m10
G − 43m8

Gm
2
S + 146m6

Gm
4
S − 130m4

Gm
6
S

−100m2
Gm

8
S − 168m10

S ) ln
(m2

G

m2
S

)

+6(m2
G − 4m2

S)
2
√
m4

G − 4m2
Gm

2
S

×(4m4
G − 3m2

Gm
2
S − 4m4

S)

× ln

(m2
G +

√
m4

G − 4m2
Gm

2
S

2mGmS

)

+72m8
S(10m2

G + 7m2
S)

(
1

ε
+ ln

( μ2

m2
G

))]
. (A.5)

Therefore, the one-loop amplitude becomes divergent due
to 1/ε in the last line, but the divergent part is cancelled by
the renormalization of the quartic coupling for scalar dark
matter. We note that the u-channel diagram leads to the same
result, u

loop ≈ t
loop.

On the other hand, for ξ ≡ m2
S/m

2
G � 1, we get the

approximate result for the finite part of the one-loop ampli-
tude from Eq. (A.5), as follows,

it
loop,finite ≈ 2c4

Sm
6
S

9π�4m2
G

√
ξ . (A.6)

We also remark on the velocity-dependent loop correc-
tions to the self-scattering amplitude. For the non-relativistic
forward scattering, there are leading velocity-dependent con-
tributions to the one-loop amplitude, given by

iδt
loop,v ≈ c4

Sm
6
S

216π2m4
G�4

(660m2
G + 211m2

S)

·v
2

ε
− 8c4

Sm
4
S

9π�4 v2ξ5/2 (A.7)

where v is the relative velocity between two dark matter parti-
cles. Therefore, we also need to introduce higher dimensional
counter terms for scalar dark matter, such as c6(∂μS∂μS)S2,
etc, to cancel the velocity-dependent divergent terms. On the
other hand, the finite velocity-dependent loop corrections can
be ignored as compared to the velocity-independent correc-
tions, as far as 4v2ξ � 1, that is, for a sufficiently small
velocity of dark matter. This is true of dark matter in galax-
ies and galaxy clusters that we are interested in.
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