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Abstract

We propose a paradigm for the inflation and the vanishing cosmological constant in a unified way with the sel
solutions of the cosmological constant problem. Here, we consider a time-varying cosmological constant in self-tuning mod
of the cosmological constant. As a specific example, we demonstrate it with a 3-form field in 5D.
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1. Introduction

Ever since the inflationary idea has been propo
how the universe settles after the inflationary per
at the vacuum with the vanishing vacuum ene
has been a dream to be solved but postponed
the solution of the cosmological constant problem
known. In 4-dimensional (4D) field theory models,
is known that there is no solution for the cosmologi
constant problem [1]. One must go beyond 4D to fi
a clue to the solution of the cosmological const
problem. In this sense, the Randall–Sundrum (R
type models, in particular the RS-II type models
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are of great interest toward a clue toward a vanish
cosmological constant.

Indeed, a few years ago solutions of the cosmo
ical constant problem have been tried under the n
of self-tuning solutions [3–6]. In the late 1970’s a
early 1980’s it was called the solutions with an und
termined integration constant(s). The old self-tun
solutions looked for flat space solutions whether
not it accompanies the de Sitter (dS) space and/or
de Sitter (AdS) space solutions. This kind of old se
tuning solutions is calledweak self-tuning solutions.
On the other hand, recently it has been tried to fi
a self-tuning solution without allowing the nearby d
and AdS space solutions [3]. This kind of new se
tuning solutions can be calledstrong self-tuning solu-
tions. However, there seems no example for the str
self-tuning solution [4].

http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


2 J.E. Kim, H.M. Lee / Physics Letters B 590 (2004) 1–7

is
ric

t it
elf-
ind
the
only
for
e
in

d
.
a

ne-
10],
f

ns,
on
ow
sally

o-
ed

e-
e to
ace

king
sec-
e
sed

re
on-
ur-

re-
ce
and
ant
ope
ob-
ni-

ch

fu-

ak
o
ion

g
ng
ich
is

ts
in
ne
le

not
n
itter
at

the
ing
lds
n

the
ne

ate
ing
ce
ion,
on.
ng
ro

for
y to
se
af-
g-
di-
The first example for the self-tuning solution
obtained in 5D with the three index antisymmet
tensor field AMNP , with the 1/H 2 in the action
whereHMNPQ = εMNPQ∂MANPQ [5,7]. Certainly,
this action has a few unsatisfactory features, bu
renders an example for the existence of weak s
tuning solutions, and provides possible physics beh
the self-tuning solutions. One such example is
existence of the region of parameter space where
the dS solutions are allowed, which can be used
the period of inflation [8]. From this example, w
can envision a unification of the ideas of inflation
the early universe, presumably at the GUT era, an
the solution of the cosmological constant problem1

Weak self-tuning solutions have been tried with
string-inspired Gauss–Bonnet action with some fi
tuning between bulk and/or brane parameters [
and in models with brane gravity [11]. In view o
the existence of a few weak self-tuning solutio
therefore, the time is ripe to consider a unified view
the inflation and vanishing cosmological constant n
even though there has not appeared yet a univer
accepted self-tuning solution.

In this vein, we try to find out time-dependent s
lutions of the cosmological constant for a simplifi
step function change (with respect tot) of the cos-
mological constant. We have tried this kind of tim
dependent step function for the brane tension befor
show the existence of a flat space to another flat sp
solution in case the spontaneous symmetry brea
changes the vacuum energy of the observable
tor [7]. Our motivation in this Letter is to see th
time-dependent curvature change. However, the clo
form dS solutions are difficult to find out. In fact, the
has not appeared any closed form dS solution c
nected to a self-tuning solution. A time-dependent c
vature solution is even more difficult to obtain. The
fore, in this Letter we just try to show the existen
of such time dependent solutions of the curvature
put forward a paradigm how the cosmological const
can become zero after the inflationary era. We h
that the solution of the cosmological constant pr
lem can be realized in this way if there appears a u

1 The present tiny vacuum energy of order(0.003 eV)4 is
expected to be understood by another independent mechanism su
as by the existence of quintessence [9].
versally accepted weak self-tuning solution in the
ture.

There exist two examples of the closed form we
self-tuning solutions [5,6]. In this Letter, we try t
show the paradigm with the weak self-tuning solut
obtained with the 1/H 2 term by Kim, Kyae, and Lee
(KKL) [5,7].

The unified view of the inflation and vanishin
cosmological constant is realized in the followi
way. The universe starts with the parameters wh
allow only the dS space solutions [8]. Let us call th
dS-only regionthe D-region. In this phase there resul
a sufficient inflation. The inflationary potential tried
4D field theory models is the 4D potential at the bra
located aty = 0 in the RS-II models. The observab
sector fields are localized at they = 0 brane. When
the brane tension becomes sufficiently small, but
necessarily zero, the parameters enter into the regio
where the flat space, de Sitter space and anti-de S
space solutions are allowed [7]. Let us call this fl
space allowing regionthe F-region. Note that the
dynamics at the brane is also affected by gravity in
bulk but for our brane fields the effect is just chang
the 4D Planck mass. Then the behavior of the fie
living in the brane can be studied by the well-know
4D analysis. One proposal for the brane fields is
hybrid inflation [12] where parameters at the bra
can change. In particular, the brane tensionΛ1 can
change so that the parameter range for theD-region
is changed to that of theF-region. Then, we may
consider an initial condition after exiting from the
D-region is a dS space solution—since we anticip
no abrupt change of the curvature of the underly
space—in theF-region. Since the flat space, dS spa
and AdS space solutions are allowed in the F-reg
we look for a time-dependent solution in the F-regi
In particular, we look for the curvature changi
solutions. If the effective 4D curvature tends to ze
ast → ∞,

(1)Λ̄eff ∝ 1

tp

wherep > 2, then we obtain a reasonable solution
the cosmological constant problem. It is necessar
requirep > 2 so that the radiation dominated pha
of the standard Big Bang cosmology commences
ter inflation. The solution for the vanishing cosmolo
ical constant problem can be realized with the con
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tion (1) satisfied with weak self-tuning models. If w
cannot determine (1) classically as a solution of eq
tions of motion, a quantum mechanical probabilis
determination can be given. In this sense, Baum
Hawking’s probabilistic interpretation [13] is clear
envisioned in this 5D example.

On the other hand, if we find a strong self-tuni
solution, we must also show the existence of
D-region in that model also to accommodate
inflationary era. Otherwise, it is not cosmologica
successful.

2. Time-dependent curvature in weak self-tuning
model

As a prototype example of the weak self-tuni
model, we consider the KKL model [5,7]. Here,
three-form fieldAMNP (M,N,P = 0,1, . . . ,4) [5,7]
is introduced. In this model, it has been shown
that there exists a band of brane tensionΛ1, allowing
only the dS solutions,|Λ1| >

√−6Λb(≡ D-region),
whereΛb is the bulk cosmological constant. On t
other hand, both 4D flat and maximally curved (dS4
and AdS4 spaces) solutions are allowed for|Λ1| <√−6Λb(≡ F-region) [5,7]. Thus, the KKL model has
the ingredient needed for inflation in the weak se
tuning model.2

In the KKL model, let us proceed to show
time-varying 4D cosmological constant.3 Because of
the difficulty of obtaining a closed form for th
t-dependent solution, we consider just the instan
neous transition between two differentdS4 curvature
scales.

The 5D action considered in the KKL model is

S =
∫

d4x

∫
dy

√−g

(
1

2
R − Λb + 2 · 4!

H 2

(2)−
√−g4√−g

Λ1δ(y)

)
,

whereg, g4 are 5D and 4D metric determinants,H 2 =
HMNPQHMNPQ, and Λb, Λ1 are bulk and brane
cosmological constants, respectively. Henceforth, we

2 Other self-tuning solutions with different forms for the acti
of HMNPQ = ∂[MANPQ] have been also considered [6].

3 This work has been reported at a recent conference [14].
use the dimensionless unit for the fundamental sc
M = 1. The fundamental unitM can be reintroduce
when needed. Then, the ansatz for thedS4 solution is

(3)

ds2 = β2(y)
(−dt2 + e2

√
Λ̄t δij dxi dxj

) + b2dy2,

(4)Hµνρσ = √−gεµνρσ f (y), H5ijk = 0,

whereΛ̄ is thedS4 curvature, andb is a constant, and
f 2(y) = 2A/β8(y) with an integration constantA.
For this ansatz, the 4D curvaturēΛ is constant. For
a constantΛ̄, one can easily obtain relevant equatio
assuming the Einstein space

(5)R(eff)µν = 3Λ̄g(eff)µν.

But, for a time-dependent̄Λ the calculation is much
more involved.

The (55) component Einstein equation in the KK
model gives the governing equation ofβ [7,8]

(6)
1

b
β ′ = ±

√
k̄2 + k2β2 − Q2β10,

where

(7)k =
√

−Λb

6
, k̄2 = Λ̄, Q =

√
1

6A
.

Moreover, the boundary condition for the warp fac
aty = 0 is given by

(8)
β ′

β

∣∣∣∣
y=0+

= −b

6
Λ1.

Then, if we take the negative sign on the RHS
Eq. (6) for a positiveΛ1, the warp factor become
β(y) = β(b(−|y| + c); k̄2) with a positive integration
constantc. Even if the exact form forβ was not
obtained, it has been shown numerically that th
always exists adS4 solution in the F-region [7,8]. Not
that there is the repetition of bulk horizons amo
which only the first horizon aty = c is causally
connected to the observer aty = 0 and the length
scalebc can be considered as the physical size of e
dimension.

Let us consider the instantaneous change ofb(t) at
t = t0 as4

(9)b(t) = (bf − bi)θ(t − t0) + bi.

4 This form was also considered for maintaining the flat solut
with a changing brane tension in Ref. [7].
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Then, the warp factor has a form ofβ[|y|, t] =
β[b(t)(−|y|+c); k̄2(t)] with time-dependent̄k(t). For
a constant brane tensionΛ1, the boundary condi
tion (8) aty = 0 reads the time dependence ofk̄2(t)

as

(10)k̄2(t)β−2(0, t) + k2 − Q2β8(0, t) = k2
1,

wherek1 = Λ1/6. Thus,k̄2(t) is a function ofθ(t − t0)

to be determined from knowing the exact form ofβ .
Anyway, Λ̄(t) has the initial valueΛ̄i in terms ofbic

and the final valueΛ̄f in terms ofbf c via Eq. (10).
In fact, the brane value ofβ andk̄2 consistent with

the boundary condition (10) are

(11)β2
i (0) > β2

f (0), k̄2
i > k̄2

f ,

or

(12)β2
i (0) < β2

f (0), k̄2
i < k̄2

f ,

whereβi(0) ≡ β(0, t < t0), βf (0) ≡ β(0, t > t0), and
k̄2
i ≡ k̄2(t < t0), k̄2

f ≡ k̄2(t > t0). On the other hand
by integrating Eq. (6) fromy = 0 to the first bulk
horizonyh whereβ = 0, we get the bulk horizon siz
as

(13)b(t)c =
β(0,t )∫
0

dx√
k̄2(t) + k2x2 − Q2x10

.

Inserting k̄2(t) of Eq. (10) into Eq. (13) in term
of β(0, t) and making a change of integral variab
with x ′ = x/β(0, t), we can rewrite Eq. (13) as

b(t)c

(14)

=
1∫

0

dx ′√
k2

1 − k2(1− x ′2) + β8(0, t)Q2(1− x ′10)

.

Therefore, with the inequalities of Eqs. (11) and (1
we find that the change ofb is bi < bf for k̄2

i > k̄2
f and

bi > bf for k̄2
i < k̄2

f . In other words, a larger (smalle
4D cosmological constant gives a smaller (larger) b
horizon size.

From the ansatz for components ofH as

Hµνρσ = 1√−g
εµνρσ5∂5σ,

(15)H 5ijk = 1√−g
ε5ijk0∂0σ,
the solution forσ with time-dependentb(t) is given
from the staticb case as

σ(y, t) = b2(t)
√

2A

(16)×
∫

dy β−4(b(t)
(−|y| + c

); k̄2(t)
)
.

Therefore, we get the time derivative ofσ as

σ̇ = √
2A

[
bḃ

(
2
∫

dy β−4 + β−4
)

(17)+ b2 ˙̄k
∫

dy
∂β−4

∂k̄

]
,

where there appearδ(t − t0) terms due toḃ and ˙̄k.
Then, we find that the field equation forH is satisfied
with this time-dependentσ even att = t0 as has been
done in the flat case [7].

Moreover, the time derivative terms ofβ , b and k̄

in a ≡ ek̄t in the bulk Einstein equations are cancel
by the bulk matter fluctuation around the vacuum, w
T 0

0 = −ρ, T i
i = p, T 5

5 = p5 andT 5
0 as nonvanishining

components,

(18)ρ = 3

β2

((
ȧ

a
+ β̇

β

)2

+
(

ȧ

a
+ β̇

β

)
ḃ

b
− k̄2

)
,

p = − 1

β2

(
2

(
ȧ

a
+ β̇

β

).

+ 3

(
ȧ

a
+ β̇

β

)2

+
(

ḃ

b

).

(19)

+
(

ḃ

b

)2

+ 2

(
ȧ

a
+ β̇

β

)(
ḃ

b
− β̇

β

)
− ḃ

b

β̇

β
− 3k̄2

)
,

p5 = − 3

β2

((
ȧ

a
+ β̇

β

).

+ 2

(
ȧ

a
+ β̇

β

)2

(20)−
(

ȧ

a
+ β̇

β

)
β̇

β
− 2k̄2

)
,

(21)T 5
0 = 3

b2

(
β ′

β

ḃ

b
−

(
β ′

β

).)
.

Note that the bulk matter contributes only att = t0
with terms proportional toδ(t − t0), δ2(t − t0) and
δ̇(t − t0). Then, we find that the 5D continuity equ
tions for the bulk matter are automatically satisfied

ρ̇ + 3

(
ȧ

a
+ β̇

β

)
(ρ + p) + ḃ

b
(ρ + p5)

(22)= (
T 5

0

)′ + 4
β ′

β
T 5

0 ,
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(23)p′
5 + 3

β ′

β
(p5 − p) + β ′

β
(ρ + p5) = 0.

Now let us calculate the 4D Planck mass and
4D effective cosmological constant. Here we reg
the extra dimension up to the first horizon atyh = c.
Then, by the integration of the 5D action gives

S =
∫

d4x
√−g4

c∫
−c

b(t) dy

× β4
(

1

2
β−2R4 − 4

b2

β ′′

β
− 6

b2

(
β ′

β

)2

− 1

3
(−ρ + 3p + p5) − Λb + 2 · 4!

H 2

− 1

b
Λ1δ(y) +Lm

)
+ Ssurface

(24)≡
∫

d4x
√−g4

(
1

2
M2

PR4 − 3Λ

)
,

whereLm = −ρ is the Lagrangian for the bulk perfe
fluid which contributes only att = t0. Therefore, the
4D Planck mass is given by

(25)M2
P(t) =

c∫
−c

b(t) dy β2

and the 4D cosmological constant is given by

Λ(t) = 1

3

c∫
−c

b(t) dy β4
[

1

b2

(
4
β ′′

β
+ 6

(
β ′

β

)2)

+ 1

3
(2ρ + 3p + p5)

(26)+ Λb + 3β8

A
+ 1

b
Λ1δ(y)

]
.

Using the Einstein equations, we can rewriteΛ(t) as

Λ(t) = 1

3b

c∫
−c

dy
(
β3β ′)′

+
c∫

−c

b(t) dy

(27)

× β4
(

Λ̄β−2 + 1

9
(2ρ + 3p + p5)

)
.

From the fact thatβ becomes zero atyh = c, the
resultingΛ(t) becomes

(28)

Λ(t) =
c∫

−c

b(t) dy

(
Λ̄β2 + 1

9
(2ρ + 3p + p5)β

4
)

.

Consequently, we get the ratio of the 4D cosmolog
constant to the 4D Planck mass which can be in
preted as the time-dependent effective curvature,

Λ̄eff(t) = Λ(t)

M2
P(t)

= Λ̄(t) +
( c∫

−c

dy β2

)−1

(29)×
c∫

−c

dy
1

9
(2ρ + 3p + p5)β

4.

Therefore, since the bulk matter contributes only
t = t0, the difference of the effective c.c. fort > t0
from the one fort < t0 is given just fromΛ̄(t) which
in our case isΛ̄f − Λ̄i . Note that any value of̄Λf is
possible. Thus, we cannot determine a classical
in our limited study. Any path is classically possible

3. Vanishing curvature

In this section, we point out the importance
quantum mechanical correction [13] in case class
physics cannot determine the path. In our case, Ha
ing’s scenario is physically clear: we start from a
space in the F-region initially and look for probabi
ties ending in the flat or dS space solutions. The cla
cal path is forbidden if the initial dS vacuum is a loc
minimum. However, in Eq. (29) the time-dependen
of the curvature is obtained. It shows the existe
of a classical solution for any instantaneous cha
of the curvature. Therefore, at this point we have
succeeded finding out a good action. It is our ho
that some clever action is found such that the tim
dependence of the classical path is determined in
framework of the self-tuning solution which satisfi
the condition Eq. (1).

If we interpret our classical solution literally, an
small change ofΛ̄ is possible. In a sense, this case
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completely the opposite to the case with a poten
barrier, forbidding a change of̄Λ. We interpret this as
any changeΛ̄ has an equal probability. In this sens
classical physics does not determine the path. In
scenario, after the vacuum has changed to the one
an infinitesimally differentΛ̄ from the initial one, we
encounter the same question again, “What will be
next vacuum?”. In this way, we go to another vacu
and to another vacuum and hence we can wait fo
long time in continuously different vacua to see t
importance of quantum mechanical correction.

In this sense, if classical physics cannot determ
the time-dependence, we can ask a quantum mec
cal probability for the transition of the curvature. He
we adopt Hawking’s Euclidian space integral for th
probability function [13], from an initial curvaturēΛi

to the final curvatureΛ̄f . Since we consider the 5D
theory, we must integrate with respect toy also up
to yh. In our notation, the mass dimension of the c
vatureΛ̄ is 2, not 4. Moreover, the Planck mass com
from integration of extra dimension with the warp fa
tor, so it has a dependence such asMP = MP(bf , Λ̄f )

which is finite for a vanishingΛ̄f and an infinitebf .
Thus, the probability is estimated to be proportiona

(30)exp

(
α

[
M2

P(bf , Λ̄f )

Λ̄f

− M2
P(bi, Λ̄i)

Λ̄i

])
,

where α is a O(1) positive numerical number an
MP = MP(b, Λ̄) is finite. Since this probability func
tion is infinitely larger for Λf = 0+ compared to
any other value of the final curvature, we obtain
∼ 100% probability the vanishing final curvature.
our interpretation of Hawking’s probability, the under-
lying physics seems to be clear. We have a definite
tial state withΛ̄i and ask for the probability of ob
taining the finalΛ̄f . This probabilistic determinatio
applies when the classical path is not determined.

If we hope to obtain an exit from inflation by
classical argument only with a self-tuning cosmolo
ical constant, we need some run-away potential
a time-dependentg55 = b(t) such that an increasin
b(t) gives a decreasing cosmological constant.
for a successful interpretation of cosmology the tim
dependence must come with a sufficiently large po
p in Eq. (1).

In passing, we remark that the strong self-tun
solution needs a parameter region allowing only
D-region to accommodate inflation.
-

4. Conclusion

We have considered the inflation and the vanish
cosmological constant in a unified way in 5D se
tuning models. In this framework, the inflation
designed to originate in the region where only
de Sitter space is allowed (D-region). Then, d
to the parameter change at the brane the univ
enters into the region where de Sitter, anti-de Si
and flat spaces are allowed (F-region). Thus,
initial condition at the F-region is supposed to be
de Sitter space. We considered the time-depend
of curvature in the F-region and proposed tha
solution of the cosmological constant problem
equations of motion is through the curvature cha
to zero ast → ∞. If the classical equations doe
not determine the time-dependence of the curvat
a quantum mechanical probability a la Baum a
Hawking is shown to determine the curvature in the
region as 0+. The initial condition for this probabilistic
solution is clearer in our set-up.
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