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Abstract: We utilized Ni as a floating capping layer in p-channel SnO thin-film transistors (TFTs) to
improve their electrical performances. By utilizing the Ni as a floating capping layer, the p-channel SnO
TFT showed enhanced mobility as high as 10.5 cm2

·V−1
·s−1. The increase in mobility was more significant

as the length of Ni capping layer increased and the thickness of SnO active layer decreased. The observed
phenomenon was possibly attributed to the changed vertical electric field distribution and increased hole
concentration in the SnO channel by the floating Ni capping layer. Our experimental results demonstrate
that incorporating the floating Ni capping layer on the channel layer is an effective method for increasing
the field-effect mobility in p-channel SnO TFTs.

Keywords: p-channel SnO; thin-film transistor; floating Ni capping layer; high mobility; bulk channel;
percolation conduction

1. Introduction

Nowadays, oxide semiconductor-based thin-film transistors (TFTs) have gained significant attention
as the backplane of various displays because of their merits including high mobility, good operational
stability, low process temperature, and excellent uniformity [1–6]. However, most of oxide-TFT logic
circuits were fabricated using only n-channel TFTs because the electrical properties of p-channel oxide
TFTs are still much poorer than those of n-channel oxide TFTs [7–10]. Complementary logic circuits
consisting of n- and p-channel transistors have advantages over n-channel logic ones in terms of static
power consumption and noise immunity [11–15]; therefore, to use oxide TFTs in more diverse applications,
it is crucial to improve the electrical properties of p-channel oxide TFTs. Up till date, various p-type
oxide semiconductors of Cu2O [16,17], CuO [18,19], NiO [20–22], doped ZnO [23], and SnO [24–26],
have been studied as channel materials for p-channel oxide TFTs. Among these p-type channel materials,
SnO has gained special attention; this is because the hybridization of the O 2p and Sn 5S orbitals in
the valence-band edge form the pseudo-closed ns2 orbitals in SnO, thereby providing an effective hole
conduction path [27,28]. However, despite intensive research, most p-channel SnO TFTs reported thus
far exhibit low field-effect mobilities (µFEs) of ~1–3 cm2

·V−1
·s−1 [29–32], thus limiting the development

of oxide TFT-based advanced electronic systems. In this study, we fabricated a high mobility p-channel
SnO TFT with a µFE of 10.5 cm2

·V−1
·s−1 utilizing a floating Ni capping layer. Metal or metal-oxide-based

floating capping layers have been frequently used to increase the µFE values of various n-channel oxide
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TFTs [33–37]. However, no study has yet reported the effects of using a metal capping layer in p-channel
oxide TFTs. As far as we know, the µFE of 10.5 cm2

·V−1
·s−1 is the highest value reported in p-channel SnO

TFTs to date. Therefore, our experimental results are expected to be widely used in diverse fields requiring
high-mobility p-channel oxide TFTs.

2. Experimental Procedure

Figure 1a,b shows the schematic structure and optical microscope image, respectively, of the p-channel
SnO TFT with a floating Ni capping layer. The p-channel SnO TFTs were fabricated on thermal SiO2

(40 nm)/highly doped n-type silicon wafer (resistivity < 0.005 Ω·cm), where the highly doped silicon wafer
acted as the gate of the TFTs. A 16-nm-thick thin-film was formed using radio frequency (RF) magnetron
sputtering with a Sn target (3-inch diameter, 99.999%) without substrate heating in an Ar/O2 ambient
(Ar/O2 = 90 sccm/4 sccm) as a channel layer of the TFTs. The deposition pressure, wafer-to-target distance,
and RF power were 3 mTorr, 140 mm, and 60 W, respectively. The thin film deposited on the SiO2/n-type
silicon wafer was then thermally treated at 180 ◦C in air ambient for 30 min by using a hot plate [38].
Subsequently, the source/drain electrodes were deposited with 100 nm thick indium-tin oxide (ITO) by
using direct current magnetron sputtering; the 70 nm thick Ni floating capping layer was deposited
using an e-beam evaporation system. Then, the fabricated devices were subjected to additional thermal
treatment at 180 ◦C for 30 min in air. In this work, Ni was chosen as a material for a floating capping layer
because of its high work function and an economical price. Finally, a SU-8 photoresist (thickness: 2 µm)
was spin-coated as a passivation layer via the procedure described in our previous paper [39]. A lift-off

process was applied to form every layer in this work. The structural properties of the tin oxide thin film
were examined by X-ray diffraction (XRD, Rigaku, Tokyo, Japan) with CuKα radiation (λ = 1.5418 Å)
at 40 kV and 200 mA. The chemical state and composition of the tin oxide thin film were evaluated by
X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, East Grinstead, UK) with Al-Kα source
(1486.6 eV) having a 100 µm aperture diameter. The electrical properties of the fabricated SnO TFTs were
characterized at room temperature inside the dark chamber using a semiconductor parameter analyzer
(Agilent Technologies., Santa Clara, CA, USA).
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Figure 1. (a) Schematic structure; and (b) optical microscope image of p-channel SnO TFT with floating Ni
capping layer.

3. Results and Discussion

Figure 2a shows the XRD patterns of the thin film formed on the SiO2/n-type silicon wafer. We can
observe several diffraction peaks from the XRD characterization results, which implies that the thin film
is polycrystalline. The XRD patterns in Figure 2a match with the (002), (101), (103), (110), (112), (200),
and (211) planes of the tetragonal SnO phase (PDF card number 04-008-7670), which indicates that the
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dominant phase of the deposited thin film is SnO. Figure 2b shows the XPS Sn 3d5/2 spectra of the deposited
thin film. The XPS spectra were deconvoluted into three sub-peaks stemming from the oxidized states of
Sn with 3 different oxidation numbers; here, the binding energies of the Sn0, Sn2+, and Sn4+ components
were 484.8, 486.0, and 486.7 eV, respectively [40]. Figure 2c shows the relative peak area ratios of the
Sn0, Sn2+, and Sn4+ components calculated from the XPS spectra of the tin oxide thin film in Figure 2b.
The XPS characterization results show that the deposited thin film is composed of Sn (15.8%), SnO (78.9%),
and SnO2 (5.3%); however, Sn2+ and SnO are the dominant states/phases.
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Figure 2. (a) XRD pattern; and (b) XPS Sn 3d5/23 spectra of tin oxide thin film. (c) Relative peak area ratio
of Sn0, Sn2+, and Sn4+ components calculated from XPS spectra of tin oxide thin film.

The results in Figure 2c are consistent with the XRD characterization results in Figure 2a. Figure 3a,b
compares the semi-logarithmic- and linear-scale transfer characteristics of the pristine SnO TFT with
those of the SnO TFTs having different lengths of the floating Ni capping layer, respectively. Here, ID,
VGS, and VDS represent the drain current, gate-source voltage, and drain-source voltage, respectively.
The width/length (W/L) ratio of the channel was 500 µm/700 µm in all TFTs and those of the floating
Ni capping layer (WC/LC) were 700 µm/100 µm, 700 µm/400 µm, and 700 µm/600 µm. Measurements
were conducted at VDS = −1.0 V for all TFTs. From the results in Figure 3, it is evident that the floating
Ni capping layer enhances the µFE of the SnO TFT, and µFE increases significantly with an increase
in LC. Moreover, we can observe that the threshold voltage (VTH) and turn-on voltage (VON) move
slightly toward the positive direction in the SnO TFTs with the floating Ni capping layer compared to the
pristine SnO TFT. Table 1 shows the electrical parameters calculated from the SnO TFTs with different Lc
values. Here, VTH was extracted from the intercept of the linearly extrapolated curve with the VGS axis in
Figure 3a and was calculated from the maximum value of the transconductance at VDS = −1.0 V using the
following equation:

µFE =
Lgm

WCiVDS
(1)
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where Ci is the capacitance of the gate dielectric per unit area and gm is the transconductance. VON is the
value of VGS at which ID increases. The subthreshold swing (SS) was calculated using the subthreshold
region data in Figure 3b based on the following equation:

SS =
dVGS

d(logID)
(2)
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Table 1. Electrical parameters measured for the pristine SnO TFT and SnO TFTs with different LC values.

w/o Ni Capping Lc = 100 µm Lc = 400 µm Lc = 600 µm

µFE (cm2/V·s) 1.7 1.9 4.0 10.5
SS (V/decade) 3.1 2.9 2.8 2.5

VTH (V) 5.2 5.4 5.8 6.1
VON (V) 12.5 12.6 12.9 13.2

The data in Table 1 show that the µFE of the SnO TFT increased from 1.7 to 10.5 cm2
·V−1
·s−1 after

incorporating the floating Ni capping layer with LC = 600 µm. Figure 4 displays the output characteristics
of the floating-Ni-capped SnO TFT (LC = 600 µm); the output characteristics show a solid pinch-off and
strong saturation behavior. Experimental results in Figures 3 and 4 demonstrate that incorporating of
the floating Ni capping layer is an effective method for increasing the µFE value in p-channel SnO TFTs.
Nevertheless, the physical mechanism responsible for the increase in µFE after forming the floating Ni
capping layer in the p-channel SnO TFT is still controversial. The most plausible mechanism is the changed
vertical electric field distribution inside the SnO channel by the floating Ni capping layer. We measured
the work-function (Φ) of the deposited SnO thin-film as 4.68 eV using the Kelvin probe force microscopy
method (Model: KP Technology SKP5050). Considering that Ni has Φ value (5.0–5.3 eV) higher than that
of SnO [41,42], the back-surface potential of SnO changed such that the holes accumulated at the SnO-Ni
interface. Figure 5a,b illustrates the band diagrams for pristine (without capping layer) and floating Ni
capped SnO channels, respectively. In the pristine SnO TFT, the negative VGS induces hole accumulation
only at the front interface (SnO-SiO2 interface). However, in the SnO TFT with the floating Ni capping
layer, hole accumulation occurs at both front (SnO-SiO2) and back (SnO-Ni) interfaces when the negative
VGS is applied to the gate electrode. Because the channel thickness of the fabricated SnO TFT is very
low (tSnO = 16 nm), two channels can overlap and form the bulk channel [42]. When the holes move
through the bulk channel, they can avoid scattering at the interface, and µFE can be increased. The increase
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in µFE caused by the formation of the bulk channel is already reported in previous works for dual-gate
IGZO (n-channel) [43] and SnO (p-channel) TFTs [44]. Another possible mechanism is the enhanced
percolation conduction caused by the increased hole concentration in the SnO channel. The formation of
hole accumulation layers by the floating Ni capping layer could have increased the hole concentration in
SnO, which induced an increase in the percolation conduction probability and µFE value [45]. Studies have
reported that the random distribution of Sn2+ ions modulates the electronic structure of SnO near the
valence band maximum and form a potential barrier distribution with a width of a few tens of meV and a
height of 0.10 eV [45]. Further studies need to be conducted to understand the exact physical mechanism
responsible for the reported phenomenon in this work.
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Figure 6a–c shows the linear scale transfer characteristics of the p-channel SnO TFTs with and without
the floating Ni capping layer (LC = 600 µm) obtained from devices having different tSnOs of 16, 21,
and 32 nm. The data show that µFE of the SnO TFT increases after forming the floating Ni capping layer in
all devices; however, the degree of µFE enhancement decreases as the tSnO increases. Figure 6d presents
the ratios of the µFE extracted from the SnO TFT with the floating Ni capping layer (LC = 600 µm) to that
extracted from the SnO TFT without the capping layer in every TFT with different tSnOs.

The results presented in Figure 6 show that the enhanced µFE in the SnO TFT with a floating Ni
capping layer is not simply due to the additional conduction path formed by the capping layer, but are
consistent with the possible physical mechanisms suggested in the above paragraph because decreases
in channel thicknesses facilitate both the bulk channel formation and increase in the channel carrier
concentration through band bending at the back-surface in the TFTs.
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4. Conclusions

In this work, we studied the effects of incorporating a floating Ni capping layer on the electrical
characteristics of p-channel SnO TFTs. The obtained results show that the floating Ni capping layer
enhanced the µFE of the SnO TFT, and this enhancement became more significant with an increase in LC

and a decrease in tSnO. Applying the floating Ni capping layer that almost covered the channel region
(LC/L = 600/700 µm) increased the µFE to a value as high as 10.5 cm2

·V−1
·s−1. Although the physical

mechanism responsible for the reported phenomenon is still controversial, the formation of the bulk
channel and increase in the percolation conduction probability are considered as possible mechanisms.
We believe that our method can offer a simple and promising way to enhance the µFE of p-channel
SnO TFTs.
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