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Abstract

We propose a paradigm for the inflation and the vanishing cosmological constant in a unified way with the self-tuning
solutions of the cosmological constant problem. Here, we censitime-varying cosmological constant in self-tuning models
of the cosmological constant. As a specific example, we demonstrate it with a 3-form field in 5D.
0 2004 Elsevier B.VOpen access under CC BY license.
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1. Introduction are of great interest toward a clue toward a vanishing
cosmological constant.

Ever since the inflationary idea has been proposed, Indeed, a few years ago solutions of the cosmolog-
how the universe settles after the inflationary period ical constant problem have been tried under the name
at the vacuum with the vanishing vacuum energy of self-tuning solutions [3—-6]. In the late 1970’s and
has been a dream to be solved but postponed untilearly 1980’s it was called the solutions with an unde-
the solution of the cosmological constant problem is termined integration constant(s). The old self-tuning
known. In 4-dimensional (4D) field theory models, it solutions looked for flat space solutions whether or
is known that there is no solution for the cosmological notit accompanies the de Sitter (dS) space and/or anti-
constant problem [1]. One must go beyond 4D to find de Sitter (AdS) space solutions. This kind of old self-
a clue to the solution of the cosmological constant tuning solutions is calledveak self-tuning solutions.
problem. In this sense, the Randall-Sundrum (RS) On the other hand, recently it has been tried to find
type models, in particular the RS-II type models [2] a self-tuning solution without allowing the nearby dS

and AdS space solutions [3]. This kind of new self-
T Email addresses: jekim@phyp.snu.ac.kr, tpmng solutions can be callettong self-tuning solu-
jekim@th.physik.uni-bonn.de (J.E. Kim), tions. However, there seems no example for the strong
minlee@th.physik.uni-bonn.de (H.M. Lee). self-tuning solution [4].
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The first example for the self-tuning solution is
obtained in 5D with the three index antisymmetric
tensor field Ay np, with the JH? in the action
where Hynypo = eMNPC9y Anpo [5,7]. Certainly,
this action has a few unsatisfactory features, but it
renders an example for the existence of weak self-

versally accepted weak self-tuning solution in the fu-
ture.

There exist two examples of the closed form weak
self-tuning solutions [5,6]. In this Letter, we try to
show the paradigm with the weak self-tuning solution
obtained with the 1H? term by Kim, Kyae, and Lee

tuning solutions, and provides possible physics behind (KKL) [5,7].

the self-tuning solutions. One such example is the

The unified view of the inflation and vanishing

existence of the region of parameter space where only cosmological constant is realized in the following

the dS solutions are allowed, which can be used for
the period of inflation [8]. From this example, we
can envision a unification of the ideas of inflation in
the early universe, preswahly at the GUT era, and
the solution of the cosmological constant problem.
Weak self-tuning solutions have been tried with a
string-inspired Gauss—Bonnet action with some fine-
tuning between bulk and/or brane parameters [10],
and in models with brane gravity [11]. In view of
the existence of a few weak self-tuning solutions,
therefore, the time is ripe to consider a unified view on
the inflation and vanishing cosmological constant now

way. The universe starts with the parameters which
allow only the dS space solutions [8]. Let us call this
dS-only regiorthe D-region. In this phase there results
a sufficient inflation. The inflationary potential tried in
4D field theory models is the 4D potential at the brane
located aty = 0 in the RS-l models. The observable
sector fields are localized at the= 0 brane. When
the brane tension becomes sufficiently small, but not
necessarily zero, the pararaet enter into the region
where the flat space, de Sitter space and anti-de Sitter
space solutions are allowed [7]. Let us call this flat
space allowing regiorthe F-region. Note that the

even though there has not appeared yet a universallydynamics at the brane is also affected by gravity in the
accepted self-tuning solution. bulk but for our brane fields the effect is just changing
In this vein, we try to find out time-dependent so- the 4D Planck mass. Then the behavior of the fields
lutions of the cosmological constant for a simplified living in the brane can be studied by the well-known
step function change (with respect #p of the cos- 4D analysis. One proposal for the brane fields is the
mological constant. We have tried this kind of time- hybrid inflation [12] where parameters at the brane
dependent step function for the brane tension before to can change. In particular, the brane tension can
show the existence of a flat space to another flat spacechange so that the parameter range for Bhesgion
solution in case the spontaneous symmetry breakingis changed to that of th&-region. Then, we may
changes the vacuum energy of the observable sec-consider an initial conditio after exiting from the
tor [7]. Our motivation in this Letter is to see the D-regionis a dS space solution—since we anticipate
time-dependent curvature change. However, the closedno abrupt change of the curvature of the underlying
form dS solutions are difficult to find out. In fact, there space—in thd--region. Since the flat space, dS space
has not appeared any closed form dS solution con- and AdS space solutions are allowed in the F-region,
nected to a self-tuning solution. A time-dependent cur- we look for a time-dependent solution in the F-region.
vature solution is even more difficult to obtain. There- In particular, we look for the curvature changing
fore, in this Letter we just try to show the existence solutions. If the effective 4D curvature tends to zero
of such time dependent solutions of the curvature and ast — oo,
put forward a paradigm how the cosmological constant
can become zero after the inflationary era. We hope Aq 4 o« — (1)
that the solution of the cosmological constant prob- 1P
lem can be realized in this way if there appears a uni- wherep > 2, then we obtain a reasonable solution for
the cosmological constant problem. It is necessary to
require p > 2 so that the radiation dominated phase
of the standard Big Bang cosmology commences af-
ter inflation. The solution for the vanishing cosmolog-
ical constant problem can be realized with the condi-

1 The present tiny vacuum energy of orded.003 eW?* is
expected to be understood by dmatindependent mechanism such
as by the existence of quintessence [9].
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tion (1) satisfied with weak self-tuning models. If we
cannot determine (1) classically as a solution of equa-
tions of motion, a quantum mechanical probabilistic

determination can be given. In this sense, Baum and

Hawking’s probabilistic interpretation [13] is clearly
envisioned in this 5D example.

On the other hand, if we find a strong self-tuning
solution, we must also show the existence of the
D-region in that model also to accommodate the
inflationary era. Otherwise, it is not cosmologically
successful.

2. Time-dependent curvaturein weak self-tuning
model

As a prototype example of the weak self-tuning
model, we consider the KKL model [5,7]. Here, a
three-form fieldAyyyp (M,N, P =0,1,...,4) [5,7]
is introduced. In this model, it has been shown [8]
that there exists a band of brane tensibn allowing
only the dS solutions|A1| > «/—6A, (= D-region,
where A, is the bulk cosmological constant. On the
other hand, both 4D flat and maximally curveds{
and AdS; spaces) solutions are allowed fot;| <
/—6Ap(= F-region [5,7]. Thus, the KKL model has
the ingredient needed for inflation in the weak self-
tuning modeP

In the KKL model, let us proceed to show a
time-varying 4D cosmological constahBecause of
the difficulty of obtaining a closed form for the
t-dependent solution, we consider just the instanta-
neous transition between two differedffy curvature
scales.

The 5D action considered in the KKL model is

S:/d‘lx/dy\/—_g(%R—Ab—i-%
V=84
V=g
whereg, g4 are 5D and 4D metric determinanf$? =

HynpoHMNPC and A,, Ay are bulk and brane
cosmological constants, resgiively. Henceforth, we

A16<y>), @

2 Other self-tuning solutions with different forms for the action
of Hynpo =3 mAn P o) have been also considered [6].
3 This work has been reported at a recent conference [14].

use the dimensionless unit for the fundamental scale,
M = 1. The fundamental uniZ can be reintroduced
when needed. Then, the ansatz fordSg solution is

ds? = B(y)(—di® + €2 M5, dx' dxl) + b2dy?,

(3
Hyvpo =~/ —8€uvpo (), 4)
whereA is thedS curvature, and is a constant, and
f2(y) = 2A/B%(y) with an integration constan.
For this ansatz, the 4D curvature is constant. For

a constantA, one can easily obtain relevant equations
assuming the Einstein space

Hs;ji =0,

©)
But, for a time-dependem the calculation is much
more involved.

The (55) component Einstein equation in the KKL
model gives the governing equation®{7,8]

R(eff)/w = 3/ig(eff);w-

1, —

B = +./k2+ k282 — 2107 6
=P JR2+K2p2— 028 (6)
where

k= -2 o4 o=/t @)
B 6’ o “Vea’

Moreover, the boundary condition for the warp factor
aty =0 is given by
/

'B— —éA]_.
B 6
Then, if we take the negative sign on the RHS of
Eq. (6) for a positiveAs, the warp factor becomes
B(y) = B(b(—|y| + ¢); k?) with a positive integration
constantc. Even if the exact form for8 was not
obtained, it has been shown numerically that there
always exists @%; solution in the F-region [7,8]. Note
that there is the repetition of bulk horizons among
which only the first horizon aty = ¢ is causally
connected to the observer at= 0 and the length
scalebc can be considered as the physical size of extra
dimension.

Let us consider the instantaneous changk(of at
t=19as

b(t) = (bs — b))t — 10) + b;.

©)

y=0%

©)

4 This form was also considered for maintaining the flat solution
with a changing brane tension in Ref. [7].
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Then, the warp factor has a form [|y|, 7] =
BIb(1)(—|y|+c); k(r)] with time-dependerii(r). For
a constant brane tension, the boundary condi-
tion (8) aty = O reads the time dependenceidfr)
as

K2(1)B72(0,1) + k% — 0288(0,1) = k2, (10)

wherek1 = A1/6. Thusk2(¢) is a function o® (r — to)
to be determined from knowing the exact form gf
Anyway, A(¢) has the initial valued; in terms ofb;c
and the final valuet ; in terms ofb ¢ via Eq. (10).

In fact, the brane value ¢ andk? consistent with
the boundary condition (10) are

B2O0) > B2(0),  k?> k3, (11)
or
B2(0) < B2(0),  kZ <3, (12)

wherep; (0) = B(0,t < 1p), By (0) = B(0, r > 1p), and
k2 = k2(t < 19), IE?, = k%(t > tg). On the other hand,
by integrating Eq. (6) fromy = 0 to the first bulk
horizony, whereg = 0, we get the bulk horizon size
as

B(0,1)
dx

b(t)c= — .
¢ ) \/kz(t) 4 k2x2 — Q2x10

(13)

Inserting k%(r) of Eq. (10) into Eq. (13) in terms
of 8(0,t) and making a change of integral variable
with x" = x/B(0, t), we can rewrite Eq. (13) as

b(t)c
dx’

+ 880, 0?(1 - x'19)

(14)
Therefore, with the inequalities of Egs. (11) and (12),
we find that the change ofis b; < b for k? > k? and
bi > by for k? < k. In other words, a larger (smaller)
4D cosmological constant gives a smaller (larger) bulk
horizon size.

From the ansatz for componentsifas

1
_0/ JE—ka-x2)

1
—_MVPIS e

HMveo —

5k — 5k

(15)

the solution foro with time-dependenk(z) is given
from the statid case as

o(y, 1) =b2(1)V2A
x /dyﬁ*4(b(t)(—|y| +c);k%(r)).  (16)

Therefore, we get the time derivative @fas

&= ﬂ[bb<2/dy B4+ ,8_4)

. -4
+b212/dyaﬂ_ i|,
ak
where there appea\(r — 19) terms due tab andk.
Then, we find that the field equation féf is satisfied
with this time-dependent even att = 19 as has been
done in the flat case [7].
Moreover, the time derivative terms gf b andk
in a = ¢ in the bulk Einstein equations are cancelled
by the bulk matter fluctuation around the vacuum, with
19 =—p, T} = p, TP = ps andT as nonvanishining
components,

(17)

_3((a é)2 ( é)é_,;z) 18
p—ﬂ2<<a+ﬂ + a+ﬂ 5 . (18)
! a B\ a B\ [(b\
r=-m(2(5+5) +o(5+5) +(3)
AT VS,
() vl 0) -4 )
(19)
. . s\ 2
() el
a ,3 B -2)
——-4+=)=-2k"), 20
<a+ﬂ)ﬂ (20)
3 /6 I\ -
5-2(54-(5))

Note that the bulk matter contributes only rat 1o
with terms proportional t&S(r — fo), 8%(t — to) and
5(t — 10). Then, we find that the 5D continuity equa-
tions for the bulk matter are automatically satisfied,

B
B
= (15) + 4§T§’

7 b
/3+3<g+ )(p+p)+z(p+p5)

(22)
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B’ B’
Ps+35 (ps=p)+ 5 (p+ ps) =0.
Now let us calculate the 4D Planck mass and the
4D effective cosmological constant. Here we regard
the extra dimension up to the first horizonyat= c.
Then, by the integration of the 5D action gives

(23)

S:/d4x«/—g4/b(t)dy

1 48" 6B\
4 2
- Ri——" _ [
Xﬂ(Zﬂ ‘TR p b2<ﬂ)
1( +3p + ps) A+24!
3(-P+3p+ps R

1
- EAl(S(y) + »Cm) + Ssurface

_ / it «/——g4(%MéR4 - 3A), (24)

whereL,, = —p is the Lagrangian for the bulk perfect
fluid which contributes only at = #5. Therefore, the
4D Planck mass is given by

c

M2 = / b(t)dy B2

—C

(25)

and the 4D cosmological constant is given by
A(t)—lfcb(t)d g L 4’8”+6 LAY
~3 P2\ B

1
+ :—3(20 +3p + ps)

388 1
+Ab+7+g/‘15()’)i|~ (26)

Using the Einstein equations, we can rewrit&) as

c

1 ,
A= / dy (8°8')

c

+ / b(t) dy

x ﬁ“(ziﬂ‘z + :—9L(2,0 +3p+ p5)>.
(27)

From the fact that8 becomes zero af, = ¢, the
resultingA(¢) becomes

; o1
At) = / b(t)dy (Aﬂ2 +5@0+3p+ P5),34>-

(28)
Consequently, we get the ratio of the 4D cosmological
constant to the 4D Planck mass which can be inter-
preted as the time-dependent effective curvature,
A1)
M3 (@)

c -1
=A@t) + <fdyﬂ2>

—C

Aefi(t) =

c

1
x / dyg (20 +3p-+ pop.

—C

(29)

Therefore, since the bulk matter contributes only at
t = 1g, the difference of the effective c.c. for> 1o
from the one for < tg is given just fromA(r) which

in our case isA s — A;. Note that any value ofl ; is
possible. Thus, we cannot determine a classical path
in our limited study. Any path is classically possible.

3. Vanishing curvature

In this section, we point out the importance of
guantum mechanical correction [13] in case classical
physics cannot determine the path. In our case, Hawk-
ing’s scenario is physically clear: we start from a dS
space in the F-region initially and look for probabili-
ties ending in the flat or dS space solutions. The classi-
cal path is forbidden if the initial dS vacuum is a local
minimum. However, in Eq. (29) the time-dependence
of the curvature is obtained. It shows the existence
of a classical solution for any instantaneous change
of the curvature. Therefore, at this point we have not
succeeded finding out a good action. It is our hope
that some clever action is found such that the time-
dependence of the classical path is determined in the
framework of the self-tuning solution which satisfies
the condition Eq. (1).

If we interpret our classical solution literally, any
small change ofA is possible. In a sense, this case is
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completely the opposite to the case with a potential 4. Conclusion

barrier, forbidding a change of. We interpret this as

any changeA has an equal probability. In this sense, We have considered the inflation and the vanishing
classical physics does not determine the path. In this cosmological constant in a unified way in 5D self-
scenario, after the vacuum has changed to the one withtuning models. In this framework, the inflation is
an infinitesimally differentA from the initial one, we designed to originate in the region where only the
encounter the same question again, “What will be the de Sitter space is allowed (D-region). Then, due
next vacuum?”. In this way, we go to another vacuum to the parameter change at the brane the universe
and to another vacuum and hence we can wait for a enters into the region where de Sitter, anti-de Sitter
long time in continuously different vacua to see the and flat spaces are allowed (F-region). Thus, the

importance of quantum mechanical correction.

initial condition at the F-region is supposed to be a

In this sense, if classical physics cannot determine de Sitter space. We considered the time-dependence
the time-dependence, we can ask a quantum mechaniof curvature in the F-region and proposed that a

cal probability for the transition of the curvature. Here,
we adopt Hawking’s Euclidian space integral for this
probability function [13], from an initial curvaturd;

to the final curvatured ;. Since we consider the 5D
theory, we must integrate with respect foalso up

to y;. In our notation, the mass dimension of the cur-
vatureA is 2, not 4. Moreover, the Planck mass comes
from integration of extra dimension with the warp fac-
tor, so it has a dependence suchiéis= Mp(bs, A )
which is finite for a vanishingl ; and an infiniteb .
Thus, the probability is estimated to be proportional to

o B2 A0) _ MEO 207
Ay Aj
wherea is a O(1) positive numerical number and
Mp = Mp(b, A) is finite. Since this probability func-
tion is infinitely larger for Ay = 0" compared to
any other value of the final curvature, we obtain by
~ 100% probability the vanishing final curvature. In
our interpretation of Hawkig's probaliity, the under-
lying physics seems to be clear. We have a definite ini-
tial state withA; and ask for the probability of ob-
taining the finalA ;. This probabilistic determination
applies when the classical path is not determined.

If we hope to obtain an exit from inflation by a
classical argument only with a self-tuning cosmolog-
ical constant, we need some run-away potential for
a time-dependengss = b(r) such that an increasing
b(t) gives a decreasing cosmological constant. But
for a successful interpretation of cosmology the time-

(30)

solution of the cosmological constant problem by
equations of motion is through the curvature change
to zero ast — oo. If the classical equations does
not determine the time-dependence of the curvature,
a quantum mechanical probability a la Baum and
Hawking is shown to determine the curvature in the F-
region as 0. The initial condition br this probabilistic
solution is clearer in our set-up.
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