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1 Introduction

The Standard Model (SM) of particles physics has been tested well with precision experi-

ments and the consistency of its inner structure has been confirmed with the discovery of

the Higgs boson and new data from the Large Hadron Collider (LHC). Gauge symmetry
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principle and quantum field theory, which are the core concepts for the SM, have pro-

vided the important guideline for extending the structure of the SM beyond the scales of

proximity to accessible energies in the current experiments. On the other hand, General

Relativity (GR) has provided the crucial tools for explaining the cosmological history in

the early Universe and all the way to the terrestrial phenomena of gravitation, becoming

a new arena for testing physics beyond the SM, after the discovery of gravitational waves

from the mergers of binary black holes at LIGO.

The hierarchy problem and the flavor problem in the SM call for new physics beyond

the SM, so new solutions to those problems have been main drivers for motivating direct

and indirect experimental programs in the last decades. Solutions to the hierarchy problem

require new particles and new symmetries close to the weak scale such as weak-scale super-

symmetry, composite Higgs models, large or warped extra dimensions, etc, but there have

been no convincing hints for them even after ten years of running at the LHC. Therefore,

new ideas for solving the hierarchy problem [1] without new light colored partners of the

SM at the weak scale have been suggested, such as neutral naturalness [2–4], relaxation

mechanism [5–7], clockwork models [8–12], four-form flux models [13–19], etc.

The clockwork models have drawn new attention as the solution to the hierarchy

problems in particles physics, not necessarily related to the hierarchy problem of the Higgs

mass parameter. The idea is based on the multiple copies of particles or symmetries with

nearest neighbor interactions in four dimensions, explaining the small couplings from the

localization of the lightest mode in the theory space even for order one coupling of each

copy. There is a counterpart of the continuum limit of clockwork models in the linear

dilaton background in five dimensions, where the zero mode of a bulk field has position-

dependent couplings in the extra dimension due to the warped factor. There is a mass

gap between the zero mode and a stack of massive Kaluza-Klein (KK) modes in clockwork

models and the continuum counterpart, becoming a smoking-gun signal at the LHC.

In this article, we consider various bulk fields with general dilaton couplings in the

linear dilaton background in five dimensions, so called the clockwork gravity, as an extension

of the GR, and discuss the particle spectrum and the effective couplings in each case in

the 4D effective theory as the continuum limit of clockwork models [8–12, 20–25]. The

hierarchy problem in the clockwork gravity can be solved due to the delocalization of the

massless graviton away from the brane where the Higgs field is localized. From the general

discussion on bulk fields including scalars, fermions, gauge bosons as well as graviton, we

identify the effective couplings between the zero mode of matter fields and the massive KK

modes of gauge bosons and graviton.

Based on the results of our general discussion, we construct the “Clockwork Standard

Model” where all the SM particles except the Higgs field propagate into the bulk. Investi-

gating the flavor structure of quarks and leptons from the localization of chiral zero modes

in this construction, we study the implications of the Clockwork SM as the simultaneous

solutions to the hierarchy problem and the flavor problem, and discuss the possibility for

complementary searches of massive KK modes at the LHC.

For the Randall-Sundrum (RS) warped background, a similar construction of the bulk

SM has been discussed in the literature [26–28] and the flavor issues associated with the
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bulk SM were thoroughly investigated [29–34]. In the case of the linear dilaton background,

flavor or dark matter puzzles were also studied mainly in the context of four-dimensional

clockwork models [20, 35–47].

The paper is organized as follows. We begin with a brief review on the gravitational

action with a dilaton in five dimensions and discuss the linear dilaton background in con-

nection to the solution to the hierarchy problem of the Higgs mass parameter. Then, we

introduce bulk scalars with bulk mass only in Jordan frame and discuss the profiles of

the zero mode as well as the massive modes. We continue to extend our analysis to bulk

fermions with bulk mass parameters of kink type and show the nontrivial profiles of lo-

calization of the chiral zero mode, depending on the dilaton coupling and the bulk mass

parameters. When bulk matter fields carry gauge charges, it is necessary to let the corre-

sponding gauge bosons propagate into the bulk. Thus, we also introduce bulk gauge bosons

and identify the consistent dilaton couplings required for universality and perturbavitivity

as well as compute the couplings between the zero modes of matter fields and the massive

KK modes of gauge bosons. Next, we show the general couplings of massive KK gravitons

to the brane fields as well as the zero modes of bulk fields.

Putting the pieces of the obtained results together, we next construct the Clockwork

Standard Model and discuss the mass hierarchy and mixing for quarks and leptons from

the overlaps between the zero modes of matter fields and show the implications for the

effective couplings of the SM particles to the massive KK gauge bosons and gravitons.

Finally, conclusions are drawn. There is one appendix dealing with the transformations of

the Lagrangians for bulk and brane matter fields from Jordan to Einstein frames.

2 The clockwork gravity

We first review the warped geometry with the linear dilaton background in five dimensions.

The model is the counterpart of the continuum Clockwork(CW) models in four dimensions

where there are multiple copies of identical particles or symmetries with nearest neighbor

interactions [8–12, 20, 22, 23].

The five-dimensional gravity action with a dilaton S in Jordan (or string) frame [22,

23, 48–50] is given by

S =

∫
d5x
√
G
M3

5

2
eS
(
−R(G)− (∂MS)2 + 4k2

)
−
∫
d5x
√
GeS

(
δ(z)√
−G55

Λ1 +
δ(z − zc)√
−G55

Λ2

)
(2.1)

where M5 is the 5D Planck mass, k is the 5D curvature and Λ1,2 are the brane tensions.

Then, the scale symmetry with S → S + δ and GMN → e−2δ/3GMN is broken explicitly

by a nonzero k2 as well as brane tensions. With a Weyl rescaling of the metric, GMN =

– 3 –
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e−2S/3GEMN , the above action becomes in Einstein frame

S =

∫
d5x
√
GE

M3
5

2

(
−R(GE) +

1

3
(∂MS)2 + 4k2 e−

2
3
S

)

−
∫
d5x
√
GE e

−S/3

 δ(z)√
−GE55

Λ1 +
δ(z − zc)√
−GE55

Λ2

 . (2.2)

Then, in Einstein frame, there appear a dilaton potential in the bulk and dilaton-dependent

couplings to the branes.

Then, there exists a warped solution to the bulk Einstein equation, whose metric

satisfying the Z2 symmetry, z → −z, is given by

ds2 = (w(z))2(ηµνdx
µdxν − dz2) (2.3)

with w(z) = e
2
3
k|z|, together with linear dilaton background, S(z) = 2k|z|. The metric in

eq. (2.3) can be rewritten in another coordinate y =
∫
ω(z)dz as

ds2 = e−2σ(y)ηµνdx
µdxν − dy2, (2.4)

with σ = − ln
(

2
3k|y| + 1

)
and S(y) = 3 ln

(
2
3k|y| + 1

)
where we chose the warp factor

to unity at y = 0 without a loss of generality. Thus, we denote ω2 = e−2σ = e
2
3
S . Then,

the extra dimension is bounded to z ∈ (−zc, zc] or y ∈ (−yc, yc], and the tuning relations

between brane tensions in the linear dilaton background are required for the consistency

of the warped metric solution at the branes, as follows,

Λ2 = −Λ1 = 4kM3
5 . (2.5)

Fom the relation between Jordan and Einstein frame metrics, GMN = e−2S/3GEMN =

ω−2GEMN , we note that the Jordan frame metric becomes nothing but the 5D Minkowski

spacetime, namely, GMN = ηMN .

The effective 4D Planck mass for the dilaton background is also given by

M2
P = M3

5

∫ zc

−zc
dz w3 = M3

5

∫ zc

−zc
dz e2k|z| =

M3
5

k

(
e2kzc − 1

)
. (2.6)

In terms of the proper length of the extra dimension,

L5 =

∫ zc

−zc
dz w =

∫ zc

−zc
dz e

2
3
k|z| =

3

k

(
e

2
3
kzc − 1

)
= 2yc. (2.7)

we can rewrite the 4D Planck mass (2.6) as

M2
P ≈

1

27
M3

5k
2L3

5. (2.8)

Therefore, the proper length of the extra dimension L5 can be much larger than the inverse

of the 5D curvature scale k due to the exponential factor, e
2
3
kzc , so the result can make one

warped extra dimension and a small 5D Planck mass compatible with the phenomenological
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constraints, unlike the case with one flat extra dimension [51, 52]. From eq. (2.8), the

relation between the 4D Planck scale and the length of the extra dimension looks like

the toroidal compactification of a 7D gravity. As a result, the linear dilaton background

differs from the warped extra dimension without a dilaton [53], because the 5D Planck

scale can be taken to a small value due to the exponentially large proper length of the

extra dimension in the former case. In the later discussion, we use the exponential warp

factor in the conformal coordinate z and the large proper length in the Gaussian normal

coordinate y interchangeably by keeping in mind the relation in eq. (2.7).

In the linear dilaton background, it is remarkable that M5 and k < M5 can be much

smaller than the Planck scale, thus addressing the hierarchy problem with the warped

extra dimension and allowing for the KK masses of order k as will be discussed in the later

sections. From eq. (2.6), we obtain the condition for the 5D curvature scale to satisfy

kzc +
1

2
ln
(

1− e−2kzc
)

= 32 +
1

2
ln

(
k

1 TeV

)
− 3

2
ln

(
M5

10 TeV

)
. (2.9)

Therefore, for the large 4D Planck mass or weak gravity, we only need a mild hierarchy

between the 5D Planck mass and the electroweak scale in the model with one extra di-

mension, thanks to the warp factor with kzc ∼ 30. In this case, a mild hierarchy between

the 5D curvature scale k and the radius of the extra dimension zc can be guaranteed by

the stabilization mechanism for the dilaton field S [50]. For a small M5, the expansion

parameter becomes ε = e−
2
3
kzc ' 5× 10−10, which would be appropriate for explaining the

smallness of neutrino masses, as will be discussed in the later section.

Having in mind the application of the clockwork framework to the flavor problems in

the SM, we also rewrite eq. (2.9) for a large M5, as follows,

kzc +
1

2
ln
(

1− e−2kzc
)

= 3.2 +
1

2
ln

(
k

105 TeV

)
− 3

2
ln

(
M5

1011 TeV

)
. (2.10)

Then, in the case with a large M5, we can take a smaller value of kzc in the warp factor

such that the expansion parameter becomes ε = e−
2
3
kzc ' 0.12, which is appropriately

sizable for obtaining the realistic quark Yukawa couplings from the bulk fermions in the

later discussion.

3 Bulk scalars

The Lagrangian for a bulk real scalar field χ with the general dilaton coupling in Jordan

frame [8–12] is given by

LS =
√
GecS

(
1

2
GMN∂Mχ∂Nχ−

1

2
m2
χχ

2

)
(3.1)

where c is a constant parameter for the dilaton coupling. In the case where a bulk complex

scalar field is charged under a gauge symmetry with bulk gauge boson AM (x, z), we can

promote the derivative in the above Lagrangian to a covariant derivative as DM = ∂M −
iqχg5DAM with g5D being the 5D gauge coupling and qχ being the charge of the complex

– 5 –
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scalar field χ. We can also add a bulk potential as well as a brane potential, being consistent

with the symmetry.

Then, the Euler equation for the Lagrangian (3.1) is

1√
G
∂M

(√
GecS GMN∂Nχ

)
+ ecSm2

χχ = 0. (3.2)

On the other hand, in Einstein frame with GMN = e−2S/3GEMN , we have the original

Lagrangian (3.1) in the following form,

LS =
√
GE

(
1

2
e(c−1)S GMN

E ∂Mχ∂Nχ−
1

2
e(c− 5

3
)Sm2

χχ
2

)
. (3.3)

Then, the corresponding Euler equation is

1√
GE

∂M

(√
−GE e(c−1)S GMN

E ∂Nχ
)

+ e(c− 5
3

)Sm2
χχ = 0. (3.4)

3.1 Scalar clockwork modes

For the flat metric in Jordan frame, GMN = ηMN , the equation of motion for the bulk

scalar in eq. (3.2) becomes

�χ− cS′∂zχ− ∂2
zχ+m2

χχ = 0. (3.5)

Then, taking χ = e−kc|z|
∑

n χ
(n)(x)fχn (z) with (�+m2

n)χ(n)(x) = 0, we can cast the above

equation into the equation for the mode function fχn (z),

∂2
zf

χ
n + (m2

n − k2c2 −m2
χ)fχn − 2kc

(
δ(z)− δ(z − zc)

)
fχn = 0. (3.6)

Here, there appear Dirac delta terms due to the second derivatives of the Z2 symmetric

factor in the redefined field.

First, for the zero mode solution, we have fχ0 ∝ e±
√
k2c2+m2

χz, but there is no zero

mode solution satisfying the Neumann boundary conditions, ∂zχ = 0 at z = 0 and zc,

unless mχ = 0, as expected for a massive bulk scalar. Taking mχ = 0, a constant zero

mode solution for χ exists,

fχ0 = Nχ0 e
kc|z| (3.7)

with

Nχ0 =

√
kc

e2kczc − 1
(3.8)

Here, the normalization factor Nχ0 is determined by 2
∫ zc

0 dz (fχ0 )2 = 1. In this case, the

wave functions for massive modes are given by

fχn = Nχn

(
cos

πnz

zc
+
kczc
πn

sin
πn|z|
zc

)
, n ∈ Z, (3.9)

with the eigenvalues and normalization factors being

m2
χn = c2k2 +

π2n2

z2
c

, (3.10)

Nχn =
1
√
zc

(
πn

zcmχn

)
. (3.11)

– 6 –
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Therefore, we find that the KK masses depend on the dilaton coupling c and the 5D

curvature scale k as well as the radius of the extra dimension zc. Taking c = 1, we can

recover the results as a continuum limit of the 4D clockwork scalars. However, for c 6= 1,

the mass gap between the zero mode and the first KK mode is given by c k.

We note that in the Gaussian normal coordinate y, related to the conformal coordinate

z by dy = e
2
3
kz dz, the zero mode solution for the bulk scalar field in eq. (3.7) becomes

fχ0 = Nχ0 (2
3k|y| + 1)

3
2
c with Nχ0 =

√
kc/[(1

3kL5 + 1)3c − 1]. Then, in the y coordinate,

the exponential warp factor is replaced by the power-law factor, but instead with a large

proper length, L5, in the normalization factor. But, henceforth, we keep on working in the

conformal coordinate z for convenience.

On the other hand, for mχ 6= 0, the eigenvalues and normalizations for massive modes

become

m2
χn = m2

χ + c2k2 +
π2n2

z2
c

, (3.12)

Nχn =
1
√
zc

πn

zc
√
m2
χn −m2

χ

. (3.13)

Therefore, the squared masses for the KK modes of the massive bulk scalar field are shifted

by the bulk mass.

3.2 Localized couplings of scalar clockwork

Suppose that a massless bulk scalar couples to the external operators localized on the

branes. Then, the effective couplings in four dimensions depend on the mode function

of the scalar as well as the dilaton coupling. For instance, we can introduce the scalar

coupling to the external operators O1,ext,O2,ext localized at z = 0, zc in Jordan frame,

LS,int =

√
G√
−G55

e
1
2
S χ
(
δ(z)O1,ext + δ(z − zc)O2,ext

)
. (3.14)

Then, for c > 0 and ekczc � 1, the normalization factor becomes Nχ0 '
√
kc e−kczc , so

the effective coupling to the zero mode χ(0) is exponentially suppressed at z = 0, but not

at z = zc. We note that the couplings to the KK scalars χ(n) at either branes are of

similar order at both branes. For instance, an axion-like scalar field can be introduced in

the bulk with the brane-localized coupling to the SM gluons by O1,ext = α
8πfa

GµνG̃
µν at

z = 0. In this case, the massless mode of the bulk axion has a large effective axion decay

constant [8–12], fa,eff = ekczc fa � fa, below the KK mass scale.

We also note that even for c < 0 and ek|c|zc � 1, the relative exponential suppression

of the scalar coupling at z = 0 as compared to z = zc is maintained, even though the nor-

malization factor becomes Nχ0 '
√
k|c|. But, in this case, we need the overall suppression

of the coefficients of the external operators for perturbativity at z = zc.

– 7 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
5

4 Bulk fermions

We consider a bulk fermion with the dilaton factor in Jordan frame, similarly to the case

with a bulk scalar in eq. (3.1), as follows,

LF =
√
GecS

[
iψ̄ΓM

(
∂M +

1

8
ωM

AB[ΓA,ΓB]

)
ψ − e

1
3
Sm(y)ψ̄ψ

]
. (4.1)

Here, the dilaton factor ecS can be in principle different from the one for the bulk scalar

discussed in the previous section. But, in the later discussion on the clockwork SM, we

will assume that the bulk matter fields take the same dilaton couplings.

In the case where the bulk fermion is charged under a gauge symmetry with bulk

gauge boson AM (x, z), we can promote the derivative to a covariant derivative as DM =

∂M − iqψg5DAM with g5D being the 5D gauge coupling and qχ being the charge of the field

ψ. Here, the bulk fermion mass is given by m(y) = νσ′ where ν the bulk mass parameter.

We have σ′ = −2
3k e

σ sgn(y) = −2
3k e

− 1
3
S sgn(y), so e

1
3
Sm(y) = −2

3k sgn(y), resulting the

constant bulk mass term in Jordan frame, except at the branes.

Now going to the Einstein frame with GMN = e−2S/3GEMN , we can rewrite the above

Lagrangian for the bulk fermion as

LF =
√
GE e

cS

[
iψ̄′ΓM

(
∂M +

1

8
ωM

AB[ΓA,ΓB]

)
ψ′ −m(y)ψ̄′ψ′

]
(4.2)

where we have rescaled the bulk fermion by ψ′ = e−2S/3ψ in order to make the covariant

derivative invariant. This is similar to the bulk fermion Lagrangian considered for the

bulk RS model, except the dilaton factor [26–28]. Here, ΓM = ΓA eA
M , ΓA = (γµ, iγ5),

ΓA = (γµ,−iγ5), and {ΓA,ΓB} = 2ηAB = 2 diag(+,−,−,−,−). The vielbein eA relates

the curved metric to the flat metric by eA
MeB

NGE,MN = ηAB. The spin connection in

5D is defined as

ωMAB =
1

2

(
eA

PΩMPB − eB PΩMPA − eA P eB
QeC MΩPQC

)
(4.3)

with ΩMNA = ∂MeNA − ∂NeMA. For the warped metric in Einstein frame, GE,MN =

diag(e−2σ,−e−2σ,−e−2σ,−e−2σ,−1), given in eq. (2.3), the nonzero components of the

vielbein are eα
µ = eσ δµα and e5

5 = 1, so the only nonzero components of the spin connec-

tion are

ωµ
α 5 = σ′ e−σδαµ . (4.4)

Then, with ecS = e−3cσ, the bulk fermion Lagrangian (4.2) is further simplified to

LF = e−3(c+1)σψ̄′
[
iγµ∂µ − γ5 e

−σ ∂5 + e−σσ′
(

2γ5 − ν
)]
ψ′

= ψ̃

[
iγµ∂µ − γ5 e

−σ ∂5 + e−σσ′
(

1

2
(1− 3c)γ5 − ν

)]
ψ̃ (4.5)

with

ψ̃ ≡ e−
3
2

(c+1)σψ′. (4.6)

As a result, the Euler equation for the redefined fermion is

iγµ∂µψ̃ − γ5 e
−σ ∂5ψ̃ + e−σσ′

(
1

2
(1− 3c)γ5 − ν

)
ψ̃ = 0. (4.7)

– 8 –
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4.1 Fermion clockwork modes

We impose the boundary condition on the bulk fermion by

γ5ψ(x,−y) = −ψ(x, y). (4.8)

Then, only the left-handed fermion has a massless mode by

ψ̃(x, y) = NL ψ
(0)
L (x)fL(y), fL(y) = e

(
1
2

(1−3c)+ν
)
σ, (4.9)

where iγµ∂µψ
(0)
L (x) = 0 with γ5ψ

(0)
L (x) = −ψ(0)

L (x), and NL is the normalization factor,

determined by 2N2
L

∫ L
0 dy(fL(y))2 = 1. If we impose an alternative boundary condition on

the bulk fermion by

γ5ψ(x,−y) = ψ(x, y), (4.10)

only the right-handed fermion has a massless mode by

ψ̃(x, y) = NR ψ
(0)
R (x)fR(y), fR(y) = e

(
1
2

(1−3c)−ν
)
σ, (4.11)

where iγµ∂µψ
(0)
R (x) = 0 with γ5ψ

(0)
R (x) = ψ

(0)
R (x), and NR is also deter-

mined by 2N2
R

∫ L
0 dy(fR(y))2 = 1. With the normalizations in the z coordinate,

2N2
L,R

∫ zc
0 dz (e−

1
2
σ fL,R(z))2 = 1, the zero mode wave functions as the probability den-

sities are given by

e−
1
2
σ fL,R(z) = e

1
3

(3c∓2ν)k|z|, (4.12)

and the normalization factors are

NL,R =

√
1
3(−3c± 2ν)k

1− e−
2
3

(−3c±2ν)kzc
. (4.13)

Then, we find the localization behavior of the fermion zero modes with respect to the fixed

point z = 0: for ν > 3
2c (ν < 3

2c), the left-handed zero mode is localized at z = 0(z = zc); for

ν > −3
2c (ν < −3

2c), the right-handed zero mode is localized at z = zc(z = 0). Therefore,

if |ν| < 3
2c for c > 0 or |ν| < 3

2 |c| for c < 0, either of chiral modes are localized towards

z = zc. If ν = ±3
2c for the zero mode of a left-handed or right-handed fermion, we obtain

the normalization factors as NL,R = 1√
2zc

, which does not depend on the warp factor.

As in the bulk scalar case in the previous section, in the Gaussian normal coordinate

y, the zero mode solutions for the bulk fermion in eqs. (4.9) and (4.11) become fL,R =(
2
3k|y|+ 1

)−( 1
2

(1−3c)±ν)
with NL,R =

√
1
3(−3c± 2ν)k/

(
1−

(
1
3kL5 + 1

)(3c∓2ν)
)

. Thus, in

the y coordinate, the exponential factor is replaced by the power-law factor, but with a

large proper length of the extra dimension in the normalization factors. As will be discussed

in the later sections, the large hierarchy of the effective Yukawa couplings in 4D can be

attributed to the localization in the extra dimension with a large proper length.

Taking the KK decomposition of the bulk fermion as

ψ′(x, y) =
∑
n

[
ψ

(n)
L (x)ξn(y) + ψ

(n)
R (x)ηn(y)

]
, (4.14)
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the fermion Lagrangian (4.5) becomes

LF =
∑
n

[
ψ̄

(n)
L iγµ∂µψ

(n)
L + ψ̄

(n)
R iγµ∂µψ

(n)
R −

(
mψnψ̄

(n)
L ψ

(n)
R + h.c.

)]
. (4.15)

Here, we used the normalizations,∫
dy e−3(c+1)σξn(y)ξm(y) =

∫
dy e−3(c+1)σηn(y)ηm(y) = δmn, (4.16)

and the wave functions, ξ̃n = e−
3
2

(c+1)σξn and η̃n = e−
3
2

(c+1)σηn, satisfy

−e−σ
[
∂5 −

(
1

2
(1− 3c) + ν

)
σ′
]
ξ̃n = mψn η̃n, (4.17)

e−σ
[
∂5 −

(
1

2
(1− 3c)− ν

)
σ′
]
η̃n = mψn ξ̃n. (4.18)

Then, redefining with

ξ̃n = e

(
1
2

(1−3c)+ν
)
σ αn, η̃n = e

(
1
2

(1−3c)−ν
)
σ βn, (4.19)

eqs. (4.17) and (4.18) become

∂5αn = −e(1−2ν)σmψnβn, (4.20)

∂5βn = e(1+2ν)σmψnαn. (4.21)

Consequently, we find that αn satisfies the following second-order differential equation,[
∂2

5 − (1− 2ν)σ′∂5 +m2
ψn e

2σ
]
αn = 0. (4.22)

Then, the other mode function, βn, can be obtained from eq. (4.21), so it is sufficient to

find the solutions for αn from the above differential equation. But, for completeness, we

also present the differential equation for βn as[
∂2

5 − (1 + 2ν)σ′∂5 +m2
ψn e

2σ
]
βn = 0. (4.23)

We note that for the boundary conditions, γ5ψ(x,−y) = −ψ(x, y) and ψ(x, y + 2L) =

ψ(x, y), and σ(−y) = σ(y), we have ξn(−y) = −ξn(y) or the Neumann boundary conditions,

∂5ξn(y = yi) = 0 with yi = 0, L on the orbifold. On the other hand, for γ5ψ(x,−y) =

ψ(x, y), we have ηn(−y) = ηn(y) or the Dirichlet boundary conditions, ηn(y = yi) = 0 with

yi = 0, L on the orbifold.

For dy = e−σdz = e
2
3
kzdz, we can rewrite eq. (4.22) as(

∂2

∂z2
− 4

3
νk

∂

∂z
+m2

ψn

)
αn = 0. (4.24)

Then, for an = e−
2
3
νkz αn, we have(

∂2

∂z2
+ (m2

ψn − κ
2)

)
an = 0, κ =

2

3
νk, (4.25)
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that is, the general solution for an is

an = An cos
(√

m2
ψn
− κ2 z

)
+Bn sin

(√
m2
ψn
− κ2 z

)
. (4.26)

Thus, for ∂5ξn(y = yi) = 0 with yi = 0, L, we have the probability density functions of

massive modes with 2
∫ zc

0 dz(e−
1
2
σ ξ̃n)2 = 1, as follows,

e−
1
2
σ ξ̃n = e

(
− 3

2
c+ν
)
σ e

2
3
νk|z|an

=

√
1

zc
eck|z| cos

(
nπz

zc

)
, (4.27)

and the mass eigenvalue is given by

m2
ψn =

n2π2

z2
c

+
4

9
ν2k2, n ∈ Z. (4.28)

As a result, the mass gap between the zero mode and the first KK mode depends on the

bulk mass parameter ν as well as the 5D curvature scale k, but not on the dilaton coupling

c, unlike the case with a bulk scalar and a bulk gauge boson, as will be discussed in the

next section. In the limit of a strong localization of the zero mode with |ν| � 1, we find

that the KK fermions become decoupled, being consistent with the fact that the zero mode

becomes a four-dimensional field.

Similarly, the other mode functions, ηn, have the same mass eigenvalues as in eq. (4.28),

but the corresponding probability density functions, with
∫ zc

0 dz(e−
1
2
ση̃n)2 = 1, satisfying

the Dirichlet boundary conditions at yi = 0, L, are given by

e−
1
2
ση̃n = e

(
− 3

2
c−ν
)
σ e−

2
3
νk|z|an

=

√
1

zc
eck|z| sin

(
nπ|z|
zc

)
. (4.29)

4.2 Localized couplings of fermion clockwork

We consider a Yukawa coupling between the Higgs field localized at z = 0 and two bulk

fermions, ψ and ψ′, with bulk mass parameters, νψ and νψ′ , respectively,

Lψ,int = −δ(z)

√
G√
−G55

(
yψ ψ̄Lψ

′
RH + h.c.

)
. (4.30)

Then, we require the left-handed or right-handed zero modes for ψ and ψ′ to exist, that

is, νψ < 3
2c and νψ′ > −3

2c for c > 0. Thus, with Nψ ≈
√

k
3 (3c− 2νψ) ε

3
2
c−νψ and

Nψ′ ≈
√

k
3 (3c+ 2νψ′) ε

3
2
c+νψ′ for ε ≡ e−

2
3
kzc � 1, we get the effective Yukawa coupling

suppressed by the warp factor, as follows,

Lψ,int = −yψNψNψ′ψ̄L,0ψ
′
R,0H + h.c. (4.31)

= −λψ ψ̄L,0ψ′R,0H + h.c. (4.32)

with

λψ ≈
1

3
kyψ

√
(3c− 2νψ)(3c+ 2νψ′) ε

3c−νψ+νψ′ � 1. (4.33)
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We note that it is also possible to get a hierarchical Yukawa coupling without a large

warp factor, as far as the bulk mass parameters, νψ, νψ′ , are parametrically larger than

unity, namely, the condition ε3c−νψ+νψ′ � 1 would be sufficient.

5 Bulk gauge bosons

We consider a massless bulk gauge boson for either abelian or non-abelian gauge symmetry

in the linear dilaton background in five dimensions [20]. A gauge fixing term is required for

a massless gauge boson. In the following, we set A5 = 0, which is suitable for components

of the gauge boson containing a massless mode on orbifold S1/Z2.

The Lagrangian for a bulk gauge boson AM in Jordan frame is given by

LA = −
√
GeaS

1

4
FMNFPQG

MPGNQ (5.1)

where a is a constant parameter for the dilaton coupling, and FMN = ∂MAN − ∂NAM .

Then, the Euler equation is

∂M

(√
GeaS FMN

)
= 0. (5.2)

On the other hand, in Einstein frame, we can rewrite the bulk Lagrangian (5.1) in the

following,

LA = −
√
GE e

(a− 1
3

)S 1

4
FMNFPQG

MP
E GNQE (5.3)

Then, the corresponding Euler equation is

∂M

(√
GE e

(a− 1
3

)S GMP
E GNQE FPQ

)
= 0. (5.4)

5.1 Gauge clockwork modes

For the flat metric in Jordan frame, GMN = ηMN , and in the gauge with A5 = ∂µA
µ = 0,1

the bulk equation (5.2) for the gauge field in Jordan frame becomes

�Aµ − aS′∂zAµ − ∂2
zAµ = 0. (5.5)

Thus, the above equation is the same as the one for a massless bulk scalar in the CW model

in eq. (3.5), up to the dilaton coupling. So, making a Fourier decomposition of the bulk

gauge field as Aµ(x, z) = e−ka|z|
∑

nA
(n)
µ (x)fAn (z) with (� + m2

n)A
(n)
µ (x) = 0, we obtain

the similar eigenfunctions and eigenvalues as those for a massless bulk scalar, as follows,

fA0 = NA0 e
ka|z|, (5.6)

fAn = NAn

(
cos

πnz

zc
+
kazc
πn

sin
πn|z|
zc

)
, n ∈ Z, (5.7)

1We can first choose A5 = 0 by a 5D gauge transformation with AM → AM +∂Mα, and perform another

gauge transformation satisfying ∂5α
′ = 0 and ∂µA

′µ = ∂µA
µ+�α′ = 0. For massless mode, we can perform

one more gauge transformation with �α′′ = 0 to reduce the number of polarization states to two. But, for

massive modes, there remain three polarization states.

– 12 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
5

with

NA0 =

√
ka

e2kazc − 1
, (5.8)

NAn =
1
√
zc

(
πn

zcmAn

)
, (5.9)

and

m2
An = a2k2 +

π2n2

z2
c

. (5.10)

Therefore, the KK masses of the bulk gauge boson depend on the 5D curvature scale k and

the radius of the extra dimension zc as well as the dilaton coupling a.

We note that in the Gaussian normal coordinate y, the zero mode solution for the bulk

gauge field becomes fA0 = NA0 (2
3k|y| + 1)

3
2
a with NA0 =

√
ka/[(1

3kL5 + 1)3a − 1]. Thus,

the exponential warp factor is replaced by the power-law factor as in the zero modes for

bulk scalar and fermion fields, but with a large proper length of the extra dimension in the

normalization factor.

5.2 Localized couplings of gauge clockwork

We can introduce a coupling of the bulk gauge field to the external charged fields, χi, ψi,

localized at z = zi(i = 1, 2), with z1 = 0, z2 = zc, written in Jordan frame,

LA,brane =

√
G√
−G55

∑
i=1,2

δ(z − zi) Jµ,i(x)Aµ(x, z). (5.11)

Here, we have not introduced the dilaton couplings to the brane-localized charged fields by

imposing the universality of the zero-mode gauge couplings independent of the locations in

the bulk. Then, from the Fourier expansion of the bulk gauge field, we obtain the effective

gauge couplings in Einstein frame as

LA,brane = Jµ,i(x)e−kazi
(
fA0 (zi)Aµ,0(x) + fAn (zi)A

(n)
µ (x)

)
=
(
− iqχ χi∂µχ∗i + h.c.+ qψψ̄iγ

µψi

)(
g0Aµ,0(x) + gnA

(n)
µ (x)

)
(5.12)

where the brane charged current is given by Jµ,i = −iqχg5Dχi∂
µχ∗i + h.c.+ qψg5Dψ̄iγ

µψi,

and the mode functions of the bulk gauge field are given in eqs. (5.6) and (5.7). Then, the

4D effective gauge coupling for the zero mode of the bulk gauge boson is given by

g0 = g5D

√
ka

e2kazc − 1
, (5.13)

and the effective couplings for the massive modes of the bulk gauge field depend on the

locations of the charged fields, given by

gn = g5D
1
√
zc

πn

zcmAn

×

{
1, z = 0,

(−1)n e−kazc , z = zc.
(5.14)
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Therefore, the effective couplings of massive modes of the bulk gauge boson to the external

charged fields at z = zc are exponentially suppressed, relative to those at z = 0.

We remark on the dependences of the effective gauge couplings on the dilaton coupling

of the bulk gauge field a and the warp factor. First, for a > 0 and ek|a|zc � 1 as required

by the solution to the hierarchy problem, the zero-mode gauge coupling becomes g0 '
g5D

√
k|a| e−k|a|zc , from eq. (5.13), which is too suppressed to be the observed value of the

gauge coupling in the SM, unless g5D is taken to a large value.

Second, for a < 0 and ek|a|zc � 1, the zero-mode gauge coupling becomes g0 '
g5D

√
k|a|, from eq. (5.13), which can be chosen to the observed value of the gauge coupling

in the SM, without a need of taking a large value of g5D. However, in this case, the localized

charged particles at z = zc have enhanced effective gauge couplings for the massive modes

of the bulk gauge field in eq. (5.14), due to the exponential factor, ek|a|zc . Then, the result

is questionable for perturbativity. Therefore, in order to maintain perturbativity being

compatible with the hierarchy problem, we would need to introduce the charged fields for

the bulk gauge field on the brane at z = 0. Otherwise, we need to take k|a|zc ∼ 1 for |a| .
0.1. But, if |a| is sizable, we need to take kzc = O(1) for perturbativity throughout the bulk.

Lastly, for a = 0, which means that there is no dilaton coupling to the bulk gauge field,

we get the zero-mode gauge coupling as g0 = g5D/
√

2zc from eq. (5.13) as in the flat extra

dimension, and the massive-mode gauge couplings are given by |gn| =
√

2g0 from eq. (5.14),

independent of the branes, and the KK masses become mAn = πn/zc. In this case, the

masses of KK gauge bosons would be lighter than those of bulk gravitons or fermions at

least by the order of magnitude for kzc = O(10).

In the next subsection, we will give a more general discussion on the bulk gauge

couplings from the localized zero modes of bulk charged scalars and fermions.

5.3 Bulk couplings of gauge clockwork

The bulk gauge field also couples to the external scalar or fermion fields, χ, ψ, living in the

bulk, whose gauge interactions are written in Jordan frame,

LA,bulk =
√
GecS Jµ(x, z)Aµ(x, z) (5.15)

where the bulk charged current is given by Jµ(x, z) = −iqχg5Dχ∂
µχ∗+ h.c.+ qψg5Dψ̄γ

µψ.

Then, for the zero modes of the external fields, χ0, ψ0, we obtain the following effective

gauge interactions to the KK modes of the bulk gauge field in Einstein frame,

LA,eff =
(
− iqχχ0∂µχ

∗
0 + h.c.

)(
g0A

(0)
µ + gχ,nA

(n)
µ

)
+qψψ̄0γ

µψ0

(
g0A

(0)
µ + gψ,nA

(n)
µ

)
(5.16)
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where

gχ,n = g5DNAnN
2
χ0

∫ zc

−zc
dz ek(2c−a)|z|

(
cos

πnz

zc
+
kazc
πn

sin
πn|z|
zc

)

= g5D
1
√
zc

πn

zcmAn

4c(a− c)(kzc)2

|e2kczc − 1|
·

(
1− (−1)n e−(a−2c)kzc

)
n2π2 + (a− 2c)2(kzc)2

, (5.17)

gψ,n = g5DNAnN
2
L,R

∫ zc

−zc
dz e−ka|z| e−

2
3

(−3c±2ν)k|z|
(

cos
πnz

zc
+
kazc
πn

sin
πn|z|
zc

)
= g5D

1
√
zc

πn

zcmAn

4| − 3c± 2ν|(3a− 3c± 2ν)(kzc)
2

|1− e−
2
3

(−3c±2ν)kzc |

×

(
1− (−1)n e−

1
3

(3a+2(−3c±2ν))kzc
)

9n2π2 + (3a− 6c± 4ν)2(kzc)2
. (5.18)

We now discuss the impacts of the dilaton couplings, the warp factor and the bulk

mass parameter ν on the obtained effective gauge interactions to the KK modes of the

bulk gauge field. First, taking a < 0 for a sizable gauge coupling for the zero-mode gauge

boson in eq. (5.13) and c < 1
2a for perturbativity, the charged scalar couplings to the

massive-mode gauge bosons in eq. (5.17) become for e−kzc � 1,

gχ,n ≈ g5D
1
√
zc

πn

zcmAn

4c(a− c)(kzc)2

n2π2 + (a− 2c)2(kzc)2
. (5.19)

Thus, in this case, the massive-mode gauge bosons have mildly suppressed couplings by

the factor of (kzc)
−3/2 as compared to the one for the zero-mode gauge boson, which is

approximated to g0 ≈ g5D

√
k|a|.

Imposing a < 0, and |ν| < 3
2c for c > 0 (or |ν| > 3

2 |c| for c < 0), the effective couplings

of the bulk charged fermion to the massive-mode gauge bosons in eq. (5.18) become

gψ,n ≈ (−1)n+1 g5D
1
√
zc

πn

zcmAn

4| − 3c± 2ν|(3a− 3c± 2ν)(kzc)
2

9n2π2 + (3a− 6c± 4ν)2(kzc)2
· ek|a|zc . (5.20)

Consequently, in this case, the charged fermion localized towards z = zc would have ex-

ponentially enhanced couplings for ek|a|zc � 1, unless |a| is small. Thus, the warp factor

would be bounded to kzc = O(1) by perturbativity or we would need to take a small |a|
such that |a| . 1/(kzc).

Finally, taking a < 0 and |ν| > 3
2c for c > 0 instead (or |ν| < 3

2 |c| for c < 0) with

3a + 2(−3c ± 2ν) > 0, we can approximate the effective couplings of the bulk charged

fermion to the massive-mode gauge bosons in eq. (5.18) as

gψ,n ≈ g5D
1
√
zc

πn

zcmAn

4| − 3c± 2ν|(3a− 3c± 2ν)(kzc)
2

9n2π2 + (3a− 6c± 4ν)2(kzc)2
, (5.21)

which is mildly suppressed by the factor of (kzc)
−3/2 as compared to the zero mode coupling,

g0 ' g5D

√
k|a|. Thus, in this case, we can take a large warp factor as required for solving

the hierarchy problem without a problem of perturbativity.
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6 Bulk gravitons

We consider the bulk graviton Ĝµν(z, x) as the perturbation around the warped metric in

the Einstein frame,

ds2 = w(z)2
[
(ηµν + Ĝµν(z, x))dxµdxν + dz2

]
. (6.1)

Under the Fourier decomposition of the 5D metric as

Ĝµν(z, x) = 2M
−3/2
5 w−2fGn (z)G(n)

µν (x) (6.2)

with (� −m2
Gn

)G
(n)
µν (x) = 0, the bulk linearized Einstein equation leads to the equation

for the mode functions of the bulk graviton in the extra dimension [54],

(fGn )′′ − w′

w
(fGn )′ +

(
m2
Gn −

2w′′

w

)
fGn = 0. (6.3)

6.1 Graviton clockwork modes

For the warp factor, in the CW model w(z) = e
2
3
k|z|, we obtain the equation for the mode

functions from eq. (6.3) as

(fGn )′′ − 2

3
k(fGn )′ +

(
m2
Gn −

8

9
k2

)
fGn −

8

3
k (δ(z)− δ(z − zc))fGn = 0. (6.4)

Then, making the field redefinition with fGn = e
1
3
k|z|ψn, we get the above equation as

ψ′′n + (m2
Gn − k

2)ψn − 2k(δ(z)− δ(z − zc))ψn = 0. (6.5)

For the range of the extra dimension to be z ∈ [−zc, zc], the boundary conditions for the

mode functions are given by (
ψ′n − kψn

)∣∣∣
z=0+

= 0, (6.6)(
ψ′n − kψn

)∣∣∣
z=z−c

= 0. (6.7)

As a result, we obtain the solution for the massless mode with m0 = 0 satisfying the

boundary conditions, (6.6) and (6.7) as

ψ0(z) = C0 e
k|z| (6.8)

with

C0 =

√
k

e2kzc − 1
. (6.9)

On the other hand, the solutions to massive modes with mn 6= 0 are

ψn(z) = Cn

(
cos

πnz

zc
+
kzc
πn

sin
πn|z|
zc

)
, n ∈ Z, (6.10)

with

Cn =
1
√
zc

πn

mGnzc
, (6.11)

m2
Gn = k2 +

π2n2

z2
c

. (6.12)

Therefore, the KK masses of the bulk graviton has a mass gap determined by the 5D

curvature scale k.
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6.2 Localized couplings of graviton clockwork

We can introduce a coupling of the bulk graviton to the external fields, χi, ψi, localized at

z = zi(i = 1, 2), with z1 = 0, z2 = zc, written in terms of the energy-momentum tensors in

Einstein frame,

LG,brane = −1

2

√
GE√
−GE55

∑
i=1,2

Tµν,i(x)
(
ω2(zi)Ĝµν(x, zi)

)
= −

∑
i=1,2

Tµν,i(x)

(
1

MP
G(0)
µν (x) +

1

Λin
G(n)
µν (x)

)
(6.13)

where Tµν,i(x) are the energy-momentum tensors for the external fields localized at z = zi,

and the KK graviton couplings [22, 23, 46, 47] are given by

1

Λin
= M

−3/2
5 e−kzi

1
√
zc

πn

mGnzc
cos

(
πnzi
zc

)
≡ e−kzi

Λ

nmG1

mGn

cos

(
πnzi
zc

)
, (6.14)

normalized to the suppression scale for the first KK graviton at z = 0,

Λ ≡ (M5zc)
3/2 mG1

π
. (6.15)

Thus, the KK gravitons couple strongly to the external field localized at z = 0, but their

couplings to those localized at z = zc are exponentially suppressed by the order of the in-

verse Planck scale from M
−3/2
5 e−kzc/

√
zc ∼ 1/MP /

√
kzc, which was obtained from eq. (2.6).

In view of the condition for solving the hierarchy problem with M5 ∼ 10 TeV and

e−2kzc � 1 in eq. (2.9), we can infer the suppression scale for the KK graviton couplings as

Λ

M5
≈ 182

(
M5

10 TeV

)1/2(kzc
32

)3/2(1 TeV

k

)1/2

. (6.16)

6.3 Bulk couplings of graviton clockwork

The bulk graviton also couples to the external fields in the bulk, written in terms of the

energy-momentum tensors in Einstein frame,

LG,bulk = −1

2

√
GE T

µν(x, z)
(
ω2(z)Ĝµν(x, z)

)
. (6.17)

Then, for the zero modes of the external fields, we obtain the following effective interactions

to the KK gravitons,

LG,eff = −Tµν(0)(x)

(
1

MP
G(0)
µν (x) +

1

ΛBn
G(n)
µν (x)

)
: (6.18)

for scalar fields,
1

ΛBn
= M

−3/2
5 N2

χ0

∫ zc

−zc
dz e(2c−1)k|z|ψn(z) ≡ cχ,n

Λ
(6.19)
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with

cχ,n =
nmG1

mGn

4|c|(1− c)(kzc)2

|e2kczc − 1|
·

(
1− (−1)n e(2c−1)kzc

)
n2π2 + (1− 2c)2(kzc)2

; (6.20)

for gauge bosons,

1

ΛBn
= M

−3/2
5 N2

A0

∫ zc

−zc
dz e(2a−1)k|z|ψn(z) ≡

cA,n
Λ

(6.21)

with

cA,n =
nmG1

mGn

4|a|(1− a)(kzc)
2

|e2kazc − 1|
·

(
1− (−1)n e(2a−1)kzc

)
n2π2 + (1− 2a)2(kzc)2

; (6.22)

for fermions,

1

ΛBn
= M

−3/2
5 N2

L,R

∫ zc

−zc
dz e−k|z|e−

2
3

(−3c±2ν)k|z| ψn(z) ≡
cψ,n
Λ

(6.23)

with

cψ,n =
nmG1

mGn

4| − 3c± 2ν|(3− 3c± 2ν)(kzc)
2∣∣1− e− 2

3
(−3c±2ν)kzc

∣∣ ·

(
1− (−1)n e−

1
3

(3+2(−3c±2ν))kzc
)

9n2π2 + (3− 6c± 4ν)2(kzc)2
. (6.24)

Here, Nχ0 , NA0 , NL,R are the normalization factors for zero modes, given in

eqs. (3.8), (5.8), (4.13), respectively.

As a result, first, from eq. (6.19) that the KK graviton couplings to the zero mode of

the bulk scalar are exponentially suppressed for c > 0, but they are comparable to those

to the fields localized at z = 0 for c < 0, that is, Λ1
n in eq. (6.14). We note that for c = 0

or c = 1, the latter of which is the same as the one for the dilaton field in eq. (2.1), the KK

graviton couplings vanish identically. Second, from eq. (6.21), the KK graviton couplings

to the zero mode of the bulk gauge boson has a similar dependence on the dilaton coupling

a as for the bulk scalar field.

Finally, from eq. (6.23), the KK graviton couplings to the zero mode of the bulk

fermion are comparable to those to the fields localized at z = 0, that is, Λ1
n in eq. (6.14),

for |ν| > 3
2c with c > 0 (which corresponds to the localization towards z = 0), whereas

being exponentially suppressed, similarly to Λ2
n in eq. (6.14), for |ν| < 3

2c with c > 0 (which

corresponds to the localization towards z = zc).

7 The Clockwork Standard Model

In this section, we make use of the results for the mode functions and couplings of the bulk

fields in the linear dilaton background in the previous sections and construct the bulk SM

Lagrangian, which is regarded as the continuum limit of the Clockwork SM.

We assume that the electroweak symmetry is broken due to the VEV of the Higgs

doublet localized on the brane at z = 0. Then, in order to explain the mass hierarchy of

the SM fermions, we also assume that the SM fermions, in particular, the light fermions
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other than top quark and/or bottom quark, propagate into the bulk such that the effective

Yukawa couplings for them are suppressed.

The full Lagrangian for the Clockwork SM including the right-handed neutrinos nR
are then given in Jordan frame by

LCW SM =
√
GecS

[ ∑
ψ=q,u,d,l,e,n

iψ̄ΓM
(
DM +

1

8
ωM

AB[ΓA,ΓB]

)
ψ − e

1
3
Smψψ̄ψ

]

−
√
GeaS

[
1

4
BµνB

µν +
1

2
Tr(WµνW

µν) +
1

2
Tr(gµνg

µν)

]
+δ(z)

√
G√
−G55

(
|DµH|2 − V (H)− yd q̄LdRH − yu q̄LuRH̃ − ye l̄LeRH + h.c.

−yν l̄LnRH̃ −
1

2
MRncRnR + h.c.

)
. (7.1)

where the Higgs potential is given by V (H) = m2
H |H|2 + λH |H|4, the 5D covariant deriva-

tives for the SM fermions are given by DM = ∂M − igY,5DY Bµ(x, z) − igL,5DWµ(x, z) −
igS,5Dgµ(x, z) with Wµ = 1

2~τ · ~Wµ, gµ = 1
2λ

agaµ and gY,5D, gL,5D, gS,5D being the bulk

gauge couplings for U(1)Y , SU(2)L, SU(3)C , respectively, and the mass parameters for

bulk fermions with mψ = νψσ
′ can be independently chosen, and H̃ = iτ2H∗. We note

that λa are Gell-Mann matrices and τ i are Pauli matrices, satisfying [λ
a

2 ,
λb

2 ] = ifabc λ
c

2 ,

[ τ
i

2 ,
τ i

2 ] = iεijk τ
k

2 , as well as Tr(λaλb) = 2δab and Tr(τ iτ j) = 2δij . We also note that the

dilaton couplings to the bulk fermions and gauge bosons are introduced universally as c

and a, respectively.

Some of the matter fermions and/or gauge fields in the SM can be localized on the

branes. In this case, we can consider the brane-localized kinetic terms for them in the

following form,

Lb = δ(z − zi)
√
G√
−G55

(
iψ̄iγ

µDµψi −
1

4
GµρGνσFi,µρFi,νσ

)
. (7.2)

In this case, for the matter fermions localized on the branes, we don’t include the normal-

ization factors for them in writing the effective Yukawa couplings, unlike those for the zero

modes of bulk fermions.

In figure 1, we show the schematic bulk profiles of the zero modes and the first KK

modes for scalar, left-handed fermion, gauge boson as well as graviton, with arbitrary

common normalization. We have taken the bulk mass parameters for the bulk fermion to

ν = ±2 for solid and dashed blue lines, and the dilaton couplings are chosen to c = −0.5 for

scalar and fermion and a = −0.3 for gauge boson, and the parameter for the warp factor

is kzc = 10, as illustration. In this case, the zero modes of scalar, gauge boson and left-

handed fermion with ν = 2 (corresponding to heavy fermions) are localized towards z = 0,

whereas the zero modes of graviton and left-handed fermion with ν = −2 (corresponding

to light fermions) are localized towards z = zc. On the other hand, the first KK modes for

all the cases are distributed through the bulk.
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Figure 1. (Left) The bulk profiles of zero modes of bulk fields. (Right) The bulk profiles of the

first KK modes of bulk fields. The wave functions for scalar, left-handed fermion, gauge boson and

graviton are shown in black, (dashed) blue, red and purple lines, respectively. We took the bulk

mass parameters, ν = ±2, for solid and dashed blue lines, and the dilaton couplings, c = −0.5 for

scalar and fermion, and a = −0.3 for gauge boson, and kzc = 10.

7.1 The Yukawa couplings for quarks and leptons

For a bulk fermion with the mass parameter νψ, from eqs. (4.9) and (4.11) with eqs. (4.12)

and (4.13), the zero modes as the probability densities with 2
∫ zc

0 dz (e−
3
2
cσψ0)2 = 1 in the

z coordinate are given by

e−
3
2
cσψ0(x, z) =

 NψL ψL,0(x) e−
1
3

(−3c+2νψ)k|z|, ψ = q, l,

NψR ψR,0(x) e−
1
3

(−3c−2νψ)k|z|, ψ = u, d, e, n
(7.3)

where

NψL =

√
1
3(−3c+ 2νψ)k

1− e−
2
3

(−3c+2νψ)kzc
, (7.4)

NψR =

√
1
3(−3c− 2νψ)k

1− e−
2
3

(−3c−2νψ)kzc
. (7.5)

Then, for the mass hierarchy of fermions, the light fermions must be delocalized from the

brane at z = 0, so we need to choose νψ <
3
2c for ψ = q, l, and νψ > −3

2c for ψ = u, d, e, n.

On the other hand, the top quark must be localized on the brane at z = 0, so we need νtL >
3
2c and/or νtR < −3

2c. As a result, for e−
2
3

(−3c±2νψ)kzc � 1, except the top quark, we can

approximate NψL ≈
√

k
3 (3c− 2νψ) e

1
3

(−3c+2νψ)kzc and NψR ≈
√

k
3 (3c+ 2νψ) e

1
3

(−3c−2νψ)kzc .
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As a consequence, after inserting the zero mode wave functions for the bulk fermions

in the Yukawa couplings in eq. (7.1), we derive the effective Yukawa couplings as follows,

−LY = ydNqNd q̄L,0dR,0H + yuNqNu q̄L,0uR,0H̃ + yeNlNe l̄L,0eR,0H + h.c.

+yν NlNn l̄LnRH̃ +
1

2
N2
nMRncRnR + h.c.

= λd q̄L,0dR,0H + λu q̄L,0uR,0H̃ + λe l̄L,0eR,0H + h.c.

+λν l̄L,0nR,0H̃ +
1

2
M ′Rn

c
R,0nR,0 + h.c.+ · · · (7.6)

with

λijd = yijd N
i
qN

j
d ≈ k y

ij
d η

i
qη
j
d, (7.7)

λiju = yiju N
i
qN

j
u ≈ k yiju ηiqηju, (7.8)

λije = yije N
i
lN

j
e ≈ k yije ηilηje, (7.9)

λijν = yijν N
i
lN

j
n ≈ k yijν ηilηjn, (7.10)

M ′R,ij = N i
nN

j
nMR,ij ≈ kMR,ij η

i
nη

j
n. (7.11)

Here, we define the small parameters as

ηiq =

√
1

3
(3c− 2νq) ε

3
2
c−νq , (7.12)

ηid =

√
1

3
(3c+ 2νd) ε

3
2
c+νd , (7.13)

ηiu =

√
1

3
(3c+ 2νu) ε

3
2
c+νu , (7.14)

ηil =

√
1

3
(3c− 2νl) ε

3
2
c−νl , (7.15)

ηie =

√
1

3
(3c+ 2νe) ε

3
2
c+νe , (7.16)

ηin =

√
1

3
(3c+ 2νn) ε

3
2
c+νn (7.17)

where ε ≡ e−
2
3
kzc . Here, the expansion parameter ε ≡ e−

2
3
kzc is proportional to the inverse

of the proper length L5 by ε ≈ (1
3kL5)−1, so the small expansion parameter is attributed

to a large proper length of the extra dimension. Thus, for ηiψ � 1, we need |νψ| < 3
2c for

left-handed fermions for c > 0 and |νψ| > 3
2c for right-handed fermions for c < 0. Then,

from eq. (4.28), the KK masses for bulk fermions are bounded by m2
ψn

= 4
9ν

2k2 + π2n2

z2c
<

c2k2 + π2n2

z2c
for left-handed fermions for c > 0 or m2

ψn
= 4

9ν
2k2 + π2n2

z2c
> c2k2 + π2n2

z2c
for

right-handed fermions for c < 0.

We note that the Yukawa couplings in the bulk SM Lagrangian have an inverse mass

dimension, due to the fact that the bulk fermions have a mass dimension two, so the

effective Yukawa couplings, λd, λu, λe, λν , are dimensionless. On the other hand, the brane

Majorana mass MR is dimensionless, but the effective Majorana mass, M ′R, is dimensionful.
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Figure 2. The expansion parameter, ε ≡ e−
2
3kzc , as a function of the 5D Planck mass M5. The

5D curvature scale is chosen to k = 0.1M5, 10−5M5, 10−8M5, in solid, dashed and dotted lines.

We also note that the bulk mass parameters for fermions can be generation dependent, for

instance, mqi = νqiσ
′ with i = 1, 2, 3. Then, we can have nontrivial Yukawa matrices as

will be discussed later.

As a consequence, even with comparable bulk mass parameters for bulk fermions, we

can explain the mass hierarchy and mixing of quarks and leptons, due to the exponential

factors. Moreover, in the case with lepton number conservation, setting MR to zero, we

can explain the smallness of neutrino masses for νn + 3
2c � 1 due to the exponential

suppression of the neutrino Yukawa couplings, thus requiring parametrically larger bulk

mass parameters than those for quarks and leptons.

In figure 2, we depict the small expansion parameter, ε ≡ e−
2
3
kzc , as a function of the 5D

Planck mass M5. We have taken the 5D curvature scale to k = 0.1M5, 10−5M5, 10−8M5, in

solid, dashed and dotted lines, in order. For a small M5 ∼ 10 TeV, the expansion parameter

ε becomes as small as ε ∼ 10−9, which would be suitable for explaining the small neutrino

masses, as will be discussed in the later subsection. On the other hand, for a large M5, the

expansion parameter ε can be as large as ε ∼ 0.1, which is appropriate for explaining the

hierarchy of quark masses and mixings.

7.2 The mass hierarchy and mixing for quarks

In this subsection, we discuss the generation of the mass hierarchy and mixing for quarks

in the presence of the localizations.

Assuming that the brane-localized Yukawa couplings, yd and yu, are flavor-diagonal,

that is, yijd = yd δij and yiju = yu δij , we want to generate the realistic flavor structure

from the localization of the zero modes of bulk fermions. In this case, after electroweak

symmetry breaking, from eq. (7.6), the mass matrices for up-type quarks and down-type
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quarks are given, respectively, by

M ij
u =

1√
2
kyu v η

i
qη
j
u, (7.18)

M ij
d =

1√
2
kyd v η

i
qη
j
d. (7.19)

Then, assuming a mild hierarchy with η1
ψ < η2

ψ < η3
ψ for ψ = q, u, d, we can diagonalize the

quark mass matrices by the bi-unitary transformations [1, 57],

VuLMuV
†
uR

= diag(mu,mc,mt) ≡ mi
u δij , (7.20)

VdLMdV
†
dR

= diag(md,ms,mb) ≡ mi
d δij , (7.21)

where

V ij
uL
∼ V ij

dL
∼ min

(
ηiq

ηjq
,
ηjq
ηiq

)
∼ min

(
ε|ν

i
q |−|ν

j
q |, ε|ν

j
q |−|νiq |

)
, (7.22)

V ij
uR
∼ min

(
ηiu

ηju
,
ηju
ηiu

)
∼ min

(
ε|ν

i
u|−|ν

j
u|, ε|ν

j
u|−|νiu|

)
, (7.23)

V ij
dR
∼ min

(
ηid
ηjd
,
ηjd
ηid

)
∼ min

(
ε|ν

i
d|−|ν

j
d|, ε|ν

j
d|−|ν

i
d|
)
, (7.24)

and mi
u = kyu v η

i
qη
i
u and mi

d = kyd v η
i
qη
i
u. Here, we have ignored the quadratic terms for

the ratios, ηiq/η
j
q , etc, but they can be important for a precise matching to the measured

CKM matrix.

Thus, for kyu ∼ 1 and η3
qη

3
u ∼ 1 (that is, |ν3

q | + |ν3
u| ∼ 1), we obtain the correct top

quark mass. On the other hand, for kyd ∼ 1 and η3
qη

3
d ∼

mb
mt

, we also get the correct bottom

mass. Moreover, the mass hierarchies for quarks are given by

mi
u

mj
u

= ε|ν
i
q |−|ν

j
q | × ε|ν

i
u|−|ν

j
u|, i < j, (7.25)

mi
d

mj
d

= ε|ν
i
q |−|ν

j
q | × ε|ν

i
d|−|ν

j
d|, i < j. (7.26)

From eq. (7.22), the CKM matrix is also obtained as

V ij
CKM = (VuLV

†
dL

)ij =
ηiq

ηjq
∼ ε|νiq |−|ν

j
q |, i < j, (7.27)

so the bulk mass parameters for the left-handed quarks are constrained by the CKM mix-

ings, as follows,

ε|ν
1
q |−|ν2q | ∼ λ, ε|ν

2
q |−|ν3q | ∼ λ2, ε|ν

1
q |−|ν3q | ∼ λ3 (7.28)

where λ ' 0.22 is the Cabibbo angle. Therefore, from eqs. (7.25), (7.26) and (7.27), the

bulk mass parameters for the right-handed quarks are constrained to satisfy the following
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relations,

ε|ν
i
u|−|ν

j
u| = (V ij

CKM)−1m
i
u

mj
u

, i < j, (7.29)

ε|ν
i
d|−|ν

j
d| = (V ij

CKM)−1m
i
d

mj
d

, i < j. (7.30)

Concretely, using the ratios of quark masses [58],

mu

mc
∼ λ4.2,

mc

mt
∼ λ3.2,

mu

mt
∼ λ7.5, (7.31)

md

ms
∼ λ2,

ms

mb
∼ λ2.5,

md

mb
∼ λ4.5, (7.32)

we have

ε|ν
1
u|−|ν2u| ∼ λ3.2, ε|ν

2
u|−|ν3u| ∼ λ1.2, ε|ν

1
u|−|ν3u| ∼ λ4.5, (7.33)

ε|ν
1
d |−|ν

2
d | ∼ λ, ε|ν

2
d |−|ν

3
d | ∼ λ0.5, ε|ν

1
d |−|ν

3
d | ∼ λ1.5. (7.34)

Therefore, for instance, for ε ∼ λ as in the case with a large M5 from figure 2, we can explain

the hierarchy of quark masses and mixings for the O(1) differences in the bulk mass param-

eters, without a fine-tuning. However, if ε� λ, which is the case with a small M5, we would

need to fine-tune the bulk mass parameters to get the right quark masses and mixings.

In summary we can fix nine of the total eleven parameters, νiq, ν
i
u, ν

i
d and yu, yd, from

six quark masses and the CKM mixings as above, up to the quark CP phase, so there are

two free parameters unfixed, namely, ν3
q , ν

3
u.

7.3 Charged leptons and neutrino masses

Regarding the flavor structure of the leptons, there are a variety of options in our model,

depending on the Majorana mass terms for the right-handed neutrinos.

When the brane-localized Majorana mass terms for the right-handed neutrinos are

nonzero and larger than the Dirac neutrino masses, we can obtain the small Majorana

neutrino masses by see-saw mechanism, with suppressed Dirac neutrino masses due to the

localization of zero modes of bulk fermions, so the effective Majorana neutrino masses for

the right-handed neutrinos, that is, M ′R, can be much lower than in see-saw mechanism in

four dimensions. When M ′R is comparable to or larger than the KK masses, which are of

order k, the level mixings between KK modes of the bulk neutrinos on the branes would

be important [29, 30]. But, we ignore the level mixings in following discussion by assuming

that M ′R < k.

On the other hand, when the brane-localized Majorana mass terms for the right-handed

neutrinos vanish by the accidental lepton symmetry, that is, MR = 0, we can also get the

small Dirac neutrino masses and mixing angles from the localization of zero modes of bulk

fermions.

Similarly to the case with quarks, assuming that the brane-localized Yukawa couplings

for leptons, ye, yν , are flavor-diagonal, that is, yije = ye δij , y
ij
ν = yν δij , we want to generate
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the realistic flavor structure for charged leptons and neutrino oscillations from the localiza-

tion of the zero modes of bulk fermions. In the presence of a nonzero M ij
R , if flavor-diagonal,

that is, M ij
R = MR δij , we would get M ′ijR = MR η

i
nη

j
n, leading to a massless right-handed

fermion, which is not relevant for see-saw mechanism. So, in order to keep three right-

handed neutrinos massive, we need to take M ij
R to deviate from being flavor diagonal.

Then, after electroweak symmetry breaking, from eq. (7.6), the mass matrices for

charged leptons are given by

M ij
e =

1√
2
kye v η

i
lη
j
e. (7.35)

Then, assuming that η1
ψ < η2

ψ < η3
ψ with ψ = l, e, we can diagonalize the charged mass

matrices by the bi-unitary transformations [1, 57],

VeLMeV
†
eR

= diag(me,mµ,mτ ) ≡ mi
e δij (7.36)

where

V ij
eL
∼ min

(
ηil
ηjl
,
ηjl
ηil

)
∼ min

(
ε|ν

i
l |−|ν

j
l |, ε|ν

j
l |−|ν

i
l |
)
, (7.37)

V ij
eR
∼ min

(
ηie

ηje
,
ηje
ηie

)
∼ min

(
ε|ν

i
e|−|ν

j
e |, ε|ν

j
e |−|νie|

)
, (7.38)

and mi
e = kye v η

i
lη
i
e. Thus, for kye ∼ 1 and η3

l η
3
e ∼ mτ

mt
∼ 10−2, we obtain the correct tau

lepton mass. Moreover, the mass hierarchies for charged leptons are given by

mi
e

mj
e

= ε|ν
i
l |−|ν

j
l | × ε|ν

i
e|−|ν

j
e |, i < j, (7.39)

For instance, for |νil | = |νjl | for all i, j, using the charged lepton masses [58], we can

determine the mass parameters for right-handed charged leptons in powers of the Cabibbo

angle as

ε|ν
1
e |−|ν2e | ∼ λ3.5, ε|ν

2
e |−|ν3e | ∼ λ6.4, ε|ν

1
e |−|ν3e | ∼ λ9.9. (7.40)

Therefore, for ε ∼ λ, similarly to the case with quark masses, we can explain the hierarchy

of lepton masses for the mild differences in the bulk mass parameters for leptons.

On the other hand, for MR 6= 0, the Majorana masses for active neutrinos are generated

by see-saw mechanism as

Mν = −MD(M ′R)−1MT
D. (7.41)

with M ij
D = 1√

2
kyν v η

i
lη
j
n and M ′ijR = kM ij

R ηinη
j
n. Then, for MRηn � ηlyνv, the standard

see-saw mechanism gives rise to small neutrino masses, mi
ν ∼

(ηilkyνv)2

kMR
for ηil � 1, even for

kyν = O(1) and a relatively small kMR.

On the other hand, if MR = 0, the active neutrinos have only Dirac masses, which are

given by

M ij
ν = M ij

D =
1√
2
kyν v η

i
lη
j
n. (7.42)
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In this case, we can achieve small neutrino masses for ηilη
i
n � 1, even for yν = O(1).

As ηil are constrained by the masses of the charged leptons from eq. (7.40), we can take

ηin . 6× 10−9 from mν . 0.1 eV and ηil . 10−4. In this case, we would need the expansion

parameter to be ε ∼ 10−9, which can be achieved being compatible with a low M5 to solve

the hierarchy problem as shown in figure 2.

Therefore, after diagonalizing the neutrino mass matrix in either case by

VνLMνV
T
νL

= diag(m1,m2,m3) ≡ mi
ν δij , MR 6= 0, (7.43)

or

VνLMνV
†
nR

= diag(m1,m2,m3) ≡ mi
ν δij , MR = 0, (7.44)

we can obtain both realistic masses and mixings for neutrino oscillations. Finally, in either

cases with or without MR, the PMNS matrix is also obtained as

V ij
PMNS = (VeLV

†
νL

)ij (7.45)

so the bulk mass parameters for leptons are constrained by the PMNS mixings. As the

mixings for the charged leptons are naturally suppressed by ε|ν
i
l |−|ν

j
l | with i < j for |νil | >

|νjl |, the mixing angles in the PMNS matrix are determined mainly by V †νL , which depends

on the neutrino mass matrix Mν . In principle, we can obtain the realistic PMNS matrix

from neutrino data [59–61] by choosing the bulk mass parameters for leptons appropriately,

but we don’t go to the details on the phenomenological discussion any further in this work.

In summary, for Majorana neutrinos, there are twelve parameters in total, νil , ν
i
e, ν

i
n

and ye, yν ,MR, eight of which are fixed from three charged lepton masses, ∆m2
12 and ∆m2

23

for neutrino masses, and three neutrino mixing angles, θ12, θ23, θ13, up to the leptonic CP

phase, so there are four free parameters unfixed, that is, ν3
l , ν

3
e , ν

3
n and MR. On the other

hand, for Dirac neutrinos with MR = 0, there are eleven parameter in total, so there are

three free parameters unfixed, that is, ν3
l , ν

3
e , ν

3
n.

7.4 KK gauge boson couplings

Taking a < 0, we can obtain the sizable gauge couplings for the zero modes of the SM gauge

bosons from g0 = g5D

√
k|a|/(1− e−2k|a|zc) in eq. (5.13), which become g0 ≈ g5D

√
k|a|. In

this case, from eqs. (5.20) and (5.21), for c > 0, we get the couplings of the charged SM

fermions to the KK modes of SM gauge bosons approximately as

gψ,n ≈
g5Dπn

z
3/2
c mAn

4| − 3c± 2νψ|(3a− 3c± 2νψ)(kzc)
2

9n2π2 + (3a− 6c± 4νψ)2(kzc)2

 (−1)n+1ek|a|zc , |νψ| < 3
2c,

1, |νψ| > 3
2c,

(7.46)

where 3a+2(−3c±2νψ) > 0 is also assumed in the latter case and g5D = gY,5D, gL,5D, gS,5D
for the SM hypercharge, weak gauge bosons and gluons, respectively. For c < 0, we can

interchange the conditions on the bulk mass parameters in eq. (7.46).

As a result, for the zero modes of bulk fermions (light quarks and leptons) localized

towards the brane at z = zc, have enhanced couplings to the KK modes of SM gauge

bosons as compared to those for the zero-mode gauge bosons, unless kzc is of order one or
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|a| . 1/(kzc). On the other hand, the zero modes of bulk fermions (top and/or bottom

quarks) localized towards the brane at z = 0 have similar couplings to the KK modes of SM

gauge bosons, as compared to those for the zero-mode gauge bosons. Therefore, the KK

gauge bosons would be produced copiously from the fusion of light quark and anti-quark

at the LHC, and the dijet resonance researches for the KK gauge bosons are promising.

We remark that as noted in the previous sections, for |a| . 1/(kzc), the similar cou-

plings for all the zero modes of bulk fermions to the KK modes of SM gauge bosons are

obtained, independently of the localizations, but parametrically smaller than those for the

zero-mode gauge bosons. However, from mAn =
√
a2k2 + π2n2/z2

c ∼ πn/zc, the masses of

the KK gauge bosons become parametrically smaller than the KK masses for bulk gravitons

or fermions, which are about k.

7.5 KK graviton couplings

We can parametrize the effective couplings to the SM particles in the following form [55, 56],

Leff =
c1,n

Λ
G(n)µν

(
1

4
ηµνBλρB

λρ +BµλB
λ
ν

)
+
c2,n

Λ
Gµν

(
1

4
ηµνWλρW

λρ +WµλW
λ
ν

)
+
c3,n

Λ
Gµν

(
1

4
ηµνgλρg

λρ + gµλg
λ
ν

)
−
icψ,n
2Λ

Gµν
(
ψ̄γµ
←→
D νψ − ηµνψ̄γρ

←→
D ρψ

)
+
cH,n

Λ
Gµν

(
2(DµH)†DνH − ηµν

(
(DρH)†DρH − V (H)

))
. (7.47)

Here, we note that the effective coupling of the KK graviton is normalized to

Λ = M
3/2
5

√
zc
mG1zc
π

'MP e
−kzc (kzc)

3/2

π
(7.48)

where we used mG1 ' k for kzc � 1 and eq. (2.6), and assumed ekzc � 1.

Consequently, we obtain the partial decay rates of the first KK graviton G ≡ G(1) [55,

56], as follows,

ΓG(gg) =
c2
ggm

3
G

10πΛ2
, ΓG(γγ) =

c2
γγm

3
G

80πΛ2
,

ΓG(ZZ) =
m3
G

80πΛ2

√
1− 4rZ

(
c2
ZZ +

c2
H

12
+
rZ
3

(
3c2
H − 20cHcZZ − 9c2

ZZ

)
+

2r2
Z

3

(
7c2
H + 10cHcZZ + 9c2

ZZ

))
,

ΓG(WW ) =
m3
G

40πΛ2

√
1− 4rW

(
c2
WW +

c2
H

12
+
rW
3

(
3c2
H − 20cHcWW − 9c2

WW

)
+

2r2
W

3

(
7c2
H + 10cHcWW + 9c2

WW

))
,

ΓG(Zγ) =
c2
Zγm

3
G

40πΛ2
(1− rZ)3

(
1 +

rZ
2

+
r2
Z

6

)
,

ΓG(ψψ̄) =
Ncc

2
ψm

3
G

160πΛ2
(1− 4rψ)3/2(1 + 8rψ/3),

ΓG(hh) =
c2
Hm

3
G

960πΛ2
(1− 4rh)5/2 (7.49)
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where cγγ = s2
θc2 + c2

θc1, cZZ = c2
θc2 + s2

θc1, cZγ = sθcθ(c2− c1), cgg = c3, cWW = 2c2, with

c1 ≡ c1,0, c2 ≡ c2,0, etc, ri = (mi/mG)2, and mG = m1 is the lightest KK graviton mass.

On the other hand, the decay rate of the nth KK graviton G(n) into a gluon pair

becomes

ΓG(n)(gg) =
n2m2

G1

m2
Gn

·
c2
ggm

3
Gn

10πΛ2
=
n2mGn

mG1

· ΓG, (7.50)

etc. The overall factor,
n2mGn
mG1

, is approximated to n2 for kzc � 1, so the partial decay

widths of heavier KK gravitons are larger than the one for the first KK graviton.

For the realistic masses and mixings for quarks and leptons, heavy quarks such as

top and/or bottom quarks tend to be localized towards the brane at z = 0, whereas light

quarks and leptons are localized towards the brane at z = zc. Therefore, the KK gravitons

can decay sizably into a pair of top or bottom quarks. On the other hand, the SM gauge

bosons propagate into the bulk, so the couplings between the zero modes of transverse SM

gauge bosons and the KK gravitons would have a mild suppression. But, as the Higgs field

is localized on the brane z = 0, the couplings between the longitudinal components of W

and Z bosons and the KK gravitons are unsuppressed.

From the general results in eqs. (6.19) and (6.14), we can get the effective couplings

of the KK gravitons to the Higgs fields, the transverse polarizations of SM gauge bosons,

and top and bottom quarks, as follows,

cH,n =
nmG1

mGn

, (7.51)

ci,n =
nmG1

mGn

4|a|(1− a)(kzc)
2

|e2kazc − 1|
·

(
1− (−1)n e(2a−1)kzc

)
n2π2 + (1− 2a)2(kzc)2

, i = 1, 2, 3, (7.52)

cq3L,n ≈
nmG1

mGn

4| − 3c+ 2νq3L |(3− 3c+ 2νq3L)(kzc)
2

9n2π2 + (3− 6c+ 4νq3L)2(kzc)2
, (7.53)

cfR,n ≈
nmG1

mGn

4| − 3c− 2νfR |(3− 3c− 2νfR)(kzc)
2

9n2π2 + (3− 6c− 4νfR)2(kzc)2
, (7.54)

with fR = tR, bR. We note that the KK graviton couplings to top and bottom quarks are

comparable to those to the Higgs fields localized on the brane at z = 0 for |νq3L |, |νfR | > 3
2c

for c > 0 or |νq3 |, |νfR | < 3
2 |c| for c < 0. Moreover, as we discussed in the previous

subsection, the perturbativity of couplings of the KK gauge bosons would require a small

|a| . 1/(kzc) for ekzc � 1. In this case, the couplings of the KK gravitons to the transverse

polarizations of SM gauge bosons are parametrically smaller than those for the Higgs fields

and top and bottom quarks. Consequently, the KK gravitons decay dominantly into the

Higgs fields and top and bottom quarks.

8 Conclusions

We introduced various bulk fields with general dilaton couplings in the linear dilaton back-

ground in five dimensions, and showed the bulk profile of the zero mode as well as the KK

spectrum in each case. In particular, the localization of the zero mode of a bulk fermion
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depends both on the bulk dilaton coupling and on the bulk mass parameter. Universal-

ity of the effective coupling to massless gauge bosons determines the dilaton couplings

to brane-localized matter fields while perturbativity of the effective couplings to massive

gauge bosons constrains the sign and magnitude of the bulk dilaton couplings to gauge

bosons. We also showed that the couplings of zero modes to the massive KK gravitons

depend on the localization in the extra dimension.

Constructing the Clockwork SM in the linear dilaton background, we provided the

general discussion on the effective Yukawa couplings between the zero modes of the SM

fermions on the brane, and showed the necessary conditions for the bulk mass parameters

for the mass hierarchy and mixing in the quark sector as well as in the lepton sector. We

can introduce a sizable expansion parameter, ε = e−
2
3
kzc , or a small inverse proper length

L−1
5 , for the realistic flavor structure in the quark sector without a fine-tuning in the bulk

mass parameters, but at the expense of a large 5D Planck scale. On the other hand, we

can use a smaller expansion parameter or a larger proper length of the extra dimension for

realistic lepton masses, in particular, for Dirac neutrino masses, being compatible with the

solution to the hierarchy problem of the Higgs mass parameter. We found that massive KK

gauge bosons and massive KK gravitons couple more strongly to light and heavy fermions,

respectively, so there is a complementarity in the resonance researches for those KK modes

at the LHC.
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A Matter Lagrangians with dilaton couplings

We list the bulk and brane matter Lagrangians with or without dilaton factors in Jordan

frame and show the corresponding Lagrangians in Einstein frame.

Bulk matter Lagrangian. For massless bulk matter fields, the corresponding kinetic

terms in Jordan frame is given by

LB =
√
G

(
ecχSGMNDMχDNχ

∗ + ecψS iψ̄γMDMψ −
1

4
eaSGMPGNQFMNFPQ

)
. (A.1)

Under the scale transformation with S → S + δ and GMN → e−2δ/3GMN , bulk scalar,

fermion and gauge fields transform as χ → e−(cχ−1)δ/2χ, ψ → e−(cφ− 4
3

)δ/2ψ, and AM →
e−(a− 1

3
)δ/2AM .
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Going to the Einstein frame with GMN = e−2S/3GEMN , the above bulk matter La-

grangian becomes

LB =
√
GE

(
e(cχ−1)S GMN

E DMχDNχ
∗+ecψS iψ̄′γME DMψ

′−1

4
e(a− 1

3
)S GMP

E GNQE FMNFPQ

)
(A.2)

where γME are the gamma matrices defined for the Einstein frame metric and the redefined

fermion field is given by ψ′ = e−2S/3ψ.

Brane-localized matter Lagrangian. For massless matter fields localized on the

branes, the corresponding kinetic terms in Jordan frame is given by

Lb = δ(z − zi)
√
G√
−G55

(
GµνDµχDνχ

∗ + iψ̄γµDµψ −
1

4
GµρGνσFµνFρσ

)
. (A.3)

Going to the Einstein frame with GMN = e−2S/3GEMN , the above brane matter Lagrangian

becomes

Lb = δ(z − zi)
√
GE√
−GE55

(
e−2S/3GµνE DµχDνχ

∗ + iψ̄′γµEDµψ
′ − 1

4
GµρE G

νσ
E FµνFρσ

)
(A.4)

with the redefined fermion field being ψ′ = e−S/2ψ.
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