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Abstract

In this study, a universal gated recurrent unit (u-GRU)-based location estimation (LE) method is proposed to obtain the location of an
ultra-wideband (UWB) transmitter. The proposed u-GRU-LE system consists of a GRU-based classifier and nine localizers for nine channel
models (CMs). The classifier first predicts the CM, and then, the proper localizer is selected according to the predicted CM to estimate the
location of the transmitter. Rigorous simulations are executed with various CMs. From the results, it is verified that the proposed universal
GRU-based 3D localization method generally performs well irrespective of the channel environments.
c⃝ 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The demand for accurate indoor localization systems is
growing as they are an important part of the Internet of Things.
There is a wide range of applications for indoor localization
systems, such as user tracking in buildings or unmanned vehi-
cle control inside warehouses. In [1,2], the authors proposed
a WiFi-based indoor positioning system, where [2] employs a
sensor fusion method. The ultra-wideband (UWB) technology
is mostly used for indoor localization because of robustness
against multipath effect and interference, high definition, and
the ability to penetrate various materials. In [3], a convolu-
tional neural network (CNN)-based method is proposed to
estimate the distance between a UWB transmitter (Tx) and a
receiver (Rx). In [4], a more complex CNN model is proposed
to find the two-dimensional location of Tx from the signal
captured in three Rx’s. Three-dimensional (3D) moving object
is tracked by using the measurements in open areas, such as
time difference, frequency difference, and angle of arrival [5].
In [6], a gated recurrent unit (GRU)-based model is designed
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to estimate the 3D location of Tx in a confined space, which
is called a GRU-based location estimation (GRU-LE) method.

In [6], the GRU-LE method needs to train a deep learning
model for every specific environment. If the environment
changes, the model has to be retrained with the new data of
the new environment. Thus in this study, the GRU-LE method
in [6] is extended to operate in various environments without
the retraining. To the best of our knowledge, there has been
lack of research on the environment detection/classification
based on UWB signals. To this end, the channel environment is
classified by using the proposed GRU-based classifier, and the
Tx location is then estimated by using a proper GRU-LE that is
trained for the classified channel model. The proposed method
is called a universal GRU-LE (u-GRU-LE) method. Numerical
results verify that the proposed u-GRU-LE localizes the UWB
Tx well irrespective of the channel models.

2. System and signal models

Consider a confined cubic area with the volume D1 × D2 ×

D3, where D1, D2, and D3 denote the width, depth, and height
f the area, as illustrated in Fig. 1. Inside the area, a UWB Tx
mits a signal, and P Rx’s at the eight corners (i.e., P = 8)
t unit-based 3D localization method for ultra-wideband systems, ICT Express (2021),
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iences (KICS). Publishing services by Elsevier B.V. This is an open access
nc-nd/4.0/).

http://www.elsevier.com/locate/icte
https://doi.org/10.1016/j.icte.2021.06.006
http://www.elsevier.com/locate/icte
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tananh0404@cau.ac.kr
mailto:jgjoung@cau.ac.kr
mailto:kangxin@uestc.edu.cn
https://doi.org/10.1016/j.icte.2021.06.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


D.T.A. Nguyen, J. Joung and X. Kang ICT Express xxx (xxxx) xxx

T

m

d
s
a

r

c
p
p
t
i
t

f

3

c
t

3

g
i
q
f
n
H
v
a

v

s

u

w
R
U

U

H
v
v
s
f

3

i
t
t
a

s
o

Fig. 1. 3D environment model with one Tx and P = 8 Rx’s. The location
of Tx is estimated from the received signals from P Rx’s.

Fig. 2. Proposed GRU classifier architecture. From the P received UWB
signals, CM is classified to CM-o.

Table 1
Channel model notation and environments [7].

Channel model Environment

CM-1 Residential, LoS
CM-2 Residential, NLoS
CM-3 Office, LoS
CM-4 Office, NLoS
CM-5 Outdoor (sub-urban), LoS
CM-6 Outdoor (sub-urban), NLoS
CM-7 Industrial, LoS
CM-8 Industrial, NLoS
CM-9 Open Outdoor (Snow-covered, farm)

and (x p, yp, z p), respectively, where p ∈ {1, . . . , 8}. The
x is randomly located inside the area, i.e., x ∼ U[0, D1],

y ∼ U[0, D2], and z ∼ U[0, D3], where U[a, b] indicates
the uniform distribution within interval [a, b]. The aim of the
considered localization system is to estimate the location of
Tx inside the area from the received signals.

For this research, consider nine UWB channel models
(CMs) in Table 1 that follow the IEEE 802.15.4a standard [7].
Here, residential, office, outdoor, and industrial environments
modeled with line-of-sight (LoS) or non-line-of-sight (NLoS).
Assuming the localization system operates in CM-o with o ∈

{1, . . . , 9}, the received signal of Rxp, denoted by ro,p(t), is
odeled as follows [7]: ro,p(t) = ho,p(t)∗s(t)+no,p(t), where

ho,p(t) is the impulse response of the channel between Tx
and Rxp, s(t) denotes the transmitted signal at time t , no,p(t)

enotes an additive white Gaussian noise at Rxp, and ∗ repre-
ents the convolution operation. Here, the channel is modeled
s follows [7]: ho,p(t) =

∑L p−1
l=0

∑Kl−1
k=0 ak,l exp( jφk,l)δ(t −

Tl −τk,l), where L p represents the total number of clusters; Kl
epresents the total number of multipath components of the lth

2

luster; ak,l denotes the tap weight of the kth multipath com-
onent of the lth cluster; φk,l denotes the uniformly distributed
hase of the kth multipath component of the lth cluster; δ(·) is
he delta function; Tl is the delay for the lth cluster; and τk,l

s the intra-cluster delay for the kth multipath component of
he lth cluster. The signal after matched filtering is denoted by
yo,p(t) as yo,p(t) = s(Td − t) ∗ ro,p(t), where Td is the delay
or causality of the signals.

. Proposed method

In this section, we describe the designs of the GRU-based
lassifier and localizer, as well as the generation of the input
raining samples.

.1. Input generation

The input generation method follows the method in [6]. To
enerate Q training samples, the signal yo,p,q (t) is captured
n CM-o at Rxp, where o ∈ {1, . . . , 9}, p ∈ {1, . . . , P}, and
∈ {1, . . . , Q}. These signals are then sampled with sampling

requency fs to a complex-valued vector yo,p,q ∈ CN×1, whose
th element is denoted by yo,p,q [n], where n ∈ {1, . . . , N }.
ere, N is designed to be 3600. A real-valued standardized
ector vo,p,q ∈ RN×1 is generated with the nth element defined
s follows:

o,p,q [n] =

⏐⏐yo,p,q [n]
⏐⏐ − µo,p,q

σo,p,q
, (1)

where µo,p,q and σo,p,q are the mean and standard deviation of⏐⏐yo,p,q [n]
⏐⏐. To reduce the computational complexity and noise

effect, vo,p,q is down-sampled to uo,p,q ∈ RN/rd×1 with down-
ampling rate rd with the nr th element defined as follows:

o,p,q [nr ] = max
n∈{(nr −1)rd+1,...,nr rd }

vo,p,q [n], (2)

here nr ∈ {1, . . . , N/rd}. All the down-sampled signals at P
x’s are then combined to construct the input training matrix
o,q as follows:

o,q =
[
uT

o,1,q · · · uT
o,P,q

]T
∈ RP×(N/rd ). (3)

ere, Uo,q can be divided time step-wise into many column
ectors, i.e., Uo,q = [io,1,q · · · io,N/rd ,q ]. The nr th column
ector of Uo,q , denoted by io,nr ,q , is the input vector at time
tep nr in GRU, whereas the pth row vector is the pth feature
or the GRU learning network.

.2. Classifier architecture

The proposed GRU-based classifier of the channel models
s illustrated in Fig. 2. The classifier is a deep learning model
hat is composed of (i) an input layer, (ii) a GRU layer, (iii)
wo fully connected (FC) layers, (iv) a softmax layer, and (v)
classification layer.
The GRU layer consists of N/rd GRU cells, which is the

ame as the number of input time steps. Denote the input and
utput vectors of a GRU cell in the lth GRU layer at time step
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t by gl,t ∈ RIg×1 and cl,t ∈ RCg×1, respectively. The operation
inside the cell is then modeled as follows:

fl,t = σ
(
W f gl,t + R f cl,t−1 + b f

)
(4)

l,t = σ
(
Wmgl,t + Rmcl,t−1 + bm

)
(5)

c̃l,t = tanh
(
Wc̃gl,t + Rc̃

(
ml,t ⊙ cl,t−1

)
+ bc̃

)
(6)

cl,t =
(
1 − fl,t

)
⊙ cl,t−1 + fl,t ⊙ c̃l,t (7)

here fl,t , ml,t , and c̃l,t ∈ RCg×1 denote the update gate, reset
ate, and candidate activation of GRU cell in the lth GRU
ayer at time step t ; W f , Wm , and Wc̃ ∈ RCg×Ig describe
he input weights for fl,t , ml,t , and c̃l,t , respectively; R f , Rm ,

and Rc̃ ∈ RCg×Cg indicate the recurrent weights for fl,t , ml,t ,
and c̃l,t , respectively; b f , bm , bc̃ ∈ RCg×1 indicate the biases
for fl,t , ml,t , and c̃l,t , respectively; σ (·) and tanh(·) denote
the sigma function and the tanh function, respectively; and ⊙

denotes the element-wise multiplication operation.
A GRU cell can encode both its input and output of the cell

in the previous time step. The length of the GRU cell output
is considered as the number of units of the GRU layer. Here,
the number of units at the GRU layer is 32. The output of the
last cell will be the input for the first FC layer. The number of
units for two FC layers are 128 and nine units, respectively.
The classifier output is the estimated class of CM of the input
signals, which is denoted by ô. The parameters and layers
of the GRU classifier are numerically designed such that the
highest accuracy of the classifier is obtained in the shortest
training time.

3.3. Localizer architecture

After the CM of the input training signals is predicted at
the proposed GRU classifier, a localizer model, i.e., CM-NET
is selected accordingly among CM-o-NET’s. The CM-o-NET
is trained by the training data set generated from the received
signals under the given CM-o. Each CM-o-NET follows the
GRU-LE model in [6, Fig. 2] that consists of (i) an input layer,
(ii) two GRU layers with 64 and 32 units, respectively, (iii)
three FC layers with 256, 32, and three units, respectively, and
(iv) a regression layer. Here, the second GRU layer takes the
input from the output of the first GRU layer. Having two GRU
layers on top of each other helps the GRU-LE model to learn
different levels of abstractions of input signals over time. The

regression layer calculates the loss between the output of the

3

GRU-LE model and the ground truth location of Tx that is
modeled as

LT x =
1

2Q

Q∑
q=1

[(
xq − x̂q

)2
+

(
yq − ŷq

)2
+

(
zq − ẑq

)2
]
, (8)

where
(
xq , yq , zq

)
and

(
x̂q , ŷq , ẑq

)
represent the ground truth

and the estimation of Tx location for the qth training sample,
respectively. The GRU-LE model training process tries to
minimize the loss LT x in (8).

3.4. Structure of proposed u-GRU-LE system

Fig. 3 illustrates the proposed u-GRU-LE system. The
UWB signal, yo,p(t), is received at Rx p and collected at
the u-GRU-LE system, where p ∈ {1, . . . , P}. Each signal is

ormalized to vo,p[n] in (1), which is then down-sampled to
o,p[nr ] in (2). A training matrix, Uo, is structured by stacking

P row vectors as shown in (3). The proposed GRU classifier in
ig. 2 predicts the class of CM, i.e., ô ∈ {1, . . . , 9}, from Uo.
nce the class of CM is determined, the training matrix Uo is

ransferred to the localizer of the corresponding CM-ô, which
s denoted by CM-ô-NET. The location of the Tx, i.e., (x̂, ŷ, ẑ),
s then estimated through the CM-ô-NET.

. Simulation result

In this section, we compare the performance of the pro-
osed u-GRU-LE method with the conventional GRU-LE
ethod under various environments. As the performance met-

ic, we use the root mean-squared-error (RMSE) between the
stimated and ground truth of the 3D location of Tx that is
efined as

RM SE ≜

√ 1
T

T∑
t=1

[(
xt − x̂t

)2
+

(
yt − ŷt

)2
+

(
zt − ẑt

)2
]
.

n a cubic area, eight Rx’s are located at eight corners,
.e., P = 8, as illustrated in Section 2. The simulation is
erformed in MATLAB 2021a. The sampling frequency is fixed
s fs = 24 GHz. The down-sampling rate rd is set to 30 as
t provides the best performance for the u-GRU-LE method,
hich means the input training matrix size for both GRU-
ased models is 8 × 120. With 180, 000 training samples,
he classifier is trained using the adaptive moment estimation
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Fig. 4. RMSE performances (y-axis) across SNR (x-axis). The CM-o-NET and u-GRU-LE are tested with various CMs.
ADAM) algorithm. The number of epochs is 20, with 200
amples per mini-batches. The initial learn rate is 0.02, which

drops to 90 percent for every two epochs, and the gradient
threshold is 1. It takes approximately 5 minutes to train the
classifier.

In Fig. 4 RMSE of CM-o-NET and u-GRU-LE methods
cross SNRs under various CMs, i.e., RMSE for various test
ata is given. The RMSE decreases as the SNR increases. As
xpected, CM-o-NET operates well for the test data generated
nder CM-o environment. The performance of CM-o-NET,
owever, severely deteriorates if it is tested with data generated
nder CM-o, where o ̸= o. On the other hand, the proposed
-GRU-LE operates well irrespective of the CMs (especially,
4

for CMs with LoS). From the results, it is verified that the
designed GRU classifier is effective to determine the CM, even
though its accuracy is insufficient, e.g., approximately 90 %
(75 %) when SNR is greater than 20 dB (10 dB), based on
simulation results omitted in this paper.

5. Conclusion

In this study, we have extended the conventional GRU-
based location estimation (GRU-LE) method, which is trained
and operates for a specific channel model (CM), to a universal
localization method operating well various CMs. To this end,
we design a GRU-based classifier that effectively classifies the
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Ms as numerically verified. The proposed universal GRU-
E (u-GRU-LE) that employs the designed GRU classifier
an localize a UWB transmitter regardless of the types of
M if the potential CMs are sufficiently trained. Since the
RU network of the proposed u-GRU-LE does not need to
e retrained according to the type of CMs when it is de-
loyed in a different environment, the dynamic operation of
he UWB localization system is possible at the cost of marginal
omputational complexity increase for the GRU classifier.
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