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Abstract: A recommender system (RS) refers to an agent that recommends items that are suitable for
users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving
the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is
required for analyzing preference patterns, which could not be derived by existing studies. This
study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’
biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform
memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed
to efficiently reflect the decision-making in real world. The experimental results using movie data
revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and
SVD++. Based on this result, MBA is expected to improve performance when used as a system in
related studies and provide useful knowledge in any areas that need features that can represent users.

Keywords: rating prediction; collaborative filtering; movie recommendation; bias analysis

1. Introduction
1.1. Research Flow of Recommendation System

Search engines have developed, thanks to the spread of the Internet, and the online
transaction market has developed into a digital content market, thanks to the spread of
smart devices. Consequently, more costs are now required for users to find information.
Information retrieval (IR) [1] is a field to search for documents that are suitable for users’
information needs, and recommender systems (RSs) are an application field that is derived
from IR. The RS development has gone through a process, like that of IR, since RS developed
and applied IR.

An RS is an agent that recommends items that are suitable for users, and collaborative
filtering (CF) is typically used. Regarding the analysis method, CF is divided into memory-
based CF (User-based CF (UBCF) [2,3]), Item-based CF (IBCF) [3–6]), model-based CF
(factorization model [7–10]), content-based CF [11], and context-aware CF [12], and there is
a hybrid model that synergizes the foregoing CF models to complement their advantages
and disadvantages [13,14].

The main issues of CF include cold start [15,16], scalability [2,6,17], and accuracy. The
cold start refers to a problem in which no recommendation is possible due to no record of
decision-making for new users or new items—meaning that no items can be recommended
to new users, and new items cannot be recommended to any users. Content-based CF is
a representative model for solving cold-start problems, and it enables recommendations
through metadata analysis, even without a record of decision-making.

Scalability is a complex problem occurring in the real world and it entails difficulty in
applying a small-scale research model to worksite operations. This problem is mitigated
by simplifying or parallel processing the CF algorithm. In general, studies [2,6] have been
conducted for executing CF algorithms in a distributed/parallel processing environment,
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such as Hadoop [18] or Spark [19]. However, because the technical difficulty for paral-
lelizing the algorithm is high, it is difficult to apply sophisticated or the latest CF. Apache
Mahout [20] is an open source application programming interface (API) that is represented
by CF in a distributed environment.

Accuracy means how accurately the rated scores are predicted, and the matrix factor-
ization (MF) model [8] has been evaluated as the most excellent so far. Furthermore, models
aiming at extreme accuracy consider the viewpoints of ranking [10], zero-order [21], diver-
sity [22,23], etc., together. The core common feature of studies related to the foregoing is the
enhanced accuracy obtained by deepening the existing analysis. Additionally, CF accuracy
at a small adjustment level reflecting optimization according to domains was shown from
NetFlix prize 09 [8] to neural collaborative filtering (NCF) [24]. Representative causes of
the performance limit include the lack of data and the obsolescence of analysis algorithms.

Deep learning is attracting attention for solving the existing performance limitations
in the fields of speech recognition, image processing, and natural language processing, and
recent study trends are also applying it to RS [24–26]. RS combined with deep learning
is divided into text and rating analyses, and NCF is a representative study case. Rating
analysis builds a model using the latent factors that are decomposed through factorization
models (MF, Singular value decomposition (SVD) [9], SVD++ [8]) as inputs of neural
networks (NNs), and NCF belongs to the foregoing. Text analysis means analyzing a
user’s review data, and the core is building it using natural language processing (NLP),
like Word2Vec or BERT (Bidirectional Encoder Representations from Transformers) [27].
Even recently, RSs using deep learning showed good performance results [25,26], and
RSs can be evaluated as a method for solving the two elements specified as the causes
of limitations in the existing performance. However, because rating data are a pattern
suitable for regression, there is a limitation in applying deep learning, and deep learning
algorithms, such as NetFlix prize 09’, will be limited in performance [28].

1.2. Research Motivation

Users’ ratings (decision-making) of movies are determined by the effects of various
elements, such as the differences in the degree to which users give high or low scores on
average, users’ tastes, cinematic quality, popularity, etc. The traditional CF principle is
finding correlations from the mathematical patterns appearing in ratings and searching
for similar movies. The attributes of users and items are critical because individual subjec-
tivity is reflected in movie selection. Because users have different tastes for age, gender,
occupation, genre, director, and actor, the probability of selecting the same movies differs
according to users. Elements, such as a mania for a certain genre or series, fans of the
director or actor, for example, are reflected in movie selection.

Bias means learning to a side, b for axis movement in y = ax + b, distortion [29],
custom [30], taste [31], and individual subjectivity [32,33]. Because bias exists in all data in
reality, the bias is computed in data mining and machine learning for model optimization.
For example, there are newspapers that write newspaper articles leaned to one side, and
sample groups participating in a questionnaire survey or the processes of reducing the
sample groups are affected by the bias. Additionally, for content (newspaper articles,
music, movies, videos, webtoons, etc.), people’s bias is reflected in their content rating or
review. Alternatively, people’s bias is reflected in other users’ ratings or review evaluations.
Although positive/negative views of bias conflict with each other, bias is among the facts
in which users’ preferences are clearly expressed.

Bias-Based Predictor (BBP) [32] is a method that reflects the foregoing to analyze
bias. Appropriate bias means the average learning computed from fair criteria (the media-
tor). BBP proposed a method for finding moderators and outperformed memory-based
CF by analyzing user and item biases. However, because decision-making, in reality,
reflects more complex relationships than BBP, BBP should be expanded to analyze more
relationships [33].

Multiple Bias Analysis (MBA) analyzed users’ preference patterns centering on bias
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to find new clues, undiscovered by existing CFs, and tried to understand users’ decision-
making processes using metadata. The bias can be rationalized to the relevant user him-
self/herself, but not to other users. For example, evaluations of newspaper articles (com-
ments) and postings on portal sites (blogs) may be sympathized by users who are like the
relevant user by chance, but, in other cases, they are an act of forcing others. In particular,
because the nature of bias is clearly distinguished in social and political issues, bias cannot
be justified to others. Furthermore, the issue of dataset fairness should be considered
together. The propensity of a certain portal site can be affected by the users constituting
the portal site, and the model that is learned from this data can produce unfair results for
certain users. Additionally, in contrast to the intention, a distorted result may occur while
reducing the data size. MBA used BBP as a preceding study to consider these elements.
BBP searches for pinpoint scores to alleviate this problem.

MBA for analyzing more relationships than BBP using metadata and a hybrid model
that combines MBA and MF are proposed. The core of MBA is to find a feature that
can represent users, and feature bias was analyzed by two ways; sympathized with or
independent of other users. The experimental results using movie data showed 9.03%,
8.20%, 7.23%, 4.68%, and 0.97% higher accuracy of MBA than UBCF, IBCF, BBP, MF, and
SVD++, respectively.

Section 2 reviews MF and BBP, Section 3 introduces MBA, Section 4 presents the
experimental results, and Section 5 deals with conclusions.

2. Related Works
2.1. MF: Matrix Factorization

MF [8,10] is a sort of model-based CF. It became known through ‘NetFlix Prize 09’ and
it has been considered the best model to date. Although SVD [9,10] is used because MF can
decompose only square matrices, the two terms MF and SVD are used interchangeably.

When a rating matrix Rm×n has been given for m users and n items, the core of learning
is decomposing the original matrix R into several f -dimensional matrices (MF: pu, qi ∈ R f ,
SVD: U, Σ, V ∈ R f ) and ensuring that the decomposed matrices are to the original matrix.
Equation (1) is the rating prediction, Equation (2) is the objective function, and the model
is learned through Equations (3)–(5). pu is the users’ latent factor (users’ vector), qi is the
items’ latent factor (items’ vector), λ is regularization, and γ is the learning rate.

PMF(u, i) = qT
i pu (1)

min
p,q ∑

(u,i)∈τ

(
r(u, i)− PMF(u, i)

)2
+ λ(‖qi‖2 + ‖pu‖2) (2)

ε = PMF(u, i)− r(u, i) (3)

qi = qi + γ(ε · pu − λ · qi) (4)

pu = pu + γ(ε · qi − λ · pu) (5)

SVD++ [8,10] refers to a model in which bias and temporal score [31] were added to
MF [9]. Equation (6) is the prediction of rated scores, Equation (7) is the objective function,
and the model is learned through Equations (8)–(13).

PSVD++(u, i) = µ + bu + bi + qT
i

(
pu + |Iu|−0.5 ∑

j∈Iu

yi

)
(6)

min
p,q ∑

(u,i)∈τ

(
r(u, i)− PSVD++(u, i)

)2
+ λ(b2

u + b2
i + ‖qi‖2 + ‖pu‖2 +

∥∥yj
∥∥2
) (7)

ε = PSVD++(u, i)− r(u, i) (8)
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qi = qi + γ{ε · (pu + |Iu|−0.5 ∑
j∈Iu

yj)− λ · qi} (9)

pu = pu + γ(ε · qi − λ · pu) (10)

bu = bu + γ(ε− λ · bu) (11)

bi = bi + γ(ε− λ · bi) (12)

∀j ∈ R(u) : yj = yj + γ(ε · |Iu|−0.5 · qi − λ · yj) (13)

MF and SVD++ are implemented and distributed in many Open APIs. In this study,
the experiments on MF and SVD++ were conducted using MyMediaLite [34].

2.2. BBP: Bias-Based Predictor

BBP [32] analyzes preferences based on the viewpoint of bias, assuming that bias and
preferences are closely related to each other. The core of BBP is finding a pinpoint score to
act as a fair moderator and analyzing user and item biases through the pinpoint score. The
pinpoint score is expressed as s, and the model is learned, as shown in Algorithm 1 using
Equation (21). Equation (14) shows the rating prediction of BBP.

Pwt(s, u, i) = s + bwt(s, u) + bwt(s, i) (14)

P refers to the prediction score, wt refers to the weight type, u refers to the target user,
i refers to the target item, s refers to the pinpoint score, and b refers to the bias. Pwt(s, u, i)
refers to the predicted score of item i of user u computed through s and wt, bwt(s, u) refers
to the bias score of user u computed through s and wt, and bwt(s, i) refers to the bias score
of item i computed through s and wt. Three weight types are used: weight based on
rating frequency (RF), on amplified RF (ARF), and on logarithmic RF (LRF), as defined in
Equations (15)–(20), below.

The difference between the pinpoint score and average rated score is used as the bias,
and the reliability of the average rated score is reflected using the rating frequency as a
weight. RF, ARF, and LRF were used as the types of weights of the rating frequency and
they were indicated by substituting the wt digit into the equation. Equations (15)–(20)
show the bias scores using the rating frequency weights.

RF was used to directly reflect the weight according to the rating frequency. The
weight value is computed in a range of 0–1, depending on the rating frequency. The larger
the size of the dataset, the higher the accuracy when compared to LRF.

bRF(s, u) =
|I(u)|
|I(u)|+ 1

× (r̄(u)− s) (15)

bRF(s, i) =
|U(i)|
|U(i)|+ 1

× (r̄(i)− s) (16)

bRF(s, u) is the bias score of user u that is computed through s and RF, I(u) is the set
of items rated by user u, and r̄(u) is the average of the rated scores by user u. bRF(s, i) is
the bias score of item i computed through s and RF, U(i) is the set of users who rated item
i, and r̄(i) is the average of the rated scores of item i.

ARF was used to amplify and reflect the rating frequency weight of RF. The weight
value is computed as −1 to 1. Because RF accuracy affects ARF, ARF has a problem that
the deviations of accuracy among users are bigger than RF—it shows more accurate results
for users for whom it predicts scores well while showing more inaccurate results for users
for whom it predicts scores poorly.

bARF(s, u) =
(

2× |I(u)|
|I(u)|+ 1

− 1
)
× (r̄(u)− s) (17)

bARF(s, i) =
(

2× |U(i)|
|U(i)|+ 1

− 1
)
× (r̄(i)− s) (18)
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LRF was used to reflect the weight of the rating frequency of RF in log form. The core
reflects the log of the value normalized by the maximum rating frequency, and the weight
value is computed in a range of 0–1. The accuracy is generally high, and, the smaller the
size of the dataset (MovieLens 1M or less), the better the results shown.

bLRF(s, u) =
log |I(u)|

log |RFMax(User)| × (r̄(u)− s) (19)

bLRF(s, i) =
log |U(i)|

log |RFMax(Item)| × (r̄(i)− s) (20)

RFMax(User) refers to the rating frequency of user v with maxv∈User |I(v)| and max-
imum rating frequency. Likewise, RFMax(Item) refers to the rating frequency of item j
with maxj∈Item |U(j)| and maximum rating frequency.

The pinpoint score is computed while using Equation (21) as the objective function.

εwt(sx) =

√√√√ 1
|τ| ∑

(u,i)∈τ

(
Pwt(sx, u, i)− r(u, i)

)2

+ (sx − µ)2
(

∑
u

bwt(sx, u)2 + ∑
i

bwt(sx, i)2
) (21)

τ is the set of all rated scores included in the training set, and µ is the average rated
score of training set τ. The core of Equation (21) is inducing the search of the selected
pinpoint score sx adjacent to µ and Equation (21) was designed to add the penalty score in
order to avoid overfitting to root mean square error (RMSE).

Algorithm 1 Bias-Based Predictor’s (BBP’s) recursive learning of pinpoint score s.

Require: divide number n, training-set τ
Ensure: selected pinpoint score s

1: s = minBound = maxBound = 0;
2: range =costFunc(µ);
3: minBound = µ− range/2, maxBound = µ + range/2;
4: s =RecursiveLearning(µ, range, minBound, maxBound, n);
5:
6: function RECURSIVELEARNING(ps, range, minBound, maxBound, n)
7: interval = range/(n− 1);
8: arrPS = new Array(n);
9: arrCost = new Array(n);

10: for x = 0 to n do
11: arrPS[x] = ps + (interval ∗ x);
12: arrCost[x] =costFunc(arrPS[x]);
13: end for
14:
15: if hasBetterCandidate(ps, range,arrPS, arrCost) then
16: nextBoundary(&ps, &minBound, &maxBound, arrPS, arrCost);
17: range = maxBound−minBound;
18: s = RecursiveLearning(ps, range, minBound, maxBound, n);
19: else
20: idx = arg minx arrCost[x]
21: s = arrPS[idx];
22: end if
23:
24: return s
25: end function
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As with Algorithm 1, BBP is to find pinpoint score sx through recursive search. First,
the initial search range is set to µ ± (εwt(µ)/2) (line 3) and an values of search (line 4) is
entered. Thereafter, the search range is divided into n ranges and the εwt(sx) for the evenly
spaced reference points (sx) is computed (lines 7–12). Here, if there is an εwt(sx) smaller
than that at the previous time point εwt(µ), two reference points are selected (line 15), the
two reference points are selected as a new search range (line 16), the search range is divided
into n ranges, and the foregoing process is recursively repeated (line 6–18). The recursive
search is repeated until εwt(sx) is minimized (lines 7–18), and εwt(sx) are simultaneously
computed through parallelization (line 12). The recursive search showed an accuracy that
was close to that of gradient descent (GD) and it was optimized faster than GD through
parallelization.

Lines 1–4 takes O(|τ|) time to compute µ. In RecursiveLearning(), each call of costFunc()
in line 12 takes O(|τ|) time and, thus, lines 10–13 requires O(n · |τ|) time. RecursiveLearn-
ing() repeats line 18 as many times until the condition of line 15 is satisfied. Therefore,
the complexity of RecursiveLearning() is O(n · |τ| · No.o f Recursions). The computation of
costFunc() presented in line 12 can be parallelized by applying parallel tasks to reduce the
execution time of algorithm.

3. MBA: Multiple Bias Analysis

Users’ and movies’ attributes affect users’ decision-making for movies. However,
MBA could not but differ from BBP, because MBA limits users’ attributes to age, gender,
and occupation, and movies’ attributes to actors, directors, and genres, since MBA is built
with only the information that is provided by the experimental dataset.

When a user selects a movie, variables, such as whether he/she is a fan of the actors
or the director, his/her preference for a certain movie genre, empathy according to the
user’s gender or occupation, etc., are involved in the selection [33]. Because BBP only
analyzes user and item biases, it cannot analyze user decision-making regarding multiple
biases. The core of MBA is that it expanded BBP to analyze user decision-making regarding
multiple biases.

3.1. Vanilla Model

From Figure 1, MBA was expanded to reflect the generalized feature (GF) and per-
sonalized feature (PF) on BBP, and Equation (22) shows the rating prediction of the
Vanilla model.

PVM
wt (s, u, i) = s + bwt(s, u) + bwt(s, i) + GF(s, u, i) + PF(s, u, i) (22)

Figure 1. Summary of Multiple Bias Analysis (MBA).

The wt and s that are used in Equation (22) are the weight type and pinpoint score
introduced in Section 2.2. MBA optimizes s using Algorithm 1 in the preprocessing stage
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before computing GF and PF. GF means a bias (global bias) sympathized with other users,
and PF means a bias (local bias) independent of other users. Regarding Jim Carrey, GF
refers to the public’s tendency toward Jim Carrey, and PF refers to the personal tendency
toward Jim Carrey.

GF represents the tendency of a feature that is sympathized with other users. The
GF-Score was computed, as shown in Equation (23), and it was designed to reflect the
distance ω between the feature bias b(s, f ) and user u computed from all users.

GF(s, u, i) =
1

|UF(u)| ∑
f∈UF(u)

ω(u, f ) · b(s, f )

+
1

|IF(i)| ∑
TF⊂IF(i)

1
|TF| ∑

f∈TF
ω(i, f ) · b(s, f )

=
1

|UF(u)| ∑
f∈UF(u)

ω(u, f ) ·
(

∑v,j∈R( f ) r(v, j)
|R( f )| − s

)

+
1

|IF(i)| ∑
TF⊂IF(i)

1
|TF| ∑

f∈TF
ω(i, f ) ·

(
∑v,j∈R( f ) r(v, j)
|R( f )| − s

)
(23)

UF(u) is a feature set for the user u’s age, gender, and occupation, and IF(i) is a
feature set for the actor, director, and genre of item i. Here, because the elements of IF(i)
are a set (actor, director, genre), it was designed to add the average of the target feature
TF. R( f ) is the set of rated scores belonging to feature f , r(v, j) is the rated score for item j
of user v, ω(u, f ) is the weight of feature f of user u, and ω(i, f ) is the weight of feature f
of item i. The range of the values of the feature weight ω is −1 to 1, and the value that is
computed through Equation (26) is used in Equations (28) and (29). In GF, ω is optimized
to compute how close the feature f was to the popular bias.

If user u is a 30-year-old male student, UF(u)={Male, 30(Group-3), Student} will be used.
The first term of GF can be disjoined and written, as follows:

1
|UF(u)| ∑

f∈UF(u)
ω(u, f ) · b(s, f ) =ω(u, AgeGroup(u)) · b(s, AgeGroup(u))

+ω(u, Gender(u)) · b(s, Gender(u))

+ω(u, Occupation(u)) · b(s, Occupation(u)))

If item i is the movie The Truman Show, IF(i)={(Jim Carrey, · · · ), Peter Weir, (Comedy, · · ·
)} will be used. The second term of GF can be disjoined and written, as follows:

1
|IF(i)| ∑

TF⊂IF(i)

1
|TF| ∑

f∈TF
ω(i, f ) · b(s, f ) =

1
|Actors(i)| ∑

f∈Actors(i)
ω(i, f ) · b(s, f )

+
1

|Director(i)| ∑
f∈Director(i)

ω(i, f ) · b(s, f )

+
1

|Genres(i)| ∑
f∈Genres(i)

ω(i, f ) · b(s, f )

When feature f is Jim Carrey, the b(s, f ) that is used in GF-Score is the bias (global
bias) of Jim Carrey regarding all users, and ω(u, f ) is the distance between user u and
b(s, f ) (or importance).

PF represents a personalized tendency. The PF-Score was designed to be computed, as
shown in Equation (24), and it reflected the reliability ω for feature bias b(s, f ) and b(s, f )
computed only for itself. Here, because PF is computed only for itself, all UF(u)s become
R̄(u)− s. Therefore, it is computed using only IF(i).
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PF(s, u, i) =
1

|IF(i)| ∑
TF⊂IF(i)

1
|TF| ∑

f∈TF
ω(u, f ) · b(u, f )

=
1

|IF(i)| ∑
TF⊂IF(i)

1
|TF| ∑

f∈TF
ω(u, f ) ·

(
∑j∈R(u, f ) r(u, j)
|R(u, f )| − s

) (24)

The range of ω values used in PF is −1 to 1, and the values that are computed through
Equation (27) are used for learning of Equation (29). In PF, ω is optimized to compute how
certain his/her own feature bias was. Because PF is only computed using his/her own
ratings, as shown in Equation (24), individual subjectivity is computed. However, because
the rating frequency is below that of GF computed from the ratings of other users, PF is
less reliable than GF. Therefore, if the value of ω(u, f ) of PF is close to 1, the feature bias
can represent himself/herself and, otherwise, the feature bias is unreliable.

MBA learns by reflecting error values to ω as much as an arbitrary number of iterations
(Iter), learns using all of the training set τ, and computes ε while using Equation (25).

ε(s, u, i) = PVM
wt (s, u, i)− r(u, i) (25)

The r(u, i) used in Equation (25) is an element of τ, and PVM
wt (s, u, i) is a predicted

value. Equation (25) is computed to decrease the ω of MBA when ε(s, u, i) is below 0, and
increase the ω of MBA when ε(s, u, i) exceeds 0. ε(s, u, i) is used in Equations (26) and (27),
ε(s, u, i, GF), and ε(s, u, i, PF) are computed, reflecting the ratios of GF and PF.

ε(s, u, i, GF) = λ · ε(s, u, i) · |GF(s, u, i)|
|GF(s, u, i)|+ |PF(s, u, i)| (26)

ε(s, u, i, PF) = λ · ε(s, u, i) · |PF(s, u, i)|
|GF(s, u, i)|+ |PF(s, u, i)| (27)

ω(u, f ) = tanh(ω(u, f )− ε(u, i, TF( f ))) (28)

ω(i, f ) = tanh(ω(i, f )− ε(u, i, TF( f ))) (29)

The λ used in Equations (26) and (27) is the learning rate, and |GF(s, u, i)| and
|PF(s, u, i)| are the absolute values of score. The value computed with Equation (26)
learns about the ω used in GF through Equations (28) and (29), and the value computed
with Equation (27) learns about the ω in PF through Equation (29). Because PF is com-
puted using only IF(i), only Equation (29) is used to learn the ω. The TF( f ) that is used
in Equations (28) and (29) means the output of the upper sub-feature to which feature f
belongs. If feature f is an action, the output of TF( f ) will become Genre. MBA learns to
optimize ω through Equations (25)–(29) and, thereafter, predicts the rated scores using
Equation (22).

3.2. Heuristics Approach

In MBA, the ω used in GF and PF showed deviations in accuracy regarding the initial
values. The heuristics approach deals with the content that is related to the feature weight
ω used in GF and PF to enhance MBA accuracy.

From Figure 2, the ω to which the heuristics approach is applied is divided into feature
weight f w that is used in MBA and weight type bwt used in BBP.

• Case A: deature weight f w is initialized by reflecting the concept of the weight type
of BBP introduced in Section 2.2.

Case A is initializing the feature weight ω used in GF and PF by reflecting the concept
of the weight type of BBP and observing MBA accuracy. For f w(RF), the initial value of
the ω(u, f ) of GF is computed, as follows:
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ω(u, f ) =
|R( f )|
|R( f )|+ 1

R( f ) is the set of rated scores that belong to feature f in the training set τ. Because the
number of weight types of BBP is 3 in total (RF, ARF, and LRF), the experimental results for
Case A have the number of cases of 9 (9 = 3× 3 = |bwt| × | f w|).

• Case B: feature weight f w is initialized by unifying it into an arbitrary value.

In Case B, the feature weight ω(u, f ) used for GF and PF was changed by 0.1 per time
from −1 to 1 to observe changes in accuracy. The experimental results for Case B have the
number of cases of 63 (63 = 3× 21 = |bwt| × | f w|).

Figure 2. Description of MBA’s heuristics approach.

3.3. Hybrid Model

The Vanilla model is combined with MF to propose a hybrid model to enhance
the prediction accuracy by complementing the shortcomings of the two models. The
hybrid model is made by performing preprocessing of MF (Section 2.1) and Vanilla
model (Section 3.1) to optimize them, respectively, and then combining the two mod-
els and the hybrid model is optimized thereafter. Equation (30) is the rating prediction
of the hybrid model, Equation (31) is the objective function of the hybrid model, and
Equations (32) and (33) are the learning of the hybrid model. Equation (32) is computed
to reduce the bias score that is used for prediction in Equation (33) if the predicted value
exceeds the actual value, and increase the bias value that is used for prediction if the actual
value exceeds the predicted value. The λ in Equation (32) is the learning rate, and the f in
Equation (33) is the attribute regarding u and i.

PHM
wt (s, u, i) = s + bwt(s, u) + bwt(s, i) + GF(s, u, i) + PF(s, u, i) + qT

i pu (30)

min
p,q,b(s,∗)

∑
(u,i)∈τ

(
r(u, i)− PHM

wt (s, u, i)
)2

(31)

ε = λ ·
(

PHM
wt (s, u, i)− r(u, i)

)
(32)

b(s, f ) = b(s, f )− ε · b(s, f ) (33)

4. Experiment and Results
4.1. Dataset

MovieLens 100K dataset [35] was used as rating data to evaluate accuracy. However,
since there is no information on actors and directors in the MovieLens dataset, as shown in
Table 1, the information on actors and directors was supplemented using the HetRec2011
dataset [36]. In the process of creating the experimental dataset, items that could not be
referenced from HetRec2011 were removed, and a total of 89 items and 3792 ratings that
belonged to them were removed.
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Table 1. Metadata in datasets.

MovieLens 100K HetRec 2011

Age O X
User Gender O X

Occupation O X

Actors X O
Item Directors X O

Genres O O

The experimental dataset used in our experiment is shown in Table 2. The ratings
were aligned based on each user’s timestamp, and were then composed into the five-fold
cross-validation. For performance comparison, the average of the results of the evaluation
scale computed from the five-set (five-fold cross-validation) was used. For the age groups
of the users in Table 2, the users are divided into seven age groups as in MovieLens 1M.

Table 2. Dataset used in experiments.

MovieLens 100K (+HetRec 2011)

No. of users 943
No. of items 1593

No. of ratings 96,271

No. of age groups 7
Users profile No. of genders 2

No. of occupations 21

No. of actors 14,856
Items metadata No. of directors 671

No. of genres 19

5-fold cross-validation (training-set: 80%, testset: 20%)

4.2. Evaluation Metrics

For the evaluation scale, the root mean square error (RMSE) was used, as shown in
Equation (34), and smaller values mean higher accuracy. In Equation (34), Pwt refers to
the predicted score that is computed through the model, and r refers to the rated score of
the testset.

RMSEwt(s) =

√
∑(u,i)∈Testset(Pwt(s, u, i)− r(u, i))2

|Testset| (34)

4.3. Results

MBA proposed the Vanilla model (Section 3.1) to improve BBP accuracy, tried the
heuristics approach (Section 3.2) to improve the performance of Section 3.1, and at-
tempted to supplement the shortcomings of the existing model through the hybrid model
(Section 3.3). Therefore, the results of the MBA experiment were analyzed separately for
the Vanilla model in Section 4.3.1, for the heuristic approach in Section 4.3.2, for the hybrid
model in Section 4.3.3, and all of the experimental results were integrated in Section 4.3.4
to compare the accuracy.

4.3.1. Vanilla Model

MBA reconstructed the dataset to use metadata (Section 4.1). In this process, an exper-
iment was conducted on the existing CF when considering changes in the environment of
the dataset. Table 3 compares the previous study and the Vanilla model accuracies, and the
optimized settings are also specified. RMSE results for different values of n and of Iter are
shown in Figures A1 and A2 of Appendix A.
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In the performance comparison, the existing method was shown as BBP(wt), and
the proposed method was shown as MBA(wt), and wt means Weight Type (Section 2.2).
For instance, BBP(RF) is a model using Equations (15) and (16), and MBA(LRF) is a
model using Equations (19) and (20). n is the value that is used to search the reference
point, Iter is the number of iterations for learning of ω, and λ is the learning rate used in
Equations (26) and (27).

Table 3. Root mean square error (RMSE) comparison of the methods used in the experiment. RMSE
results of five-fold cross-validation of every method can be viewed in more detail in Table A1 of
Appendix A.

Method RMSE std Model Environment

UBCF 1.054902 0.063437 Cosine similarity
IBCF 1.045365 0.049861 Pearson correlation coefficient

BBP(RF) 1.044754 0.053992 n = 13
BBP(ARF) 1.032625 0.044879 n = 45
BBP(LRF) 1.034218 0.049582 n = 3

MBA(RF) 1.058177 0.060937 n = 3, Iter = 250, λ = 0.001
MBA(ARF) 1.038827 0.041348 n = 7, Iter = 500, λ = 0.001
MBA(LRF) 1.028426 0.048566 n = 11, Iter = 10, λ = 0.001

In RF, the smaller the data size, the lower the pinpoint score optimization performance,
because MBA computes multiple biases through pinpoint scores, inducing more errors.
However, MBA(ARF) and MBA(LRF) outperformed UBCF and IBCF, and MBA(LRF)
showed the best results. Through these results, it is observed that the Vanilla model
performance is determined by the pinpoint score. Because the RF performance is good
when MovieLens exceeds 10M [32], RF should be reevaluated through experiments using
a large dataset. Additionaly, in the process of analyzing the Vanilla model, variations in
performance were observed, depending on the initial value of ω (GF, PF). This problem
occurred in all Vanilla models, and the heuristics approach was conducted, as follows, to
alleviate the problem presented.

4.3.2. Heuristics Approach

In order to improve MBA performance, experiments were conducted using the method
presented in Section 3.2. Figure 3 shows the experimental results for Case A and Figure 4
for Case B. bwt(RF) means that the weight type wt of BBP is used as RF, and f w(RF)
means that the feature weight f w was initialized into RF.

bwt(RF) bwt(ARF) bwt(LRF)
1.02

1.04

1.06

1.08

BBP weight type

R
M

SE

f w(RF)
f w(ARF)
f w(LRF)

Figure 3. Comparison of MBA’s RMSE for Case A.



Appl. Sci. 2021, 11, 2817 12 of 18

It is observed that Case A performance is the best when bwt(LRF) was conducted
with f w(RF) (Figure 3), and that the performance variations of the bwt(LRF) series is
the least.

−1 −0.5 0 0.5 1
1.02

1.04

1.06

1.08

Initial value of f w

R
M

SE

bwt(RF)
bwt(ARF)
bwt(LRF)

Figure 4. Comparison of MBA’s RMSE for Case B.

Case B showed the results where the RMSE of bwt(LRF) was the best (Figure 4), and
RMSE converged when f w was 0.7 or higher. Additionally, Cases A and B showed better
RMSE when compared to the Vanilla model. Based on the foregoing, the accuracy may be
enhanced by improving the Vanilla model learning policy. Table 4 summarizes the heuristic
approach results (-H) and compares the RMSE with the Vanilla model.

Table 4. Comparison of results (Heuristics approach).

Method RMSE
Parameters

Iterations (Iter) Divide-n Learning Rate (λ)

MBA(RF) 1.058177 250 3 0.001
MBA(RF)-H 1.041759 800 13 0.001

MBA(ARF) 1.038827 500 7 0.001
MBA(ARF)-H 1.032367 200 45 0.001

MBA(LRF) 1.028426 10 11 0.001
MBA(LRF)-H 1.023850 10 3 0.001

From Table 4, it is seen that RMSE is improved through the heuristics approach.
Additionally, when considering parameter n and Iter used for learning, it is seen that the
cost used for learning is lower.

4.3.3. Hybrid Model

MF and SVD++ also showed excellent performance in the dataset that was used in
the experiment. MF and SVD++ were tested using the MyMediaLite [34] (Available:
http://www.mymedialite.net/ (accessed on 20 March 2021)), and the hybrid model and
RMSE are compared in Table 5. The hybrid model results outperformed Tables 3 and 4 and
showed the best performance result when HybridSVD++(LRF) showed in Table 5. MF and
SVD++ both showed results in which RMSE was improved when combined with MBA.

http://www.mymedialite.net/
http://www.mymedialite.net/
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Table 5. Comparison of results (Hybrid model).

Method RMSE
Hybrid Parameters Factorization

Iter λ Model Parameters

MF 1.006741 N/A N/A
HybridMF(RF) 1.023260 200 0.001 λ = 0.01, γ = 0.005,

HybridMF(ARF) 1.015874 200 0.001 f = 10, Iter = 40
HybridMF(LRF) 0.996805 150 0.001

SVD++ 0.968985 N/A N/A
HybridSVD++(RF) 1.009454 200 0.001 MF: λ = 0.01, γ = 0.005,

HybridSVD++(ARF) 1.001016 250 0.001 f = 10, Iter = 40
HybridSVD++(LRF) 0.959599 150 0.001 Bias: λ = 0.5, γ = 0.35,

4.3.4. Results Summary

Figure 5 shows the results of integration, summarization, and comparison of the RMSE
results of Sections 4.3.1–4.3.3. In Figure 5, the x-axis represents the weight type, and the
y-axis represents the RMSE. Here, UBCF, IBCF, MF, and SVD++, which are unrelated to the
weight type wt, were specified with a line graph, and BBP and MBA that were affected by
wt were specified with a bar graph.

bwt(RF) bwt(ARF) bwt(LRF)

0.96

0.98

1

1.02

1.04

1.06

BBP weight type

R
M

SE

BBP
MBA(Vanilla)
MBA(Heuristics)
HybridMF
HybridSVD++
UBCF
IBCF
MF
SVD++

Figure 5. Comparison of RMSE.

Through Figure 5, an improvement in the overall performance of MBA is seen when
the weight type was set to LRF. When RMSE is compared based on LRF, it is seen that
the Vanilla model surpasses BBP, the heuristics approach surpasses the vanilla model,
the HybridMF outperforms MF, and the HybridSVD++ outperforms SVD++. SVD++ is
evaluated to be the best among model-based CFs due to rigorous verification for a long
time by related researchers. Because MBA’s HybridSVD++ (LRF) outperformed SVD++,
there was a new preference pattern that was previously unconsidered in the bias, and MBA
analyzed it in order to identify why its accuracy exceeded that of SVD++.

5. Conclusions

The performance limit of recommendation systems follows analysis algorithm and
data problems. The analysis algorithm problem is "What algorithm fits the given data?”
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If "an arbitrary dataset χ showed 91% performance when classified by support vector
machine (SVM) and 85% when classified by k-nearest neighbor(k-NN)", SVM can be said
to be good. Here, SVM and k-NN become the analysis viewpoints, and a hybrid model
that adds viewpoints can be used to improve the performance. The data problem is a
missing-value problem. Because rating is the result of decision-making regarding a user’s
subjectivity, preference, situation, and environment, consistency cannot be guaranteed.
However, rating data are uncertain correct answer sheets, because information about
the process whereby the user makes the decision is lacking. Therefore, the accuracy of
recommendation systems should have converged on the current level because a limit to
understanding decision-making exists.

When considering the process for a user to select a movie, actors, director, and genres
can be important variables. If the user likes a certain genre, he/she is highly likely to
prefer an actor thta is close to the action or to be a fan of the actor. For example, Arnold
Schwarzenegger, Sylvester Stallone, and Keanu Reeves belong to action. Furthermore,
for a director that is represented by a certain genre, actors related to the director can be
considered. MBA’s research motive is to observe this pattern through the rating frequency
and the degree of tendency of ratings, and this was defined as a bias analysis. MBA is a
model to analyze the foregoing, and through experiments, BBP accuracy, which is the basis
of MBA, has been improved, and it was shown the result of Table A2 that the hybrid model
outperforms MF and SVD++. Based on this result, it can be argued that the bias is reflected
in users’ decision-making for movies.

MBA was designed to learn the feature weight ω that was used in the user’s GF and
PF. When the ω values used for GF and PF were observed, it was identified that they could
be used as the user’s unique characteristic. Because HybridSVD++ (LRF) outperformed
SVD++, which is limited to the foregoing, it can be a clue to explain the user’s decision-
making process using the ω values of GF and PF. Furthermore, using the ω values of GF
and PF, it is possible to design a recommendation system that describes the reason for
recommendation simultaneously with the recommendation. For example, when MBA
has recommended the movie “Iron Man", how crucial "Actor-Robert Downey Jr.” and
"Genre-SF” were can be computed numerically. Reflecting this concept, it is possible to
perform a data description that explains the reason for recommendation simultaneously
with the recommendation.

Thus far, bias has been considered at the graph-axis movement level, such as y = ax +
b and negative variables. Although using bias requires more observation and verification,
given the influence of bias that is involved in decision-making in music, food, movies,
books, news, etc., bias is an element that is more important than the graph-axis movement.
Additionally, recently, studies on fairness models, noting potential biases in data and
analysis models, are emerging, and the importance of studies that are related to fairness is
increasing. Fairness is a critical issue in bias analysis. While checking the limitations of
the vanilla model through the heuristics approach, the MBA showed results with small
variations in accuracy when a pinpoint score appropriate as a mediator was selected.
When synthesizing the results and summarizing future research plans to improve MBA
performance, the MBA accuracy is expected to improve through studies on fairness and by
enhancing the Vanilla model learning method.
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Appendix A. Results

Table A1. For each method, 5-fold cross-validation was performed (1–5) and RMSE values are shown
and their averages and variances are also shown.

RMSE

Method Validation Set

1 2 3 4 5 µ σ

UBCF 1.14409 0.99254 1.02768 1.01318 1.09700 1.05490 0.06343
IBCF 1.11224 1.00425 1.03284 1.99669 1.08080 1.04536 0.04986
MF 1.11380 0.95553 0.98895 0.95996 1.01544 1.00674 0.05812

SVD++ 1.04787 0.92311 0.96036 0.93895 0.97461 0.96898 0.04345

BBP(RF) 1.12591 0.99084 1.02516 1.01131 1.07054 1.04475 0.05399
BBP(ARF) 1.10368 0.98568 1.02043 1.00957 1.04378 1.03263 0.04488
BBP(LRF) 1.11752 0.98933 1.02408 1.00637 1.03487 1.03444 0.04958

MBA(RF) 1.15449 1.00475 1.03260 1.01856 1.08049 1.05818 0.06094
MBA(ARF) 1.10513 0.99629 1.03009 1.01642 1.04620 1.03883 0.04135
MBA(LRF) 1.10926 0.98242 1.01818 1.00241 1.02987 1.02843 0.04857

Table A2. HybridSVD++ with three weight types, RF, ARF and LRF were compared with other
methods, and HybridSVD++(LRF) showed best reduction in RMSE. (↑ better , ↓ worse).

HybridSVD++

Method RF ARF LRF

UBCF ↑+4.31 (%) ↑+5.11 (%) ↑+9.03 (%)
IBCF ↑+3.44 (%) ↑+4.24 (%) ↑+8.20 (%)

RF ↑+3.38 (%) ↑+4.19 (%) ↑+8.15 (%)
BBP ARF ↑+2.24 (%) ↑+3.06 (%) ↑+7.07 (%)

LRF ↑+2.41 (%) ↑+3.23 (%) ↑+7.23 (%)

RF ↑+4.60 (%) ↑+5.40 (%) ↑+9.32 (%)
MBA ARF ↑+2.83 (%) ↑+3.64 (%) ↑+7.63 (%)

(Vanilla) LRF ↑+1.84 (%) ↑+2.67 (%) ↑+6.69 (%)

MF ↓−0.27 (%) ↑+0.57 (%) ↑+4.68 (%)
SVD++ ↓−4.18 (%) ↓−3.31 (%) ↑+0.97 (%)

https://grouplens.org/datasets/movielens/100k/
http://files.grouplens.org/datasets/hetrec2011/hetrec2011-movielens-2k-v2.zip
http://files.grouplens.org/datasets/hetrec2011/hetrec2011-movielens-2k-v2.zip
https://drive.google.com/file/d/14bOmNhtDD6KZ_zSgl4D4fghGkg82raT4/view?usp=sharing
https://drive.google.com/file/d/14bOmNhtDD6KZ_zSgl4D4fghGkg82raT4/view?usp=sharing
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Figure A1. Comparison of RMSE in MBA(Vanilla) by n. MBA(RF) is best when n = 3, MBA(ARF) is
best when n = 7 and MBA(LRF) is best when n = 11.
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Figure A2. Comparison of RMSE in MBA(Vanilla) by Iter. The experiment was done after fixing n as:
MBA(RF) with n = 3, MBA(ARF) with n = 7 and MBA(LRF) with n = 11, as found in Figure A1.

References
1. Schütze, H.; Manning, C.D.; Raghavan, P. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008;

Volume 39.
2. Zhao, Z.D.; Shang, M.S. User-based collaborative-filtering recommendation algorithms on hadoop. In Proceedings of the 2010

Third International Conference on Knowledge Discovery and Data Mining, Phuket, Thailand, 9–10 January 2010; pp. 478–481.
3. Hwang, T.G.; Park, C.S.; Hong, J.H.; Kim, S.K. An algorithm for movie classification and recommendation using genre correlation.

Multimed. Tools Appl. 2016, 75, 12843–12858. [CrossRef]
4. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the

10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295.
5. Ding, Y.; Li, X. Time weight collaborative filtering. In Proceedings of the 14th ACM International Conference on Information and

Knowledge management, Bremen, Germany, 31 October–5 November 2005; pp. 485–492.
6. Jiang, J.; Lu, J.; Zhang, G.; Long, G. Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop.

In Proceedings of the 2011 IEEE World Congress on Services, Washington, DC, USA, 4–9 July 2011; pp. 490–497.
7. Zhou, Y.; Wilkinson, D.; Schreiber, R.; Pan, R. Large-scale parallel collaborative filtering for the netflix prize. In Proceedings of

the International Conference on Algorithmic Applications in Management, Shanghai, China, 23–25 June 2008; pp. 337–348.
8. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]

http://doi.org/10.1007/s11042-016-3526-8
http://dx.doi.org/10.1109/MC.2009.263


Appl. Sci. 2021, 11, 2817 17 of 18

9. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Incremental singular value decomposition algorithms for highly scalable recom-
mender systems. In Proceedings of the Fifth International Conference on Computer and Information Science, Dhaka, Bangladesh,
27–28 December 2002; Volume 1, pp. 27–28.

10. Liu, D.; Ye, X. A matrix factorization based dynamic granularity recommendation with three-way decisions. Knowl. Based Syst.
2020, 191, 105243. [CrossRef]

11. Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In The Adaptive Web; Springer: Berlin/Heisenberg, Germany,
2007; pp. 325–341.

12. Adomavicius, G.; Tuzhilin, A., Context-aware recommender systems. In Recommender Systems Handbook; Springer:
Berlin/Heisenberg, Germany, 2011; pp. 217–253.

13. Son, J.; Kim, S.B.; Kim, H.; Cho, S. Review and analysis of recommender systems. J. Korean Inst. Ind. Eng. 2015, 41, 185–208.
(In Korean) [CrossRef]

14. Park, D.H.; Kim, H.K.; Choi, I.Y.; Kim, J.K. A literature review and classification of recommender systems research. Expert Syst.
Appl. 2012, 39, 10059–10072. [CrossRef]

15. Bobadilla, J.; Ortega, F.; Hernando, A.; Bernal, J. A collaborative filtering approach to mitigate the new user cold start problem.
Knowl. Based Syst. 2012, 26, 225–238. [CrossRef]

16. Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z. Collaborative filtering and deep learning based recommendation system for cold start
items. Expert Syst. Appl. 2017, 69, 29–39. [CrossRef]

17. Takács, G.; Pilászy, I.; Németh, B.; Tikk, D. Scalable collaborative filtering approaches for large recommender systems. J. Mach.
Learn. Res. 2009, 10, 623–656.

18. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
19. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.; Owen, S. Mllib: Machine

learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1235–1241.
20. Anil, R.; Capan, G.; Drost-Fromm, I.; Dunning, T.; Friedman, E.; Grant, T.; Quinn, S.; Ranjan, P.; Schelter, S.; Yılmazel, O. Apache

Mahout: Machine Learning on Distributed Dataflow Systems. J. Mach. Learn. Res. 2020, 21, 1–6.
21. Breese, J.S.; Heckerman, D.; Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. arXiv 2013,

arXiv:1301.7363.
22. Zhang, M.; Hurley, N. Avoiding monotony: improving the diversity of recommendation lists. In Proceedings of the 2008 ACM

Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 123–130.
23. Zhou, T.; Kuscsik, Z.; Liu, J.G.; Medo, M.; Wakeling, J.R.; Zhang, Y.C. Solving the apparent diversity-accuracy dilemma of

recommender systems. Proc. Natl. Acad. Sci. USA 2010, 107, 4511–4515. [CrossRef] [PubMed]
24. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International

Conference on world Wide Web, Perth, Australia, 3–4 May 2017; pp. 173–182.
25. Bobadilla, J.; Alonso, S.; Hernando, A. Deep learning architecture for collaborative filtering recommender systems. Appl. Sci.

2020, 10, 2441. [CrossRef]
26. Li, S.; Kawale, J.; Fu, Y. Deep collaborative filtering via marginalized denoising auto-encoder. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015;
pp. 811–820.

27. Wang, T.; Fu, Y. Item-based Collaborative Filtering with BERT. In Proceedings of The 3rd Workshop on e-Commerce and NLP,
Seattle, WA, USA, 9–10 July 2020; pp. 54–58.

28. Rendle, S.; Krichene, W.; Zhang, L.; Anderson, J. Neural Collaborative Filtering vs. Matrix Factorization Revisited. In Proceedings
of the Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26 September, 2020; pp. 240–248.
[CrossRef]

29. Abdollahpouri, H.; Mansoury, M.; Burke, R.; Mobasher, B. The impact of popularity bias on fairness and calibration in
recommendation. arXiv 2019, arXiv:1910.05755.

30. Sreepada, R.S.; Patra, B.K.; Chakrabarty, A.; Chandak, S. Revisiting tendency based collaborative filtering for personalized
recommendations. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data,
Goa, India, 11–13 January 2018; pp. 230–239.

31. Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 447–456.

32. Hwang, T.G.; Kim, S.K. Bias-Based Predictor to Improve the Recommendation Performance of the Rating Frequency Weight-based
Baseline Predictor. J. KIISE 2017, 44, 486–495. (In Korean) [CrossRef]

33. Hwang, T.G.; Kim, S.K. Multi-Label Bias-Based Predictor. In Proceedings of the 2019 International Conference on Platform
Technology and Service (PlatCon), Jeju, Korea, 28–30 January 2019; pp. 1–5.

34. Gantner, Z.; Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. MyMediaLite: A free recommender system library. In Proceedings
of the Fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; pp. 305–308.

35. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–19. [CrossRef]
36. Cantador, I.; Brusilovsky, P.; Kuflik, T. Second workshop on information heterogeneity and fusion in recommender systems

(HetRec2011). In Proceedings of the Fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011;
pp. 387–388.

http://dx.doi.org/10.1016/j.knosys.2019.105243
http://dx.doi.org/10.7232/JKIIE.2015.41.2.185
http://dx.doi.org/10.1016/j.eswa.2012.02.038
http://dx.doi.org/10.1016/j.knosys.2011.07.021
http://dx.doi.org/10.1016/j.eswa.2016.09.040
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1073/pnas.1000488107
http://www.ncbi.nlm.nih.gov/pubmed/20176968
http://dx.doi.org/10.3390/app10072441
http://dx.doi.org/10.1145/3383313.3412488
http://dx.doi.org/10.5626/JOK.2017.44.5.486
http://dx.doi.org/10.1145/2827872


Appl. Sci. 2021, 11, 2817 18 of 18

Short Biography of Authors
Tae-Gyu Hwang is currently a Ph.D. degree course student in Computer Science and Engineering
from Chung-Ang University, Seoul, Korea. His areas of research interest are data mining and
recommender system.

Sung Kwon Kim received the B.S. degree from Seoul National University, Seoul, Korea, and the
M.S. degree from Korea Advanced Institute of Science and Technology (KAIST), Korea, and the
Ph.D. degree from University of Washington, Seattle, USA. He is currently a professor at School
of Computer Science and Engineering, Chung-Ang University, Seoul, Korea. His areas of research
interest are information security and computational geometry and recommender system.


	Introduction
	Research Flow of Recommendation System
	Research Motivation

	Related Works
	MF: Matrix Factorization
	BBP: Bias-Based Predictor

	MBA: Multiple Bias Analysis
	Vanilla Model
	Heuristics Approach
	Hybrid Model

	Experiment and Results
	Dataset
	Evaluation Metrics
	Results
	Vanilla Model
	Heuristics Approach
	Hybrid Model
	Results Summary


	Conclusions
	Results
	References

